Tapered Quantum Cascade Laser Achieving Low Divergence Angle and High Output Power
Abstract
1. Introduction
2. Materials and Methods
2.1. Material Epitaxy of QCL
2.2. Design of Tapered Structure
2.3. Fabrication of Tapered QCL Devices
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yao, Y.; Hoffman, A.J.; Gmachl, C.F. Mid-infrared quantum cascade lasers. Nat. Photonics 2012, 6, 432–439. [Google Scholar] [CrossRef]
- Faist, J.; Capasso, F.; Sivco, D.L.; Sirtori, C.; Hutchinson, A.L.; Cho, A.Y. Quantum Cascade Laser. Science 1994, 264, 553–556. [Google Scholar] [CrossRef] [PubMed]
- Tournié, E.; Baranov, A.N. Mid-Infrared Semiconductor Lasers: A Review. Adv. Semicond. Lasers 2012, 86, 183–226. [Google Scholar] [CrossRef]
- Carras, M.; De Rossi, A. Photonic modes of metallodielectric periodic waveguides in the midinfrared spectral range. Phys. Rev. B 2006, 74, 235120. [Google Scholar] [CrossRef]
- Ma, Y.; Lewicki, R.; Razeghi, M.; Tittel, F.K. QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL. Opt. Express 2013, 21, 1008–1019. [Google Scholar] [CrossRef] [PubMed]
- Hugi, A.; Villares, G.; Blaser, S.; Liu, H.C.; Faist, J. Mid-infrared frequency comb based on a quantum cascade laser. Nature 2012, 492, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Carras, M.; Maisons, G.; Simozrag, B.; Garcia, M.; Parillaud, O.; Massies, J.; Marcadet, X. Room-temperature continuous-wave metal grating distributed feedback quantum cascade lasers. Appl. Phys. Lett. 2010, 96, 161105. [Google Scholar] [CrossRef]
- Nguyen-Van, H.; Baranov, A.N.; Loghmari, Z.; Cerutti, L.; Rodriguez, J.-B.; Tournet, J.; Narcy, G.; Boissier, G.; Patriarche, G.; Bahriz, M.; et al. Quantum cascade lasers grown on silicon. Sci. Rep. 2018, 8, 7206. [Google Scholar] [CrossRef] [PubMed]
- Darvish, S.R.; Slivken, S.; Evans, A.; Yu, J.S.; Razeghi, M. Room-temperature, high-power, and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ∼9.6μm. Appl. Phys. Lett. 2006, 88, 201114. [Google Scholar] [CrossRef]
- Hinkov, B.; Hugi, A.; Beck, M.; Faist, J. Rf-modulation of mid-infrared distributed feedback quantum cascade lasers. Opt. Express 2016, 24, 3294–3312. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Li, J.; Tan, K.H.; Wicaksono, S.; Da Chua, Y.; Wang, C.; Dai, M.; Roth, V.Q.G.; Yoon, S.F.; Wang, Q.J. Beam combining of a broadly and continuously tunable quantum cascade laser. Opt. Express 2022, 30, 35999–36009. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.Y.; Bai, Y.; Bandyopadhyay, N.; Slivken, S.; Razeghi, M. 2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers. Appl. Phys. Lett. 2011, 98, 181106. [Google Scholar] [CrossRef]
- Lu, Q.Y.; Bai, Y.; Bandyopadhyay, N.; Slivken, S.; Razeghi, M. Room-temperature continuous wave operation of distributed feedback quantum cascade lasers with watt-level power output. Appl. Phys. Lett. 2010, 97, 231119. [Google Scholar] [CrossRef]
- Slivken, S.; Sengupta, S.; Razeghi, M. High power continuous operation of a widely tunable quantum cascade laser with an integrated amplifier. Appl. Phys. Lett. 2015, 107, 251101. [Google Scholar] [CrossRef]
