A Field Study on Sampling Strategy of Short-Term Pumping Tests for Hydraulic Tomography Based on the Successive Linear Estimator
Abstract
1. Introduction
2. Cross-Correlation Analysis
2.1. Cross-Correlation Analysis Based on the Random Finite Element Method (RFEM)
2.2. Cross-Correlation Analysis Based on the First-Order Analysis
2.3. Mechanistic Comparison of Cross-Correlation Behaviors
3. Hydraulic Tomography Survey at the Test Site
3.1. Site Description
3.2. Previous Research on This Test Site
3.3. Pumping Tests
4. Results
4.1. Wavelet De-Noising and Data Processing
4.2. Inversion and Validation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Patterson, J.R.; Cardiff, M. Multi-Frequency Oscillatory Hydraulic Tomography Improves Heterogeneity Imaging and Resolution and Reduces Uncertainty. Water Resour. Res. 2025, 61, e2024WR039606. [Google Scholar] [CrossRef]
- Nefzi, A.; Paradis, D.; Lefebvre, R.; Bour, O.; Lavenant, N. Field Deployment and Analysis of Hydraulic Tomography Experiments with Periodic Slug Tests in an Anisotropic Littoral Aquifer. J. Hydrol. 2025, 653, 132747. [Google Scholar] [CrossRef]
- Ma, L.; Sun, X.; Qian, J.; Wang, W.; Deng, Y.; Fang, Y. Identification of High-Permeability and Water-Rich Zones in a Fractured Karst Water Source Area Based on the Hydraulic Tomography Method. J. Hydrol. 2024, 629, 130648. [Google Scholar] [CrossRef]
- Ringel, L.M.; Illman, W.A.; Bayer, P. Recent Developments, Challenges, and Future Research Directions in Tomographic Characterization of Fractured Aquifers. J. Hydrol. 2024, 631, 130709. [Google Scholar] [CrossRef]
- Zha, Y.; Yeh, T.C.J.; Illman, W.A.; Mok, C.M.W.; Tso, C.H.M.; Carrera, B.A.; Wang, Y.L. Exploitation of Pump-and-Treat Remediation Systems for Characterization of Hydraulic Heterogeneity. J. Hydrol. 2019, 573, 324–340. [Google Scholar] [CrossRef]
- Yeh, T.C.J.; Liu, S. Hydraulic Tomography: Development of a New Aquifer Test Method. Water Resour. Res. 2000, 36, 2095–2105. [Google Scholar] [CrossRef]
- Wen, J.-C.; Chen, J.-L.; Yeh, T.-C.J.; Wang, Y.-L.; Huang, S.-Y.; Tian, Z.; Yu, C.-Y. Redundant and Non-Redundant Information for Model Calibration or Hydraulic Tomography. Groundwater 2019, 58, 79–92. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Yeh, T.C.J. Analysis of Hydraulic Tomography Using Temporal Moments of Drawdown Recovery Data. Water Resour. Res. 2006, 42, 1–11. [Google Scholar] [CrossRef]
- Jiang, L.; Sun, R.; Xiao, W.; Liang, X.; Jim Yeh, T.C. Spatial Correlation Analysis between Hydraulic Conductivity and Specific Storage in a Heterogeneous Sandbox by Hydraulic Tomography. J. Hydrol. 2022, 610, 127921. [Google Scholar] [CrossRef]
- Luo, N.; Illman, W.A.; Zha, Y. Large-Scale Three-Dimensional Hydraulic Tomography Analyses of Long-Term Municipal Wellfield Operations. J. Hydrol. 2022, 610, 127911. [Google Scholar] [CrossRef]
- Daranond, K.; Yeh, T.J.; Hao, Y.; Wen, J.; Wang, W. Identi Fi Cation of Groundwater Basin Shape and Boundary Using Hydraulic Tomography. J. Hydrol. 2020, 588, 125099. [Google Scholar] [CrossRef]
- Liu, F.; Yeh, T.-C.J.; Wang, Y.L.; Song, X.; Lei, X.; Wen, J.C.; Wang, W.; Hao, Y. Potential of Hydraulic Tomography in Identifying Boundary Conditions of Groundwater Basins. Water Resour. Res. 2020, 56, e2020WR028331. [Google Scholar] [CrossRef]
- Zhu, J.; Yeh, T.C.J. Characterization of Aquifer Heterogeneity Using Transient Hydraulic Tomography. Water Resour. Res. 2005, 41, 1–10. [Google Scholar] [CrossRef]
