Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,158)

Search Parameters:
Keywords = low divergence

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2737 KiB  
Article
Thermogenic Activation of Adipose Tissue by Caffeine During Strenuous Exercising and Recovery: A Double-Blind Crossover Study
by Dany Alexis Sobarzo Soto, Diego Ignácio Valenzuela Pérez, Mateus Rossow de Souza, Milena Leite Garcia Reis, Naiara Ribeiro Almeida, Bianca Miarka, Esteban Aedo-Muñoz, Armin Isael Alvarado Oyarzo, Manuel Sillero-Quintana, Andreia Cristiane Carrenho Queiroz and Ciro José Brito
Metabolites 2025, 15(8), 517; https://doi.org/10.3390/metabo15080517 (registering DOI) - 1 Aug 2025
Viewed by 111
Abstract
Background/Objectives: To investigate acute caffeine (CAF: 375 mg, ≈4.8 mg/kg body mass) effects on energy expenditure (EE) and substrate kinetics during high-intensity interval exercise in individuals with high (HBAT) versus low (LBAT) brown adipose tissue activity using time-trend polynomial modeling. Methods: This [...] Read more.
Background/Objectives: To investigate acute caffeine (CAF: 375 mg, ≈4.8 mg/kg body mass) effects on energy expenditure (EE) and substrate kinetics during high-intensity interval exercise in individuals with high (HBAT) versus low (LBAT) brown adipose tissue activity using time-trend polynomial modeling. Methods: This is a randomized, double-blind crossover study in which 35 highly-trained males [HBAT-CAF, HBAT-PLA (Placebo), LBAT-CAF, LBAT-PLA] performed 30-min treadmill HIIE. Infrared thermography (IRT) assessed BAT activity by measuring supraclavicular skin temperature (SST). Breath-by-breath ergospirometry measured EE (kcal/min) and carbohydrate (CHO), lipid (LIP), and protein (PTN) oxidation. We applied second- and third-order polynomial regression models to depict the temporal trajectories of metabolic responses. Results: HBAT groups showed 25% higher sustained EE versus LBAT (p < 0.001), amplified by CAF. CHO oxidation exhibited biphasic kinetics: HBAT had 40% higher initial rates (0.75 ± 0.05 vs. 0.45 ± 0.04 g/min; p < 0.001) with accelerated decline (k = −0.21 vs. −0.15/min; p = 0.01). LIP oxidation peaked later in LBAT (40 vs. 20 min in HBAT), with CAF increasing oxidation by 18% in LBAT (p = 0.01). HBAT-CAF uniquely showed transient PTN catabolism (peak: 0.045 g/min at 10 min; k = −0.0033/min; p < 0.001). Conclusions: BAT status determines EE magnitude and substrate-specific kinetic patterns, while CAF exerts divergent modulation, potentiating early glycogenolysis in HBAT and lipolysis in LBAT. The HBAT-CAF synergy triggers acute proteolysis, revealing BAT-mediated metabolic switching. Full article
(This article belongs to the Special Issue Energy Metabolism in Brown Adipose Tissue)
Show Figures

Figure 1

16 pages, 2902 KiB  
Article
Heavy Metal Accumulation and Potential Risk Assessment in a Soil–Plant System Treated with Carbonated Argon Oxygen Decarburization Slag
by Liangjin Zhang, Zihao Yang, Yuzhu Zhang, Bao Liu and Shuang Cai
Sustainability 2025, 17(15), 6979; https://doi.org/10.3390/su17156979 (registering DOI) - 31 Jul 2025
Viewed by 198
Abstract
The high pH and heavy metal leaching of argon oxygen decarburization (AOD) slag limit its application in agriculture. Slag carbonation can aid in decreasing slag alkalinity and inhibit heavy metal release; the environmental safety of utilizing carbonated AOD slag (CAS) as a fertilizer [...] Read more.
The high pH and heavy metal leaching of argon oxygen decarburization (AOD) slag limit its application in agriculture. Slag carbonation can aid in decreasing slag alkalinity and inhibit heavy metal release; the environmental safety of utilizing carbonated AOD slag (CAS) as a fertilizer remains a topic of significant debate, however. In this work, pakchoi (Brassica chinensis L.) was planted in CAS-fertilized soil to investigate the accumulation and migration behavior of heavy metals in the soil–plant system and perform an associated risk assessment. Our results demonstrated that CAS addition increases Ca, Si, and Cr concentrations but decreases Mg and Fe concentrations in soil leachates. Low rates (0.25–1%) of CAS fertilization facilitate the growth of pakchoi, resulting in the absence of soil contamination and posing no threat to human health. At the optimal slag addition rate of 0.25%, the pakchoi leaf biomass, stem biomass, leaf area, and seedling height increased by 34.2%, 17.2%, 26.3%, and 8.7%, respectively. The accumulation of heavy metals results in diverging characteristics in pakchoi. Cr primarily accumulates in the roots; in comparison, Pb, Cd, Ni, and Hg preferentially accumulate in the leaves. The migration rate of the investigated heavy metals from the soil to pakchoi follows the order of Cr > Cd > Hg > Ni > Pb; in comparison, that from the roots to the leaves follows the order Cd > Ni > Hg > Cr > Pb. Appropriate utilization of CAS as a mineral fertilizer can aid in improving pakchoi yield, achieving sustainable economic benefits, and preventing environmental pollution. Full article
Show Figures

