Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (200)

Search Parameters:
Keywords = low-grade heat energy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2278 KB  
Article
Experimental and Numerical Investigation of an Adsorption Desalination Exchanger for High-Purity Water Production in Hydrogen Systems
by Piotr Boruta, Tomasz Bujok, Karol Sztekler, Łukasz Mika, Wojciech Kalawa and Agata Mlonka-Mędrala
Energies 2026, 19(2), 484; https://doi.org/10.3390/en19020484 - 19 Jan 2026
Abstract
Hydrogen-based energy systems require large amounts of high-purity water, motivating thermally driven desalination that can recover low-grade heat. This study evaluates a silica gel–water adsorption chiller–desalination unit as a coupled source of cooling and pre-treated water for electrolysers. A laboratory two-bed system was [...] Read more.
Hydrogen-based energy systems require large amounts of high-purity water, motivating thermally driven desalination that can recover low-grade heat. This study evaluates a silica gel–water adsorption chiller–desalination unit as a coupled source of cooling and pre-treated water for electrolysers. A laboratory two-bed system was tested on saline feed using 300 s valve-switching periods at an 80 °C driving temperature and 20–30 °C cooling water. Dynamic vapour sorption measurements provided Dubinin–Astakhov equilibrium and linear driving force kinetic parameters, implemented in a CFD porous bed model via user-defined source terms. Experiments yielded COP values of 0.29–0.41, an SCP of 165 W·kg−1 of adsorbent, and an average distillate production of 1.68–1.82 kg·h−1, while distillate conductivity remained ≈2.3 μS·cm−1. The model reproduced the mean condensate production with a ≈6% underprediction. It was then used to compare six alternative fin geometries with a constant heat-transfer area. Fin-shape modifications changed inter-fin heating by <2 K and cumulative desorbed mass by <0.05%, indicating limited sensitivity to subtle local refinements. Performance gains are more likely to arise from operating conditions and exchanger-scale architecture than from minor fin-shape changes. Full article
(This article belongs to the Special Issue Advances in Numerical and Experimental Heat Transfer)
Show Figures

Figure 1

25 pages, 2436 KB  
Article
Industrial Waste Heat Utilization Potential in China: Measurement and Impacts on Carbon Peaking and Carbon Neutrality Pathways
by Shuang Xu, Haitao Chen, Yueting Ding, Jingyun Li and Zewei Zhong
Energies 2026, 19(2), 292; https://doi.org/10.3390/en19020292 - 6 Jan 2026
Viewed by 231
Abstract
As the goal of carbon peak and carbon neutrality becomes a global consensus, the circular economy is gradually evolving from an environmental concept to a core lever for national strategy and industrial transformation. To achieve green and low-carbon development, China is accelerating the [...] Read more.
As the goal of carbon peak and carbon neutrality becomes a global consensus, the circular economy is gradually evolving from an environmental concept to a core lever for national strategy and industrial transformation. To achieve green and low-carbon development, China is accelerating the construction of a circular economy system, particularly in the fields of resource recycling and utilization. Industrial waste heat, a strategically critical supplementary energy resource, performs a pivotal role in advancing the circular economy. Based on an energy technology coupling model, this study assesses the waste heat utilization potential in China and quantitatively measures its impact on energy conservation and carbon reduction. The results show that: (1) The potential of industrial waste heat in China is characterized by an inverted U-shaped trajectory. Over the near-to-medium term, the steel and power industries remain the primary contributors to waste heat utilization potential. (2) Low-grade waste heat represents the majority of utilization potential in China’s industrial sector, mainly from power generation, fuel processing, and steel manufacturing. The model results indicate that the proportion of low temperature waste heat will increase from approximately 66% in 2025 to 83% in 2060. (3) Waste heat utilization significantly influences the energy transition pathway. The findings of this study demonstrate that energy-intensive industries have the potential to reduce primary energy consumption by more than 13%. Moreover, making full use of waste heat could accelerate China’s carbon peaking target to 2028, and reduce peak carbon emissions by an estimated 5.1%. Full article
Show Figures