- Zhou, W.; Lu, Q.-Y.; Wu, D.-H.; Slivken, S.; Razeghi, M. High-power, continuous-wave, phase-locked quantum cascade laser arrays emitting at 8 µm. Opt. Express 2019, 27, 15776–15785. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Slivken, S.; Wu, D.H.; Razeghi, M. Room temperature quantum cascade lasers with 22% wall plug efficiency in continuous-wave operation. Opt. Express 2020, 28, 17532–17538. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.J.; Pflügl, C.; Diehl, L.; Capasso, F.; Edamura, T.; Furuta, S.; Yamanishi, M.; Kan, H. High performance quantum cascade lasers based on three-phonon-resonance design. Appl. Phys. Lett. 2009, 94, 011103. [Google Scholar] [CrossRef]
- Razeghi, M. High-Performance InP-Based Mid-IR Quantum Cascade Lasers. IEEE J. Sel. Top. Quantum Electron. 2009, 15, 941–951. [Google Scholar] [CrossRef]
- Lyakh, A.; Maulini, R.; Tsekoun, A.; Go, R.; Patel, C.K.N. Multiwatt long wavelength quantum cascade lasers based on high strain composition with 70% injection efficiency. Opt. Express 2012, 20, 24272–24279. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Bandyopadhyay, N.; Tsao, S.; Slivken, S.; Razeghi, M. Room temperature quantum cascade lasers with 27% wall plug efficiency. Appl. Phys. Lett. 2011, 98, 181102. [Google Scholar] [CrossRef]
- Bai, Y.; Darvish, S.R.; Slivken, S.; Zhang, W.; Evans, A.; Nguyen, J.; Razeghi, M. Room temperature continuous wave operation of quantum cascade lasers with watt-level optical power. Appl. Phys. Lett. 2008, 92, 101105. [Google Scholar] [CrossRef]
- Bai, Y.; Slivken, S.; Darvish, S.R.; Haddadi, A.; Gokden, B.; Razeghi, M. High power broad area quantum cascade lasers. Appl. Phys. Lett. 2009, 95, 221104. [Google Scholar] [CrossRef]
- Wang, F.; Slivken, S.; Wu, D.H.; Lu, Q.Y.; Razeghi, M. Continuous wave quantum cascade lasers with 5.6 W output power at room temperature and 41% wall-plug efficiency in cryogenic operation. AIP Adv. 2020, 10, 055120. [Google Scholar] [CrossRef]
- Maulini, R.; Lyakh, A.; Tsekoun, A.; Patel, C.K.N. λ~71 μm quantum cascade lasers with 19% wall-plug efficiency at room temperature. Opt. Express 2011, 19, 17203–17211. [Google Scholar] [CrossRef] [PubMed]
- Lyakh, A.; Maulini, R.; Tsekoun, A.; Go, R.; Pflügl, C.; Diehl, L.; Wang, Q.J.; Capasso, F.; Patel, C.K.N. 3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach. Appl. Phys. Lett. 2009, 95, 141113. [Google Scholar] [CrossRef]
- Bismuto, A.; Blaser, S.; Terazzi, R.; Gresch, T.; Muller, A. High performance, low dissipation quantum cascade lasers across the mid-IR range. Opt. Express 2015, 23, 5477–5484. [Google Scholar] [CrossRef] [PubMed]
- Darvish, S.R.; Zhang, W.; Evans, A.; Yu, J.S.; Slivken, S.; Razeghi, M. High-power, continuous-wave operation of distributed-feedback quantum-cascade lasers at λ∼7.8μm. Appl. Phys. Lett. 2006, 89, 251119. [Google Scholar] [CrossRef]
- Sakowicz, M.; Pruszynska-Karbownik, E.; Kuzmicz, A.; Janus, K.; Gutowski, P.; Michalak, K. Mid-Infrared Quantum Cascade Lasers With Nonuniformly Tapered Waveguides. J. Light. Technol. 2019, 37, 2324–2327. [Google Scholar] [CrossRef]
- Yu, G.; Fengqi, L.; Junqi, L.; Lu, L.; Lijun, W.; Zhanguo, W. Tapered quantum cascade lasers operating at 9.0 μm. J. Semicond. 2010, 31, 034008. [Google Scholar] [CrossRef]
- Jia, Z.; Wang, L.; Tan, S.; Zhang, J.; Liu, F.; Zhuo, N.; Zhai, S.; Liu, J.; Wang, Z. Improvement of Buried Grating DFB Quantum Cascade Lasers by Small-Angle Tapered Structure. IEEE Photonics Technol. Lett. 2017, 29, 783–785. [Google Scholar] [CrossRef]
- Menzel, S.; Diehl, L.; Pflügl, C.; Goyal, A.; Wang, C.; Sanchez, A.; Turner, G.; Capasso, F. Quantum cascade laser master-oscillator power-amplifier with 15 W output power at 300 K. Opt. Express 2011, 19, 16229–16235. [Google Scholar] [CrossRef] [PubMed]