Figure 1

17 pages, 2446 KiB  
Article
Different Phosphorus Preferences Among Arbuscular and Ectomycorrhizal Trees with Different Acquisition Strategies in a Subtropical Forest
by Yaping Zhu, Jianhua Lv, Pifeng Lei, Miao Chen and Jinjuan Xie
Forests 2025, 16(8), 1241; https://doi.org/10.3390/f16081241 - 28 Jul 2025
Viewed by 144
Abstract
Phosphorus (P) availability is a major constraint on plant growth in many forest ecosystems, yet the strategies by which different tree species acquire and utilize various forms of soil phosphorus remain poorly understood. This study investigated how coexisting tree species with contrasting mycorrhizal [...] Read more.
Phosphorus (P) availability is a major constraint on plant growth in many forest ecosystems, yet the strategies by which different tree species acquire and utilize various forms of soil phosphorus remain poorly understood. This study investigated how coexisting tree species with contrasting mycorrhizal types, specifically arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) associations, respond to different phosphorus forms under field conditions. An in situ root bag experiment was conducted using four phosphorus treatments (control, inorganic, organic, and mixed phosphorus) across four subtropical tree species. A comprehensive set of fine root traits, including morphological, physiological, and mycorrhizal characteristics, was measured to evaluate species-specific phosphorus foraging strategies. The results showed that AM species were more responsive to phosphorus form variation than ECM species, particularly under inorganic and mixed phosphorus treatments. Significant changes in root diameter (RD), root tissue density (RTD), and acid phosphatase activity (RAP) were observed in AM species, often accompanied by higher phosphorus accumulation in fine roots. For example, RD in AM species significantly decreased under the Na3PO4 treatment (0.94 mm) compared to the control (1.18 mm), while ECM species showed no significant changes in RD across treatments (1.12–1.18 mm, p > 0.05). RTD in AM species significantly increased under Na3PO4 (0.030 g/cm3) and Mixture (0.021 g/cm3) compared to the control (0.012 g/cm3, p < 0.05), whereas ECM species exhibited consistently low RTD values across treatments (0.017–0.020 g/cm3, p > 0.05). RAP in AM species increased significantly under Na3PO4 (1812 nmol/g/h) and Mixture (1596 nmol/g/h) relative to the control (1348 nmol/g/h), while ECM species showed limited variation (1286–1550 nmol/g/h, p > 0.05). In contrast, ECM species displayed limited trait variation across treatments, reflecting a more conservative acquisition strategy. In addition, trait correlation analysis revealed stronger coordination among root traits in AM species. And AM species exhibited high variability across treatments, while ECM species maintained consistent trait distributions with limited plasticity. These findings suggest that AM and ECM species adopt fundamentally different phosphorus acquisition strategies. AM species rely on integrated morphological and physiological responses to variable phosphorus conditions, while ECM species maintain stable trait configurations, potentially supported by fungal symbiosis. Such divergence may contribute to functional complementarity and species coexistence in phosphorus-limited subtropical forests. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