Figure 1

14 pages, 898 KB  
Article
Changes in Chemical and Mechanical Wood Properties in Silver Fir, Norway Spruce and Scots Pine Trees as a Result of High Temperatures Due to Fire
by Tomáš Holeček, Lukáš Sahula, Kateřina Hájková, Aleš Zeidler, Monika Barbara Gach, Paweł Tylek, Krzysztof Słowiński, Radosław Wąsik, Krzysztof Michalec and Tomasz Marcinik
Fire 2026, 9(1), 6; https://doi.org/10.3390/fire9010006 - 23 Dec 2025
Viewed by 493
Abstract
Wildfires are becoming more frequent in Central Europe, raising questions about the mechanical and chemical integrity of fire-affected conifer wood. Because commercial species such as silver fir (Abies alba), Norway spruce (Picea abies), and Scots pine (Pinus sylvestris [...] Read more.
Wildfires are becoming more frequent in Central Europe, raising questions about the mechanical and chemical integrity of fire-affected conifer wood. Because commercial species such as silver fir (Abies alba), Norway spruce (Picea abies), and Scots pine (Pinus sylvestris) are not evolutionarily adapted to fire, their thermo-mechanical response remains poorly quantified. This study investigates oven-dry density, static bending strength, compressive strength parallel to the grain, Brinell hardness, chemical composition, elemental composition, and heat of combustion of wood collected from a recent post-fire stand in Poland. Fire exposure resulted in a slight reduction in oven-dry density, while compressive and bending strengths increased relative to reported reference values, likely due to moisture depletion and partial thermal modification of cell-wall polymers. Chemical analyses showed moderate thermally induced shifts, including higher lignin and carbon content with depth, consistent with progressive carbonization of the affected tissues. Although surface-affected wood retained measurable mechanical capacity and energy value, its structural applicability remains constrained by potential brittleness and the limited sampling depth. These findings provide essential baseline data for evaluating post-fire conifer wood and its potential use in low-grade material and bioenergy applications. Full article
Show Figures

Figure 1

26 pages, 9440 KB  
Article
Mitigating Urban Heat Island Effects Through Thermally Efficient Concrete Paver Blocks for Sustainable Infrastructure
by Tejas Joshi, Jeet Machchhoya, Urmil Dave, Plescan Costel and Vedanshi Shah
Infrastructures 2026, 11(1), 5; https://doi.org/10.3390/infrastructures11010005 - 21 Dec 2025
Viewed by 313
Abstract
Rapid urbanization and the widespread use of impervious materials have intensified the urban heat island (UHI) effect, raising surface temperatures and energy demands. Conventional concrete pavements contribute significantly due to their high thermal conductivity and low reflectivity. This study systematically investigates the development [...] Read more.
Rapid urbanization and the widespread use of impervious materials have intensified the urban heat island (UHI) effect, raising surface temperatures and energy demands. Conventional concrete pavements contribute significantly due to their high thermal conductivity and low reflectivity. This study systematically investigates the development of thermally efficient concrete paver blocks using sustainable alternative fine aggregates to mitigate heat accumulation while retaining a minimum compressive strength of 35–45 MPa (recommended for medium traffic). Unlike prior isolated studies, this research offers a comprehensive comparative analysis of three sand replacements—Vermiculite powder (12.5–50%), Perlite powder (20–80%), and Crushed Glass (7.5–30%)—in M30-grade concrete. Fresh and hardened properties were evaluated through slump, density, and compressive strength tests at 7, 14, and 28 days, while infrared thermography quantified surface temperature variations under controlled heat exposure. Results showed significant thermal improvements, with optimal mixes Vermiculite 25% (VC-25), Perlite 40% (PR-40), and Crushed Glass 15% (CG-15) reducing surface temperatures by 25.1 °C, 22.2 °C, and 18.2 °C, respectively, while maintaining compressive strengths of 47.8 MPa, 38.8 MPa, and ~58 MPa. VC-25 proved superior, achieving the lowest surface temperature (26.3 °C) and 48.8% lower heat absorption than conventional concrete. The study establishes optimal replacement thresholds balancing insulation and strength, supporting SDGs 11, 12, and 13 through climate-responsive, resource-efficient construction materials. Full article
(This article belongs to the Section Infrastructures Materials and Constructions)
Show Figures