- Sun, R.; Yeh, T.C.J.; Mao, D.; Jin, M.; Lu, W.; Hao, Y. A Temporal Sampling Strategy for Hydraulic Tomography Analysis. Water Resour. Res. 2013, 49, 3881–3896. [Google Scholar] [CrossRef]
- Brauchler, R.; Hu, R.; Dietrich, P.; Sauter, M. A Field Assessment of High-Resolution Aquifer Characterization Based on Hydraulic Travel Time and Hydraulic Attenuation Tomography. Water Resour. Res. 2011, 47, 1–12. [Google Scholar] [CrossRef]
- Brauchler, R.; Cheng, J.T.; Dietrich, P.; Everett, M.; Johnson, B.; Liedl, R.; Sauter, M. An Inversion Strategy for Hydraulic Tomography: Coupling Travel Time and Amplitude Inversion. J. Hydrol. 2007, 345, 184–198. [Google Scholar] [CrossRef]
- Brauchler, R.; Liedl, R.; Dietrich, P. A Travel Time Based Hydraulic Tomographic Approach. Water Resour. Res. 2003, 39, 1–12. [Google Scholar] [CrossRef]
- Hu, R.; Brauchler, R.; Herold, M.; Bayer, P. Hydraulic Tomography Analog Outcrop Study: Combining Travel Time and Steady Shape Inversion. J. Hydrol. 2011, 409, 350–362. [Google Scholar] [CrossRef]
- Liu, Q.; Hu, L.; Hu, R.; Brauchler, R.; Xing, Y.; Qi, J.; Ptak, T. Characterization of Aquifer Heterogeneity by Tomographic Slug Test Responses Considering Wellbore Effects. J. Hydrol. 2023, 627, 130472. [Google Scholar] [CrossRef]
- Wu, C.M.; Yeh, T.C.J.; Zhu, J.; Tim, H.L.; Hsu, N.S.; Chen, C.H.; Sancho, A.F. Traditional Analysis of Aquifer Tests: Comparing Apples to Oranges? Water Resour. Res. 2005, 41, 1–12. [Google Scholar] [CrossRef]
- Mao, D.; Wan, L.; Yeh, T.C.J.; Lee, C.H.; Hsu, K.C.; Wen, J.C.; Lu, W. A Revisit of Drawdown Behavior during Pumping in Unconfined Aquifers. Water Resour. Res. 2011, 47, 1–15. [Google Scholar] [CrossRef]
- Mao, D.; Yeh, T.J.; Wan, L.; Lee, C.; Hsu, K.; Wen, J.; Lu, W. Cross-Correlation Analysis and Information Content of Observed Heads during Pumping in Unconfined Aquifers. Water Resour. Res. 2013, 49, 713–731. [Google Scholar] [CrossRef]
- Hou, X.; Hu, R.; Yeh, T.C.J.; Li, Y.; Qi, J.; Song, Y.; Qiu, H. A Short-Term Pumping Strategy for Hydraulic Tomography Based on the Successive Linear Estimator. Water Resour. Res. 2023, 59, e2022WR033831. [Google Scholar] [CrossRef]
- Griffiths, D.V.; Lane, P.A. Slope Stability Analysis by Finite Elements. Geotechnique 1999, 49, 387–403. [Google Scholar] [CrossRef]
- Griffiths, D.V.; Fenton, G.A. Bearing Capacity of Spatially Random Soil: The Undrained Clay Prandtl Problem Revisited. Geotechnique 2001, 51, 351–359. [Google Scholar] [CrossRef]
- Griffiths, D.V.; Fenton, G.A. Probabilistic Settlement Analysis by Stochastic and Random Finite-Element Methods. J. Geotech. Geoenvironmental Eng. 2009, 135, 1629–1637. [Google Scholar] [CrossRef]
- Robbins, B.A.; Griffiths, D.V.; Fenton, G.A. Random Finite Element Analysis of Backward Erosion Piping. Comput. Geotech. 2021, 138, 104322. [Google Scholar] [CrossRef]
- Yeh, T.C.J.; Khaleel, R.; Carroll, K.C. Flow Through Heterogeneous Geologic Media; Cambridge University Press: New York, NY, USA, 2015; ISBN 9781139879323. [Google Scholar]
- Robin, M.J.L.; Gutjahr, A.L.; Sudicky, E.A.; Wilson, J.L. Fast Fourier Transforms for Random Field Generation: New Mexico Tech Project Report 4-R58-2690R. Water Resour. Res. 1993, 29, 2385–2397. [Google Scholar] [CrossRef]
- Boyd, D.W. Stochastic Analysis. In Systems Analysis and Modeling; Academic Press: San Diego, CA, USA, 2001; pp. 211–227. ISBN 0121218511. [Google Scholar]
- Pyrcz, M.; Deutsch, C. The Whole Story on the Hole Effect. Geostat. Assoc. Australas. Newsl. 2003, 18, 3–5. [Google Scholar]