24 pages, 5785 KiB  
Article
Phylogenetic Reassessment of Murinae Inferred from the Mitogenome of the Monotypic Genus Dacnomys Endemic to Southeast Asia: New Insights into Genetic Diversity Erosion
by Zhongsong Wang, Di Zhao, Wenyu Song and Wenge Dong
Biology 2025, 14(8), 948; https://doi.org/10.3390/biology14080948 - 28 Jul 2025
Viewed by 288
Abstract
The Millard’s rat (Dacnomys millardi), a threatened murid endemic to Southeast Asian montane rainforests and the sole member of its monotypic genus, faces escalating endangered risks as a Near Threatened species in China’s Biodiversity Red List. This ecologically specialized rodent exhibits [...] Read more.
The Millard’s rat (Dacnomys millardi), a threatened murid endemic to Southeast Asian montane rainforests and the sole member of its monotypic genus, faces escalating endangered risks as a Near Threatened species in China’s Biodiversity Red List. This ecologically specialized rodent exhibits diagnostic morphological adaptations—hypertrophied upper molars and cryptic pelage—that underpin niche differentiation in undisturbed tropical/subtropical forests. Despite its evolutionary distinctiveness, the conservation prioritization given to Dacnomys is hindered due to a deficiency of data and unresolved phylogenetic relationships. Here, we integrated morphological analyses with the first complete mitogenome (16,289 bp in size; no structural rearrangements) of D. millardi to validate its phylogenetic placement within the subfamily Murinae and provide novel insights into genetic diversity erosion. Bayesian and maximum likelihood phylogenies robustly supported Dacnomys as sister to Leopoldamys (PP = 1.0; BS = 100%), with an early Pliocene divergence (~4.8 Mya, 95% HPD: 3.65–5.47 Mya). Additionally, based on its basal phylogenetic position within Murinae, we propose reclassifying Micromys from Rattini to the tribe Micromyini. Codon usage bias analyses revealed pervasive purifying selection (Ka/Ks < 1), constraining mitogenome evolution. Genetic diversity analyses showed low genetic variation (CYTB: π = 0.0135 ± 0.0023; COX1: π = 0.0101 ± 0.0025) in fragmented populations. We propose three new insights into this genetic diversity erosion. (1) Evolutionary constraints: genome-wide evolutionary conservation and shallow evolutionary history (~4.8 Mya) limited mutation accumulation. (2) Anthropogenic pressures: deforestation-driven fragmentation of habitats (>20,000 km2/year loss since 2000) has reduced effective population size, exacerbating genetic drift. (3) Ecological specialization: long-term adaptation to stable niches favored genomic optimization over adaptive flexibility. These findings necessitate suitable conservation action by enforcing protection of core habitats to prevent deforestation-driven population collapses and advocating IUCN reclassification of D. millardi from Data Deficient to Near Threatened. Full article
(This article belongs to the Section Genetics and Genomics)
Show Figures

Figure 1

19 pages, 12174 KiB  
Article
Spatiotemporal Trends and Exceedance Drivers of Ozone Concentration in the Yangtze River Delta Urban Agglomeration, China
by Junli Xu and Jian Wang
Atmosphere 2025, 16(8), 907; https://doi.org/10.3390/atmos16080907 - 26 Jul 2025
Viewed by 298
Abstract
The Yangtze River Delta urban agglomeration, characterized by high population density, an advanced transportation system, and a concentration of industrial activity, is one of the regions severely affected by O3 pollution in central and eastern China. Using data collected from 251 monitoring [...] Read more.
The Yangtze River Delta urban agglomeration, characterized by high population density, an advanced transportation system, and a concentration of industrial activity, is one of the regions severely affected by O3 pollution in central and eastern China. Using data collected from 251 monitoring stations between 2015 and 2025, this paper analyzed the spatio-temporal variation of 8 h O3 concentrations and instances of exceedance. On the basis of exploring the influence of meteorological factors on regional 8 h O3 concentration, the potential source contribution areas of pollutants under the exceedance condition were investigated using the HYSPLIT model. The results indicate a rapid increase in the 8 h O3 concentration at a rate of 0.91 ± 0.98 μg·m−3·a−1, with the average number of days exceeding concentration standards reaching 41.05 in the Yangtze River Delta urban agglomeration. Spatially, the 8 h O3 concentrations were higher in coastal areas and lower in inland regions, as well as elevated in plains compared to hilly terrains. This distribution was significantly distinct from the concentration growth trend characterized by higher levels in the northwest and lower levels in the southeast. Furthermore, it diverged from the spatial characteristics where exceedances primarily occurred in the heavily industrialized northeastern region and the lightly industrialized central region, indicating that the growth and exceedance of 8 h O3 concentrations were influenced by disparate factors. Local human activities have intensified the emissions of ozone precursor substances, which could be the key driving factor for the significant increase in regional 8 h O3 concentrations. In the context of high temperatures and low humidity, this has contributed to elevated levels of 8 h O3 concentrations. When wind speeds were below 2.5 m·s−1, the proportion of 8 h O3 concentrations exceeding the standards was nearly 0 under almost calm wind conditions, and it showed an increasing trend with rising wind speeds, indicating that the potential precursor sources that caused high O3 concentrations originated occasionally from inland regions, with very limited presence within the study area. This observation implies that the main cause of exceedances was the transport effect of pollution from outside the region. Therefore, it is recommended that the Yangtze River Delta urban agglomeration adopt economic and technological compensation mechanisms within and between regions to reduce the emission intensity of precursor substances in potential source areas, thereby effectively controlling O3 concentrations and improving public living conditions and quality of life. Full article
Show Figures