Figure 1

35 pages, 1516 KB  
Review
Organic Rankine Cycle System Review: Thermodynamic Configurations, Working Fluids, and Future Challenges in Low-Temperature Power Generation
by Felix Donate Sánchez, Javier Barba Salvador and Carmen Mata Montes
Energies 2025, 18(24), 6561; https://doi.org/10.3390/en18246561 - 15 Dec 2025
Viewed by 1202
Abstract
In the context of the zero-carbon transition, this article provides a comprehensive review of Organic Rankine Cycle (ORC) technologies for low-grade heat recovery and conversion to power. It surveys a wide range of renewable and waste heat sources—including geothermal, solar thermal, biomass, internal [...] Read more.
In the context of the zero-carbon transition, this article provides a comprehensive review of Organic Rankine Cycle (ORC) technologies for low-grade heat recovery and conversion to power. It surveys a wide range of renewable and waste heat sources—including geothermal, solar thermal, biomass, internal combustion engine exhaust, and industrial process heat—and discusses the integration of ORC systems to enhance energy recovery and thermal efficiency. The analysis examines various configurations, from basic and regenerative cycles to advanced transcritical and supercritical designs, cascaded systems, and multi-source integration, evaluating their thermodynamic performance for different heat source profiles. A critical focus is placed on working fluid selection, where the landscape is being reshaped by stringent regulatory frameworks such as the EU F-Gas regulation, driving a shift towards low-GWP hydrofluoroolefins, natural refrigerants, and tailored zeotropic mixtures. The review benchmarks ORC against competing technologies such as the Kalina cycle, Stirling engines, and thermoelectric generators, highlighting relative performance characteristics. Furthermore, it identifies key trends, including the move beyond single-source applications toward integrated hybrid systems and the use of multi-objective optimization to balance thermodynamic, economic, and environmental criteria, despite persistent challenges related to computational cost and real-time control. Key findings confirm that ORC systems significantly improve low-grade heat utilization and overall thermal efficiency, positioning them as vital components for integrated zero-carbon power plants. The study concludes that synergistically optimizing ORC design, refrigerant choice in line with regulations, and system integration strategies is crucial for maximizing energy recovery and supporting the broader zero-carbon energy transition. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

28 pages, 27592 KB  
Article
Food Industry Waste as Bio-Modifiers for Sustainable Concrete: Effects of Roasting Pretreatments and Oilseed Cake Types
by Sıddıka Yusra Özkılıç, Ayşe Büşra Madenci, Derya Arslan, Fatih Yılmaz, Emrah Madenci and Yasin Onuralp Özkılıç
J. Compos. Sci. 2025, 9(12), 699; https://doi.org/10.3390/jcs9120699 - 14 Dec 2025
Viewed by 334
Abstract
The use of food industry by-products in the production of construction materials is a great method to achieve sustainability and simultaneously reduce cement consumption. The present research analyzes the use of pomegranate seed cakes (untreated, oven-roasted, and microwave-treated), grape seeds, and black cumin [...] Read more.
The use of food industry by-products in the production of construction materials is a great method to achieve sustainability and simultaneously reduce cement consumption. The present research analyzes the use of pomegranate seed cakes (untreated, oven-roasted, and microwave-treated), grape seeds, and black cumin seeds for 0–15% cement replacement. In addition, the focus is on the thermal pretreatment methods and their compatibility with the microstructure of the cement, especially microwave processing due to its rapid heating, low energy demand, and improved microstructural compatibility. The outcomes suggest that microwave-treated pomegranate seed cakes resulted in the highest workability stability, lowest slump loss, and most uniform distribution in the cement matrix in comparison to untreated and oven-roasted pomegranate seed cakes. Comprehensive mechanical tests (compressive, flexural, and splitting tensile strength) and microstructural analyses (SEM, EDS, FTIR, XRD, BET) were conducted on both raw additives and concrete specimens. Although mechanical performance decreases with increasing organic content, mixtures containing 3–5% bio-modifier provided a favorable balance between workability, strength retention, and microstructural development. Microwave pretreatment not only improved the surface morphology but also made the interface more reactive, and by consuming around 80–85% less energy than the oven roasting, it strengthened the sustainability feature of the process. In a nutshell, the research proves that low-energy thermal pretreatment of food-grade waste can result in functional, eco-efficient cementitious composites, and at the same time, the integration of food engineering principles into environmentally friendly construction material design will become inevitable. Full article
Show Figures