- Greenholtz, D.E.; Jim Yeh, T.C.; Nash, M.S.B.; Wierenga, P.J. Geostatistical Analysis of Soil Hydrologic Properties in a Field Plot. J. Contam. Hydrol. 1988, 3, 227–250. [Google Scholar] [CrossRef]
- Werner, H. Strukturgeologische Charakterisierung Eines Geothermietestfeldes auf der Basis Bohrlochgeophysikalischer Messdaten und Bohrkerngefügen auf Dem Göttinger Nordcampus. Master’s Thesis, Universität Göttingen, Göttingen, Germany, 2013. [Google Scholar]
- Schuster, V. Untersuchungen zur Hydraulischen Durchlässigkeit und Kluftbedingter Durchlässigkeitsanisotropie von Bohrkernmaterial aus Einem Geothermietestfeld. Bachelor’s Thesis, Universität Göttingen, Göttingen, Germany, 2015. [Google Scholar]
- Oberdorfer, P.; Holzbecher, E.; Hu, R.; Ptak, T.; Sauter, M. A Five Spot Well Cluster for Hydraulic and Thermal Tomography. In Proceedings of the 38th Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 11–13 February 2013. [Google Scholar]
- Theis, C.V. The Relation between the Lowering of the Piezometric Surface and the Rate and Duration of Discharge of a Well Using Ground-water Storage. Eos Trans. Am. Geophys. Union 1935, 16, 519–524. [Google Scholar] [CrossRef]
- Cooper, H.H.; Jacob, C.E. A Generalized Graphical Method for Evaluating Formation Constants and Summarizing Well-field History. Eos Trans. Am. Geophys. Union 1946, 27, 526–534. [Google Scholar] [CrossRef]
- Qiu, P. Automated Data Processing and Numerical Methods for Travel-Time Based Hydraulic Tomography. Ph.D. Thesis, University of Goettingen, Göttingen, Germany, 2020. [Google Scholar]
- Xiang, J.; Yeh, T.C.J.; Lee, C.H.; Hsu, K.C.; Wen, J.C. A Simultaneous Successive Linear Estimator and a Guide for Hydraulic Tomography Analysis. Water Resour. Res. 2009, 45, 1–14. [Google Scholar] [CrossRef]
- Yang, H.; Hu, R.; Qiu, P.; Liu, Q.; Xing, Y.; Tao, R.; Ptak, T. Application of Wavelet De-Noising for Travel-Time Based Hydraulic Tomography. Water 2020, 12, 1533. [Google Scholar] [CrossRef]
Pumping Tests | t1 (s) | t2 (s) |
---|---|---|
O2M2 | 7.6 | 100 |
O2M3 | 9 | 100 |
O2M4 | 22.2 | 130 |
O3M2 | 4 | 50 |
O3M3 | 4.8 | 100 |
O3M4 | 10.4 | 60 |
O4M2 | 22.4 | 100 |
O4M3 | 36 | 150 |
O4M4 | 3 | 50 |
O5M2 | 21.6 | 100 |
O5M3 | 22.6 | 100 |
O5M4 | 19.6 | 100 |
O5M5 | 2.5 | 50 |
Hydraulic Head Input Configurations | R2 | L2 | Slope |
---|---|---|---|
Short-term sampling strategy inversion | 0.9560 | 0.041 | 0.8792 |
Long-term sampling strategy inversion | 0.9696 | 0.0384 | 0.9669 |
Dense input data validation | 0.9627 | 0.0513 | 0.9068 |
Leave-one-out validation | 0.9346 | 0.0733 | 0.7963 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, X.; Hu, R.; Qiu, H.; Li, Y.; Xiao, M.; Song, Y. A Field Study on Sampling Strategy of Short-Term Pumping Tests for Hydraulic Tomography Based on the Successive Linear Estimator. Water 2025, 17, 2133. https://doi.org/10.3390/w17142133
Hou X, Hu R, Qiu H, Li Y, Xiao M, Song Y. A Field Study on Sampling Strategy of Short-Term Pumping Tests for Hydraulic Tomography Based on the Successive Linear Estimator. Water. 2025; 17(14):2133. https://doi.org/10.3390/w17142133
Chicago/Turabian StyleHou, Xiaolan, Rui Hu, Huiyang Qiu, Yukun Li, Minhui Xiao, and Yang Song. 2025. "A Field Study on Sampling Strategy of Short-Term Pumping Tests for Hydraulic Tomography Based on the Successive Linear Estimator" Water 17, no. 14: 2133. https://doi.org/10.3390/w17142133
APA StyleHou, X., Hu, R., Qiu, H., Li, Y., Xiao, M., & Song, Y. (2025). A Field Study on Sampling Strategy of Short-Term Pumping Tests for Hydraulic Tomography Based on the Successive Linear Estimator. Water, 17(14), 2133. https://doi.org/10.3390/w17142133