Figure 1

30 pages, 4578 KiB  
Article
Unpacking Performance Variability in Deep Reinforcement Learning: The Role of Observation Space Divergence
by Sooyoung Jang and Ahyun Lee
Appl. Sci. 2025, 15(15), 8247; https://doi.org/10.3390/app15158247 - 24 Jul 2025
Viewed by 180
Abstract
Deep Reinforcement Learning (DRL) algorithms often exhibit significant performance variability across different training runs, even with identical settings. This paper investigates the hypothesis that a key contributor to this variability is the divergence in the observation spaces explored by individual learning agents. We [...] Read more.
Deep Reinforcement Learning (DRL) algorithms often exhibit significant performance variability across different training runs, even with identical settings. This paper investigates the hypothesis that a key contributor to this variability is the divergence in the observation spaces explored by individual learning agents. We conducted an empirical study using Proximal Policy Optimization (PPO) agents trained on eight Atari environments. We analyzed the collected agent trajectories by qualitatively visualizing and quantitatively measuring the divergence in their explored observation spaces. Furthermore, we cross-evaluated the learned actor and value networks, measuring the average absolute TD-error, the RMSE of value estimates, and the KL divergence between policies to assess their functional similarity. We also conducted experiments where agents were trained from identical network initializations to isolate the source of this divergence. Our findings reveal a strong correlation: environments with low-performance variance (e.g., Freeway) showed high similarity in explored observation spaces and learned networks across agents. Conversely, environments with high-performance variability (e.g., Boxing, Qbert) demonstrated significant divergence in both explored states and network functionalities. This pattern persisted even when agents started with identical network weights. These results suggest that differences in experiential trajectories, driven by the stochasticity of agent–environment interactions, lead to specialized agent policies and value functions, thereby contributing substantially to the observed inconsistencies in DRL performance. Full article
(This article belongs to the Special Issue Advancements and Applications in Reinforcement Learning)
Show Figures

Figure 1

15 pages, 9497 KiB  
Article
Tapered Quantum Cascade Laser Achieving Low Divergence Angle and High Output Power
by Zizhuo Liu, Hongxiao Li, Jiagang Chen, Anlan Chen, Shan Niu, Changlei Wu, Yongqiang Sun, Xingli Zhong, Hui Su, Hao Xu, Jinchuan Zhang, Jiang Wu and Fengqi Liu
Sensors 2025, 25(15), 4572; https://doi.org/10.3390/s25154572 - 24 Jul 2025
Viewed by 256
Abstract
In this work, we present a high-performance tapered quantum cascade laser (QCL) designed to achieve both high output power and low divergence angle. By integrating a tapered waveguide with a Fabry–Perot structure, significant improvements of tapered QCL devices in both output power and [...] Read more.
In this work, we present a high-performance tapered quantum cascade laser (QCL) designed to achieve both high output power and low divergence angle. By integrating a tapered waveguide with a Fabry–Perot structure, significant improvements of tapered QCL devices in both output power and beam quality are demonstrated. The optimized 50 µm wide tapered QCL achieved a maximum output power of 2.76 W in pulsed operation with a slope efficiency of 3.52 W/A and a wall-plug efficiency (WPE) of 16.2%, while reducing the divergence angle to 13.01°. The device maintained a maximum power of 1.34 W with a WPE exceeding 8.2%, measured under room temperature and continuous wave (CW) operation. Compared to non-tapered Fabry–Perot QCLs, the tapered devices exhibited a nearly 10-fold increase in output power and over 200% improvement in WPE. This work provides a promising pathway for advancing mid-infrared laser technology, particularly for applications requiring high power, low divergence, and temperature stability. Full article
(This article belongs to the Special Issue Recent Trends in Quantum Sensing)
Show Figures

Figure 1

23 pages, 937 KiB  
Article
An Improved Calculation of Bose–Einstein Condensation Temperature
by Andras Kovacs
Mod. Math. Phys. 2025, 1(2), 6; https://doi.org/10.3390/mmphys1020006 - 24 Jul 2025
Viewed by 185
Abstract
Bose–Einstein condensation is an intensely studied quantum phenomenon that emerges at low temperatures. While preceding Bose–Einstein condensation models do not consider what statistics apply above the condensation temperature, we show that neglecting this question leads to inconsistencies. A mathematically rigorous calculation of Bose–Einstein [...] Read more.
Bose–Einstein condensation is an intensely studied quantum phenomenon that emerges at low temperatures. While preceding Bose–Einstein condensation models do not consider what statistics apply above the condensation temperature, we show that neglecting this question leads to inconsistencies. A mathematically rigorous calculation of Bose–Einstein condensation temperature requires evaluating the thermodynamic balance between coherent and incoherent particle populations. The first part of this work develops such an improved Bose–Einstein condensation temperature calculation, for both three-dimensional and two-dimensional scenarios. The progress over preceding Bose–Einstein condensation models is particularly apparent in the two-dimensional case, where preceding models run into mathematical divergence. In the Discussion section, we compare our mathematical model against experimental superconductivity data. A remarkable match is found between experimental data and the calculated Bose–Einstein condensation temperature formulas. Our mathematical model therefore appears applicable to superconductivity, and may facilitate a rational search for higher-temperature superconductors. Full article
Show Figures