Figure 1

22 pages, 12930 KB  
Article
Design of Modular Methanol Reformers Utilizing Industrial Waste Heat for Sustainable Hydrogen Production
by Yexin Chen, Yihan Jiang, Dian Xiong, Yangyang Ji, Jinru Luo and Xinyu Liu
Sustainability 2025, 17(24), 11180; https://doi.org/10.3390/su172411180 - 13 Dec 2025
Viewed by 350
Abstract
Renewable methanol is considered a promising carrier for sustainable hydrogen due to its convenience in storage and transportation. Methanol steam reforming (MSR) using exhaust heat from industrial boilers can further enhance energy efficiency. However, existing methanol reforming systems still face challenges in terms [...] Read more.
Renewable methanol is considered a promising carrier for sustainable hydrogen due to its convenience in storage and transportation. Methanol steam reforming (MSR) using exhaust heat from industrial boilers can further enhance energy efficiency. However, existing methanol reforming systems still face challenges in terms of matching with industrial boilers, heat exchanger compactness, and adaptability to fluctuations in exhaust gas conditions. To address these issues, this study proposes the design of a modular methanol reforming system driven by the exhaust heat of small industrial boilers and develops a three-dimensional multiphysics simulation model to investigate the heat transfer and reaction characteristics within the reactor. The results indicate that, within the ranges of exhaust heat temperature (220–270 °C), flow rate (0.4–1.2 g/s), and channel spacing (60–100 mm), increasing the exhaust heat temperature enhances the endothermic reforming process, while decreasing the channel spacing improves heat transfer and increases methanol conversion. The reactor with a 60 mm channel spacing achieves a conversion ratio of up to 95.3% at a flow rate of 0.4 g/s. Although the hydrogen yield increases with flow rate, the single-pass conversion ratio decreases due to shorter residence time and increased load per unit volume. Compared to traditional fixed-structure reactors, the proposed modular system allows flexible matching of scale and heat exchange capacity through adjustable channel configurations, enhancing adaptability to fluctuations in industrial exhaust temperature and load. This design improves the utilization efficiency of low-grade waste heat and offers a practical engineering solution for sustainable distributed hydrogen production. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

28 pages, 12908 KB  
Article
Energy, Exergy, Economic, and Environmental (4E) Performance Analysis and Multi-Objective Optimization of a Compressed CO2 Energy Storage System Integrated with ORC
by Yitong Wu, Chairunnisa, Kyaw Thu and Takahiko Miyazaki
Energy Storage Appl. 2025, 2(4), 18; https://doi.org/10.3390/esa2040018 - 10 Dec 2025
Viewed by 414
Abstract
Current CO2-based energy storage systems still face several unsolved technical challenges, including strong thermal destruction between the multi-stage compression and expansion processes, significant exergy destruction in heat exchange units, limited utilization of low-grade heat, and the lack of an integrated comprehensive [...] Read more.
Current CO2-based energy storage systems still face several unsolved technical challenges, including strong thermal destruction between the multi-stage compression and expansion processes, significant exergy destruction in heat exchange units, limited utilization of low-grade heat, and the lack of an integrated comprehensive performance framework capable of simultaneously evaluating thermodynamic, economic, and environmental performance. Although previous studies have explored various compressed CO2 energy storage (CCES) configurations and CCES–Organic Rankine Cycle (ORC) couplings, most works treat the two subsystems separately, neglect interactions between the heat exchange loops, or overlook the combined effects of exergy losses, cost trade-offs, and CO2-emission reduction. These gaps hinder the identification of optimal operating conditions and limit the system-level understanding needed for practical application. To address these challenges, this study proposes an innovative system that integrates a multi-stage CCES system with ORC. The system introduces ethylene glycol as a dual thermal carrier, coupling waste-heat recovery in the CCES with low-temperature energy utilization in the ORC, while liquefied natural gas (LNG) provides cold energy to improve cycle efficiency. A comprehensive 4E (energy, exergy, economic, and environmental) assessment framework is developed, incorporating thermodynamic modeling, exergy destruction analysis, CEPCI-based cost estimation, and environmental metrics including primary energy saved (PES) and CO2 emission reduction. Sensitivity analyses on the high-pressure tank (HPT) pressure, heat exchanger pinch temperature difference, and pre-expansion pressure of propane (P30) reveal strong nonlinear effects on system performance. A multi-objective optimization combining NSGA-II and TOPSIS identifies the optimal operating condition, achieving 69.6% system exergy efficiency, a 2.07-year payback period, and 1087.3 kWh of primary energy savings. The ORC subsystem attains 49.02% thermal and 62.27% exergy efficiency, demonstrating synergistic effect between the CCES and ORC. The results highlight the proposed CCES–ORC system as a technically and economically feasible approach for high-efficiency, low-carbon energy storage and conversion. Full article
Show Figures