- Gökden, B.; Mansuripur, T.S.; Blanchard, R.; Wang, C.; Goyal, A.; Sanchez-Rubio, A.; Turner, G.; Capasso, F. High-brightness tapered quantum cascade lasers. Appl. Phys. Lett. 2013, 102, 053503. [Google Scholar] [CrossRef]
- Nähle, L.; Semmel, J.; Kaiser, W.; Höfling, S.; Forchel, A. Tapered quantum cascade lasers. Appl. Phys. Lett. 2007, 91, 181122. [Google Scholar] [CrossRef]
- Blanchard, R.; Mansuripur, T.S.; Gökden, B.; Yu, N.; Kats, M.; Genevet, P.; Fujita, K.; Edamura, T.; Yamanishi, M.; Capasso, F. High-power low-divergence tapered quantum cascade lasers with plasmonic collimators. Appl. Phys. Lett. 2013, 102, 191114. [Google Scholar] [CrossRef]
- Pierscinski, K.; Kuzmicz, A.; Pierscinska, D.; Sobczak, G.; Sakowicz, M.; Gutowski, P.; Janus, K.; Chmielewski, K.; Bugajski, M. Optimization of Cavity Designs of Tapered AlInAs/InGaAs/InP Quantum Cascade Lasers Emitting at 4.5 μm. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 1–9. [Google Scholar] [CrossRef]
- Guan, Y.-J.; Jia, X.-F.; Li, S.-S.; Wang, L.-J.; Zhuo, N.; Zhang, J.-C.; Zhai, S.-Q.; Liu, J.-Q.; Liu, S.-M.; Liu, F.-Q.; et al. High Power Tapered Sampling Grating Distributed Feedback Quantum Cascade Lasers. IEEE Photonics Technol. Lett. 2020, 32, 305–308. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, J.; Cheng, F.; Zhuo, N.; Zhai, S.; Liu, J.; Wang, L.; Liu, S.; Liu, F.; Wang, Z. Watt-level, high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 7.7 µm. Opt. Express 2020, 28, 40155–40163. [Google Scholar] [CrossRef] [PubMed]
- Rauter, P.; Menzel, S.; Goyal, A.K.; Wang, C.A.; Sanchez, A.; Turner, G.; Capasso, F. High-power arrays of quantum cascade laser master-oscillator power-amplifiers. Opt. Express 2013, 21, 4518–4530. [Google Scholar] [CrossRef] [PubMed]
- Ryu, J.H.; Knipfer, B.; Kirch, J.D.; Marsland, R.A.; Botez, D.; Earles, T.; Galstad, C.; Turville-Heitz, M.; Sigler, C.; Stromberg, A.; et al. Reverse-Taper Mid-Infrared Quantum Cascade Lasers for Coherent Power Scaling. IEEE Photonics J. 2022, 14, 1–6. [Google Scholar] [CrossRef]
- Hofstetter, D.; Beck, M.; Aellen, T.; Faist, J. High-temperature operation of distributed feedback quantum-cascade lasers at 5.3 μm. Appl. Phys. Lett. 2001, 78, 396–398. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Li, H.; Chen, J.; Chen, A.; Niu, S.; Wu, C.; Sun, Y.; Zhong, X.; Su, H.; Xu, H.; et al. Tapered Quantum Cascade Laser Achieving Low Divergence Angle and High Output Power. Sensors 2025, 25, 4572. https://doi.org/10.3390/s25154572
Liu Z, Li H, Chen J, Chen A, Niu S, Wu C, Sun Y, Zhong X, Su H, Xu H, et al. Tapered Quantum Cascade Laser Achieving Low Divergence Angle and High Output Power. Sensors. 2025; 25(15):4572. https://doi.org/10.3390/s25154572
Chicago/Turabian StyleLiu, Zizhuo, Hongxiao Li, Jiagang Chen, Anlan Chen, Shan Niu, Changlei Wu, Yongqiang Sun, Xingli Zhong, Hui Su, Hao Xu, and et al. 2025. "Tapered Quantum Cascade Laser Achieving Low Divergence Angle and High Output Power" Sensors 25, no. 15: 4572. https://doi.org/10.3390/s25154572
APA StyleLiu, Z., Li, H., Chen, J., Chen, A., Niu, S., Wu, C., Sun, Y., Zhong, X., Su, H., Xu, H., Zhang, J., Wu, J., & Liu, F. (2025). Tapered Quantum Cascade Laser Achieving Low Divergence Angle and High Output Power. Sensors, 25(15), 4572. https://doi.org/10.3390/s25154572