Figure 1

22 pages, 12767 KiB  
Article
Remote Sensing Evidence of Blue Carbon Stock Increase and Attribution of Its Drivers in Coastal China
by Jie Chen, Yiming Lu, Fangyuan Liu, Guoping Gao and Mengyan Xie
Remote Sens. 2025, 17(15), 2559; https://doi.org/10.3390/rs17152559 - 23 Jul 2025
Viewed by 364
Abstract
Coastal blue carbon ecosystems (traditional types such as mangroves, salt marshes, and seagrass meadows; emerging types such as tidal flats and mariculture) play pivotal roles in capturing and storing atmospheric carbon dioxide. Reliable assessment of the spatial and temporal variation and the carbon [...] Read more.
Coastal blue carbon ecosystems (traditional types such as mangroves, salt marshes, and seagrass meadows; emerging types such as tidal flats and mariculture) play pivotal roles in capturing and storing atmospheric carbon dioxide. Reliable assessment of the spatial and temporal variation and the carbon storage potential holds immense promise for mitigating climate change. Although previous field surveys and regional assessments have improved the understanding of individual habitats, most studies remain site-specific and short-term; comprehensive, multi-decadal assessments that integrate all major coastal blue carbon systems at the national scale are still scarce for China. In this study, we integrated 30 m Landsat imagery (1992–2022), processed on Google Earth Engine with a random forest classifier; province-specific, literature-derived carbon density data with quantified uncertainty (mean ± standard deviation); and the InVEST model to track coastal China’s mangroves, salt marshes, tidal flats, and mariculture to quantify their associated carbon stocks. Then the GeoDetector was applied to distinguish the natural and anthropogenic drivers of carbon stock change. Results showed rapid and divergent land use change over the past three decades, with mariculture expanded by 44%, becoming the dominant blue carbon land use; whereas tidal flats declined by 39%, mangroves and salt marshes exhibited fluctuating upward trends. National blue carbon stock rose markedly from 74 Mt C in 1992 to 194 Mt C in 2022, with Liaoning, Shandong, and Fujian holding the largest provincial stock; Jiangsu and Guangdong showed higher increasing trends. The Normalized Difference Vegetation Index (NDVI) was the primary driver of spatial variability in carbon stock change (q = 0.63), followed by precipitation and temperature. Synergistic interactions were also detected, e.g., NDVI and precipitation, enhancing the effects beyond those of single factors, which indicates that a wetter climate may boost NDVI’s carbon sequestration. These findings highlight the urgency of strengthening ecological red lines, scaling climate-smart restoration of mangroves and salt marshes, and promoting low-impact mariculture. Our workflow and driver diagnostics provide a transferable template for blue carbon monitoring and evidence-based coastal management frameworks. Full article
Show Figures