Figure 1

40 pages, 5505 KB  
Article
Thermo-Economic Assessment of the Organic Rankine Cycle Combined with an Ejector Cooling Cycle Driven by Low-Grade Waste Heat
by Wichean Singmai, Pichet Janpla, Kittiwoot Sutthivirode, Tongchana Thongtip and Natthawut Ruangtrakoon
Energies 2025, 18(24), 6408; https://doi.org/10.3390/en18246408 - 8 Dec 2025
Viewed by 361
Abstract
This paper proposes an energy, exergy, economic, and exergoeconomic (4E) analysis of an Organic Rankine Cycle (ORC) enhanced by an ejector refrigeration system. The two systems are combined via an intercooler, where the unwanted heat is transferred to the ejector cooling loop. The [...] Read more.
This paper proposes an energy, exergy, economic, and exergoeconomic (4E) analysis of an Organic Rankine Cycle (ORC) enhanced by an ejector refrigeration system. The two systems are combined via an intercooler, where the unwanted heat is transferred to the ejector cooling loop. The major objective is to reduce the discharge pressure of the expander so that higher power is achieved. However, the combined system requires more equipment and energy input, and, hence, 4E analysis is an efficient tool for assessing the feasibility of it in practical use based on a comprehensive analysis. This study aims to provide a systematic 4E-based evaluation of an ORC integrated with an ejector cooling cycle under realistic tropical conditions. The innovation of this work lies in combining unified thermodynamic, economic, and exergoeconomic assessments to quantify both performance enhancement and cost interactions attributable to condenser-side cooling. The findings offer significant insights into the dominant thermal–economic trade-offs, identify key cost drivers within the ORC + ECC configuration, and highlight operating conditions that maximize the power output and minimize the electricity generation cost. These results contribute practical guidelines for improving the feasibility and deployment of ORC–ejector systems for low-grade heat recovery applications. A theoretical model is formulated to examine both energy and exergy performance indicators together with key economic metrics. Parametric investigations are conducted to investigate the effects of the intercooler temperature (16–22 °C) and generator temperature (70–85 °C) on overall system performance. It is found that the integration of an ejector cooling cycle (ORC + ECC) can significantly enhance the thermo-economic potential of waste heat power generation systems compared to a standard ORC, from both exergoeconomic and LCOE perspectives. The exergoeconomic analysis identified that, while the expander dominates the cost of the standard ORC, the condenser and cooling tower become critical components of the ORC + ECC due to their high exergy-destruction costs. At the system level, the LCOE results confirm that the ORC + ECC can achieve 37–38% lower electricity generation costs compared to the standard ORC. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