Figure 1

24 pages, 1438 KiB  
Article
Neonatal Handling Positively Modulates Anxiety, Sensorimotor Gating, Working Memory, and Cortico-Hippocampal Neuroplastic Adaptations in Two Genetically Selected Rat Strains Differing in Emotional and Cognitive Traits
by Cristóbal Río-Álamos, Maria P. Serra, Francesco Sanna, Maria A. Piludu, Marianna Boi, Toni Cañete, Daniel Sampedro-Viana, Ignasi Oliveras, Adolf Tobeña, Maria G. Corda, Osvaldo Giorgi, Alberto Fernández-Teruel and Marina Quartu
Brain Sci. 2025, 15(8), 776; https://doi.org/10.3390/brainsci15080776 - 22 Jul 2025
Viewed by 340
Abstract
Background/Objectives: The bidirectional selection of the Roman low- (RLA) and Roman high-avoidance (RHA) rat strains for extremely slow vs. very rapid acquisition of the two-way (shuttle-box) avoidance response has generated two divergent phenotypic profiles: RHA rats exhibit a behavioural pattern and gene [...] Read more.
Background/Objectives: The bidirectional selection of the Roman low- (RLA) and Roman high-avoidance (RHA) rat strains for extremely slow vs. very rapid acquisition of the two-way (shuttle-box) avoidance response has generated two divergent phenotypic profiles: RHA rats exhibit a behavioural pattern and gene expression profile in the frontal cortex and hippocampus (HPC) that are relevant to social and attentional/cognitive schizophrenia-linked symptoms; on the other hand, RLA rats display phenotypic traits linked to increased anxiety and sensitivity to stress-induced depression-like behaviours. The present studies aimed to evaluate the enduring and potentially positive effects of neonatal handling-stimulation (NH) on the traits differentiating these two strains of rats. Methods: We evaluated the effects of NH on anxious behaviour, prepulse inhibition of startle (PPI), spatial working memory, and hormone responses to stress in adult rats of both strains. Furthermore, given the proposed involvement of neuronal/synaptic plasticity and neurotrophic factors in the development of anxiety, stress, depression, and schizophrenia-related symptoms, using Western blot (WB) we assessed the effects of NH on the content of brain-derived neurotrophic factor (BDNF), its trkB receptor and Polysialilated-Neural Cell Adhesion Molecule (PSA-NCAM), in the prefrontal cortex (PFC), anterior cingulate cortex (ACg), ventral (vHPC), and dorsal (dHPC) hippocampus of adult rats from both strains. Results: NH increased novelty-induced exploration and reduced anxiety, particularly in RLA rats, attenuated the stress-induced increment in corticosterone and prolactin plasma levels, and improved PPI and spatial working memory in RHA rats. These effects correlated to long-lasting increases of BDNF and PSA-NCAM content in PFC, ACg, and vHPC. Conclusions: Collectively, these findings show enduring and distinct NH effects on neuroendocrine and behavioural and cognitive processes in both rat strains, which may be linked to neuroplastic and synaptic changes in the frontal cortex and/or hippocampus. Full article
(This article belongs to the Section Behavioral Neuroscience)
Show Figures

Figure 1

31 pages, 1606 KiB  
Article
Investments, Economics, Renewables and Population Versus Carbon Emissions in ASEAN and Larger Asian Countries: China, India and Pakistan
by Simona-Vasilica Oprea, Adela Bâra and Irina Alexandra Georgescu
Sustainability 2025, 17(14), 6628; https://doi.org/10.3390/su17146628 - 20 Jul 2025
Viewed by 612
Abstract
Our research explores the dynamic relationship between CO2 emissions and four major influencing factors: foreign direct investment (FDI), economic growth (GDP), renewable energy consumption (REN) and population (POP) in the Association of Southeast Asian Nations (ASEAN) and three large Asian countries—China, India [...] Read more.
Our research explores the dynamic relationship between CO2 emissions and four major influencing factors: foreign direct investment (FDI), economic growth (GDP), renewable energy consumption (REN) and population (POP) in the Association of Southeast Asian Nations (ASEAN) and three large Asian countries—China, India and Pakistan, collectively referred to as LACs (larger Asian countries), from 1990 to 2022. The study has three main objectives: (1) to assess the short-run and long-run effects of GDP, FDI, REN and POP on CO2 emissions; (2) to compare the adjustment speeds and environmental policy responsiveness between ASEAN and LAC regions; and (3) to evaluate the role of renewable energy in mitigating environmental degradation. Against the backdrop of increasing environmental challenges and divergent development paths in Asia, this research contributes to the literature by applying a dynamic heterogeneous panel autoregressive distributed lag (panel ARDL) model. Unlike traditional static panel models, the panel ARDL model captures both long-run equilibrium relationships and short-run adjustments, allowing for country-specific dynamics. The results reveal a significant long-run cointegration among the variables. The error correction term (ECT) indicates a faster adjustment to equilibrium in LACs (−1.18) than ASEAN (−0.37), suggesting LACs respond more swiftly to long-run disequilibria in emissions-related dynamics. This may reflect more responsive policy mechanisms, stronger institutional capacities or more aggressive environmental interventions in LACs. In contrast, the slower adjustment in ASEAN highlights potential structural rigidities or delays in implementing effective policy responses, emphasizing the need for enhanced regulatory frameworks and targeted climate strategies to improve policy intervention efficiency. Results show that GDP and FDI increase emissions in both regions, while REN reduces them. POP is insignificant in ASEAN but increases emissions in LACs. These results provide insights into the relative effectiveness of policy instruments in accelerating the transition to a low-carbon economy, highlighting the need for differentiated strategies that align with each country’s institutional capacity, development stage and energy structure. Full article
Show Figures