30 pages, 3158 KB  
Review
Heat Transfer Calculation Method, Thermal Performance, and Control Strategy of Radiant Heating and Cooling System: A Review
by Zichen Liu, Jun Wang, Chengjun Jing, Xiaozhou Wu and Dong Liu
Energies 2025, 18(24), 6382; https://doi.org/10.3390/en18246382 - 5 Dec 2025
Viewed by 677
Abstract
The radiant heating and cooling (RHC) system is one of the important air-conditioning methods that simultaneously achieves indoor thermal comfort and building energy efficiency. It is characterized by utilizing low-grade energy sources to provide low-temperature heating and high-temperature cooling, playing a significant role [...] Read more.
The radiant heating and cooling (RHC) system is one of the important air-conditioning methods that simultaneously achieves indoor thermal comfort and building energy efficiency. It is characterized by utilizing low-grade energy sources to provide low-temperature heating and high-temperature cooling, playing a significant role in promoting the development of green and low-carbon buildings. This study firstly introduces the typical heat transfer calculation methods of the RHC system and analyzes the surface heat transfer coefficients of radiant heating and cooling. Subsequently, the factors affecting the thermal performance of the RHC system are discussed from two aspects: relevant physical property parameters and flow channel structures. Finally, the control strategies of RHC systems are summarized to address issues such as condensation, overheating, and long response times. And several conclusive findings are presented that are worthy of further investigation in the future. Full article
(This article belongs to the Special Issue Innovations in Low-Carbon Building Energy Systems)
Show Figures

Figure 1

31 pages, 3063 KB  
Article
Interactive Digital Twin Workflow for Energy Assessment of Buildings: Integration of Photogrammetry, BIM and Thermography
by Luis Santiago Rojas-Colmenares, Carlos Rizo-Maestre, Francisco Gómez-Donoso and Pascual Saura-Gómez
Appl. Sci. 2025, 15(23), 12599; https://doi.org/10.3390/app152312599 - 28 Nov 2025
Viewed by 976
Abstract
This study presents a novel low-cost workflow integrating smartphone-based photogrammetry, Building Information Modeling (BIM), infrared thermography, and real-time interactive visualization to create digital twins for comprehensive energy assessment of existing buildings. Unlike conventional approaches requiring expensive laser scanning equipment and specialized software, this [...] Read more.
This study presents a novel low-cost workflow integrating smartphone-based photogrammetry, Building Information Modeling (BIM), infrared thermography, and real-time interactive visualization to create digital twins for comprehensive energy assessment of existing buildings. Unlike conventional approaches requiring expensive laser scanning equipment and specialized software, this methodology democratizes advanced building diagnostics through accessible technologies and academic licenses. The research aims to develop and validate a replicable workflow that enables architects, engineers, and educators to conduct detailed energy assessments without high-end equipment, while establishing technical criteria for accurate geometric reconstruction, thermal data integration, and interactive visualization. The workflow combines terrestrial photogrammetry using smartphone cameras for 3D reconstruction, BIM modeling in Autodesk Revit for semantic building representation, infrared thermography for thermal performance documentation, and Unreal Engine for immersive real-time visualization. The approach is validated through application to the historic control tower of the former Rabassa aerodrome at the University of Alicante, documenting data capture protocols, processing workflows, and integration criteria to ensure methodological replicability. Results demonstrate that functional digital twins can be generated using consumer-grade devices (high-end smartphones) and academically licensed software, achieving geometric accuracy sufficient for energy assessment purposes. The integrated platform enables systematic identification of thermal anomalies, heat loss patterns, and envelope deficiencies through intuitive three-dimensional interfaces, providing a robust foundation for evidence-based energy assessment and renovation planning. The validated workflow offers a viable, economical, and scalable solution for building energy analysis, particularly valuable in resource-constrained academic and professional contexts, advancing both scientific understanding of accessible digital twin methodologies and practical applications in building energy assessment. Full article
Show Figures

Figure 1

14 pages, 12907 KB  
Article
Mechanism by Which Heat Treatment Influences the Acoustic Vibration Characteristics of Bamboo
by Rongzhen Song, Ying Li, Shanyu Han, Lei Chen, Shumin Yang, Genlin Tian, Xing’e Liu, Fuming Chen and Zehui Jiang
Materials 2025, 18(23), 5335; https://doi.org/10.3390/ma18235335 - 26 Nov 2025
Viewed by 358
Abstract
The multi-layered and multi-scale refined structure of bamboo gives bamboo musical instruments a unique tonal quality. This study employed heat treatment to enhance the acoustic vibration stability of bamboo materials. The hammering method was subsequently employed for conducting multi-point impact excitation tests on [...] Read more.
The multi-layered and multi-scale refined structure of bamboo gives bamboo musical instruments a unique tonal quality. This study employed heat treatment to enhance the acoustic vibration stability of bamboo materials. The hammering method was subsequently employed for conducting multi-point impact excitation tests on instrument-grade bamboo, and the resulting vibration response was subjected to modal analysis. Next, we investigated the acoustic vibration characteristics of bamboo, including its sound vibration efficiency, timbre, and acoustic stability, in terms of its macroscopic gradient structure, ultra-microstructure, molecular scale, key components, and pore structure. Modal analysis revealed that the first three damping ratios of Xipi were 94.55%, 7.89%, and 26.60% higher than those of Erhuang, respectively. The relative stiffness of Xipi across the first three modes was 1.22, 1.22, and 1.18 times that of Erhuang, indicating a generally higher structural rigidity. The first three natural frequencies of Xipi were approximately 1.20, 1.20, and 1.19 times higher than those of Erhuang, and its fundamental transfer function value was 1.5 times greater, suggesting a lower susceptibility to low-frequency resonance. Modal shapes showed distinct vibration behaviors between the two types: Xipi exhibited a more effective energy transmission path in the second mode and less structural distortion in the third mode, potentially indicating higher structural integrity. This research provides support for developing new technologies to select and process bamboo materials for musical instruments. Full article
Show Figures

Figure 1

21 pages, 2821 KB  
Article
Harnessing Heat Pipes for Solar-Powered Cooling: An Experimental Study of a BaCl2–NH3 Thermochemical Refrigerator
by Francisco Christian Martínez-Tejeda, José Andrés Alanís-Navarro, Elizabeth Cadenas-Castrejón, Victor Hugo Gómez-Espinoza, Isaac Pilatowsky-Figueroa, Ignacio Ramiro Martín Domínguez and Erick César López-Vidaña
Processes 2025, 13(11), 3708; https://doi.org/10.3390/pr13113708 - 17 Nov 2025
Viewed by 707
Abstract
This study presents the experimental and thermodynamic evaluation of a solar thermochemical refrigeration system (STRS) powered by evacuated tube solar collectors with heat pipes as thermal energy sources, using industrial-grade BaCl2–NH3. The system was designed to produce refrigeration and [...] Read more.
This study presents the experimental and thermodynamic evaluation of a solar thermochemical refrigeration system (STRS) powered by evacuated tube solar collectors with heat pipes as thermal energy sources, using industrial-grade BaCl2–NH3. The system was designed to produce refrigeration and ice using industrial-grade BaCl2–NH3 without additional additives or electrical input. Experimental tests were conducted under real-world conditions, with generation temperatures between 55 and 66 °C and solar irradiance of 750 to 900 W/m2. The system achieved efficient ammonia desorption, yielding up to 4.2 L of refrigerant and demonstrating repeatable operation over several thermochemical cycles. During the nighttime absorption–evaporation process, the STRS reached evaporation temperatures of −7 to −3 °C and absorption temperatures between 24 and 31 °C, suitable for ice production. The internal coefficient of performance ranged from 0.244 to 0.307, with an overall efficiency of 0.146 to 0.206. The experimental data obtained were used to derive pressure–temperature equilibrium equations for the BaCl2–NH3 working pair, yielding correlation coefficients greater than 0.98, which confirms thermodynamic consistency. The results demonstrate that additive-free, industrial-grade BaCl2 can achieve high efficiency at low temperatures, making this system a cost-effective and sustainable alternative for refrigeration and cold storage in rural areas. This research contributes new experimental knowledge on low-temperature thermochemical refrigeration and supports future development toward quasi-continuous optimization cycles based on experimental data. Full article
(This article belongs to the Special Issue Advances in Renewable Energy Systems (2nd Edition))
Show Figures