Figure 1

13 pages, 1017 KiB  
Systematic Review
Systematic Review of Nutritional Guidelines for the Management of Gestational Diabetes Mellitus: A Global Comparison
by Angelo Sirico, Maria Giovanna Vastarella, Eleonora Ruggiero and Luigi Cobellis
Nutrients 2025, 17(14), 2356; https://doi.org/10.3390/nu17142356 - 18 Jul 2025
Viewed by 508
Abstract
Background: Gestational diabetes mellitus (GDM) affects 7–9% of pregnancies worldwide and is associated with adverse maternal and neonatal outcomes. Nutritional therapy is a key component of GDM management. However, inconsistencies exist across international and national guidelines regarding macronutrient distribution, glycemic targets, and micronutrient [...] Read more.
Background: Gestational diabetes mellitus (GDM) affects 7–9% of pregnancies worldwide and is associated with adverse maternal and neonatal outcomes. Nutritional therapy is a key component of GDM management. However, inconsistencies exist across international and national guidelines regarding macronutrient distribution, glycemic targets, and micronutrient supplementation. This systematic review aims to compare updated nutritional recommendations for GDM across major health organizations and identify areas of consensus, divergence, and evidence gaps. Methods: This systematic review was conducted following PRISMA guidelines and registered in PROSPERO (CRD420251026194). A comprehensive literature search was performed in PubMed, Scopus, and Google Scholar (concluding March 2025), along with manual searches of official websites of professional health organizations (e.g., ADA, WHO, NICE, IDF). Guidelines published within the last 10 years (or the most relevant national guideline if slightly older), available in English or with access to translation, and including explicit nutritional recommendations for GDM were included. Data were extracted on macronutrient composition, glycemic targets, and micronutrient supplementation, with evaluation of the supporting evidence and regional context, incorporating findings from recent key guideline updates. Results: In total, 12 guidelines met the inclusion criteria. While all guidelines emphasized carbohydrate moderation and adequate fiber intake, significant discrepancies were found in carbohydrate quality recommendations (e.g., low-glycemic index focus vs. total carbohydrate restriction), postprandial glucose targets (e.g., 1-h vs. 2-h measurements and varying thresholds like <120 vs. <140 mg/dL), and the use of non-routine micronutrients such as chromium, selenium, and omega-3 fatty acids (generally lacking endorsement). Recent updates from key bodies like ADA, Diabetes Canada, and KDA largely maintain these core stances but show increasing emphasis on dietary patterns and acknowledgement of CGM technology, without resolving key discrepancies. Cultural adaptability and behavioral counselling strategies were minimally addressed across most guidelines. Conclusions: Despite general agreement on the principal recommendations of nutritional management in GDM, substantial variation persists in specific recommendations, even considering recent updates. Consistent, evidence-based, and culturally adaptable guidelines incorporating implementation strategies are needed to optimize care and reduce disparities in GDM management across regions. Full article
Show Figures

Figure 1

18 pages, 3691 KiB  
Article
A Field Study on Sampling Strategy of Short-Term Pumping Tests for Hydraulic Tomography Based on the Successive Linear Estimator
by Xiaolan Hou, Rui Hu, Huiyang Qiu, Yukun Li, Minhui Xiao and Yang Song
Water 2025, 17(14), 2133; https://doi.org/10.3390/w17142133 - 17 Jul 2025
Viewed by 215
Abstract
Hydraulic tomography (HT) based on the successive linear estimator (SLE) offers the high-resolution characterization of aquifer heterogeneity but conventionally requires prolonged pumping to achieve steady-state conditions, limiting its applicability in contamination-sensitive or low-permeability settings. This study bridged theoretical and practical gaps (1) by [...] Read more.
Hydraulic tomography (HT) based on the successive linear estimator (SLE) offers the high-resolution characterization of aquifer heterogeneity but conventionally requires prolonged pumping to achieve steady-state conditions, limiting its applicability in contamination-sensitive or low-permeability settings. This study bridged theoretical and practical gaps (1) by identifying spatial periodicity (hole effect) as the mechanism underlying divergences in steady-state cross-correlation patterns between random finite element method (RFEM) and first-order analysis, modeled via an oscillatory covariance function, and (2) by validating a novel short-term sampling strategy for SLE-based HT using field experiments at the University of Göttingen test site. Utilizing early-time drawdown data, we reconstructed spatially congruent distributions of hydraulic conductivity, specific storage, and hydraulic diffusivity after rigorous wavelet denoising. The results demonstrate that the short-term sampling strategy achieves accuracy comparable to that of long-term sampling strategy in characterizing aquifer heterogeneity. Critically, by decoupling SLE from steady-state requirements, this approach minimizes groundwater disturbance and time costs, expanding HT’s feasibility to challenging environments. Full article
(This article belongs to the Special Issue Hydrogeophysical Methods and Hydrogeological Models)
Show Figures