Graphical abstract

21 pages, 3667 KB  
Article
Modeling of Hydrodynamics of Agglomeration of Low-Grade Phosphorites in the Presence of Phosphate-Siliceous Shales and Oil Sludge
by Saltanat Tleuova, Zhunisbek Turishbekov, Ayaulym Tileuberdi, Dana Pazylova, Iskandarbek Iristaev, Mariyam Ulbekova and Nurila Sagindikova
ChemEngineering 2025, 9(6), 125; https://doi.org/10.3390/chemengineering9060125 - 7 Nov 2025
Viewed by 353
Abstract
The purpose of this study is to develop a multiphysical model of agglomeration of low-grade phosphorites with the addition of phosphate-siliceous shales and oil sludge. To achieve these tasks, a numerical approach was used in the COMSOL Multiphysics environment, based on solving the [...] Read more.
The purpose of this study is to develop a multiphysical model of agglomeration of low-grade phosphorites with the addition of phosphate-siliceous shales and oil sludge. To achieve these tasks, a numerical approach was used in the COMSOL Multiphysics environment, based on solving the related problems of heat transfer and hydrodynamics during heat treatment of the material. A laboratory vertical tubular furnace made of heat-resistant quartz glass with electric heating was used to study the effect of the temperature field and the velocity of gases on the degree of sintering and the dynamics of phosphorous agglomerate formation under various technological conditions. It has been established that the optimal temperature for the agglomeration process is a layer temperature of 950–1000 °C at a gas flow rate of 1.5–2 m/s, which ensures the formation of durable granules and minimizes sintering heterogeneity. The maximum sintering layer height of the test charge reaches 210–230 mm at pressures of 0.015–0.027 MPa. A comparison of the numerical simulation results with experimental data showed a good agreement, which confirms the practical significance of the proposed model for the design and optimization of industrial processes of agglomeration of phosphorous raw materials. Modern physical and chemical analyses have established the phase, microstructural, and element-by-element characteristics of the studied phosphate-siliceous shale and the product of agglomeration firing. The results of modeling the hydrodynamics of the charge agglomeration process can be recommended to increase the efficiency of processing phosphate-containing waste and reduce energy consumption. Full article
Show Figures

Figure 1

18 pages, 3234 KB  
Article
Electrical Energy Storage from Low-Grade Heat Using Reduced Graphene Oxide–Carbon Nanotube Composite Materials
by Zhe Yang, Yijia Xu, Shuocheng Sun, Yujia Zhang, Xiaolu Li, Yan Zhao, Xusheng Hao, Caige Xue, Dening Guo, Jia Li and Jiale Wang
Materials 2025, 18(20), 4807; https://doi.org/10.3390/ma18204807 - 21 Oct 2025
Viewed by 540
Abstract
The conversion of low-grade heat into storable electrical energy using nanoporous carbon materials represents an efficient energy harvesting strategy. In this study, a reduced graphene oxide (RGO) and carbon nanotube (CNT) composite with a rich microporous structure was synthesized. A symmetrical thermoelectric cell [...] Read more.
The conversion of low-grade heat into storable electrical energy using nanoporous carbon materials represents an efficient energy harvesting strategy. In this study, a reduced graphene oxide (RGO) and carbon nanotube (CNT) composite with a rich microporous structure was synthesized. A symmetrical thermoelectric cell was constructed to harvest thermal energy. The application of a temperature difference (ΔT) generated a stable equilibrium voltage (Us), which scaled linearly with ΔT. The resulting thermoelectric coefficient (UsT) increased markedly with the carbon nanotube (CNT) content, underscoring the effectiveness of CNT incorporation for improving thermoelectric properties. It also shows a non-monotonic dependence on KCl concentration, first increasing and then decreasing, with a maximum value of 4.17 mV/°C achieved in 0.1 M KCl using the RGO-5%CNTs electrode. When connected to an external load, the discharge voltage and current decay rapidly before stabilizing within seconds. Circuit analysis reveals that the incorporation of CNTs reduces internal resistance and increases the equivalent capacitance. Although instantaneous discharge power declines quickly, the addition of CNTs elevates its initial value and slows the decay rate. Both the average output power and thermoelectric conversion efficiency improve with increasing ΔT and are further enhanced at higher CNT content. Overall, the RGO-CNT composite demonstrates significantly superior thermoelectric performance compared to pure RGO. Full article
(This article belongs to the Section Carbon Materials)
Show Figures

Figure 1

Back to TopTop