Figure 1

11 pages, 7216 KiB  
Article
Low-Finesse Fabry–Perot Cavity Design Based on a Reflective Sphere
by Ju Wang, Ye Gao, Jinlong Yu, Hao Luo, Xuemin Su, Xu Han, Yang Gao, Ben Cai and Chuang Ma
Photonics 2025, 12(7), 723; https://doi.org/10.3390/photonics12070723 - 17 Jul 2025
Viewed by 222
Abstract
Low-finesse Fabry–Perot (F–P) cavities, widely applied in the field of micro-displacement measurement, offer significant advantages in reducing the influence of higher-order reflections and improving the accuracy of measurement systems. Generally, an F–P cavity finesse of 0.5 is required to achieve high-precision micro-displacement measurements. [...] Read more.
Low-finesse Fabry–Perot (F–P) cavities, widely applied in the field of micro-displacement measurement, offer significant advantages in reducing the influence of higher-order reflections and improving the accuracy of measurement systems. Generally, an F–P cavity finesse of 0.5 is required to achieve high-precision micro-displacement measurements. However, in optical design, low-finesse cavities impose strict requirements on reflectivity, and maintaining fine stability during cavity movement is challenging. Achieving ideal orthogonal interference with a finesse of 0.5 thus presents considerable difficulties. This study proposes a novel low-finesse F–P cavity design that employs a high-reflectivity spherical reflector and the end face of a fiber collimator as the reflective surfaces of the cavity. By utilizing beam divergence characteristics and geometric parameters, a structure with a finesse of approximately 0.5 is quantitatively designed, enabling a simplified implementation without the need for angular alignment. Compared with conventional approaches, this method eliminates the need for precise angular alignment of the reflective surfaces, significantly simplifying implementation. The experimental results show that, under fixed receiving field angles and beam radii of the fiber collimators, ideal orthogonal interference can be achieved by selecting the radius of the reflective sphere. Under varying working distances, the average finesse values of the interference spectra measured by Collimators 1 and 2 are 0.496 and 0.502, respectively, both close to the theoretical design value of 0.5, thereby meeting the design requirements. Full article
(This article belongs to the Section Optical Communication and Network)
Show Figures

Figure 1

17 pages, 1237 KiB  
Article
Biological, Molecular, and Physiological Characterization of Four Soybean Mosaic Virus Isolates Present in Argentine Soybean Crops
by Mariel Maugeri, Marianela Rodríguez, Nicolas Bejerman, Irma G. Laguna and Patricia Rodríguez Pardina
Viruses 2025, 17(7), 995; https://doi.org/10.3390/v17070995 - 16 Jul 2025
Viewed by 353
Abstract
Soybean mosaic virus (SMV) causes systemic infections in soybean plants, leading to chlorotic mosaic and significant yield losses. In Argentina, during the 1990s, three isolates were collected in Marcos Juárez (MJ), Manfredi (M), and Northwestern Argentina (NOA), along with the “Planta Vinosa” (PV) [...] Read more.
Soybean mosaic virus (SMV) causes systemic infections in soybean plants, leading to chlorotic mosaic and significant yield losses. In Argentina, during the 1990s, three isolates were collected in Marcos Juárez (MJ), Manfredi (M), and Northwestern Argentina (NOA), along with the “Planta Vinosa” (PV) isolate, which causes severe necrosis in some cultivars. These isolates were freeze-dried and stored at −70 °C for several years. They were recovered by mechanical inoculation and biologically, molecularly, and physiologically characterized for the first time. Three of the four isolates showed low genetic divergence in the P1, CI, and CP genes. Although SMV-NOA and SMV-PV had high nucleotide sequence identity, they differed in pathogenicity, seed mottling, and transmission efficiency by seeds or aphids. SMV-NOA caused early changes in photosystem II quantum efficiency (ɸPSII) and malondialdehyde (MDA) content before symptom expression (BS). After symptom development (LS), SMV-M significantly increased MDA, total soluble sugars, and starch compared to the other isolates. Thus, early changes in ɸPSII and sugars may influence late viral symptoms. Likewise, SMV-MJ induced more severe symptoms in the susceptible Davis cultivar than in Don Mario 4800. Therefore, our results demonstrate genomic, biological, and physiological differences among SMV isolates and variable interactions of SMV-MJ with two soybean cultivars. Full article
(This article belongs to the Special Issue Viral Diseases of Major Crops)
Show Figures

Figure 1

Back to TopTop