Viral Diseases of Major Crops

A special issue of Viruses (ISSN 1999-4915). This special issue belongs to the section "Viruses of Plants, Fungi and Protozoa".

Deadline for manuscript submissions: 31 July 2025 | Viewed by 1252

Special Issue Editors


E-Mail Website
Guest Editor
1. Sanya Institute of China Agricultural University, Hainan 572025, China
2. MARA-Key Laboratory of Surveillance and Management for Plant Quarantine Pests, China Agricultural University, Beijing 100193, China
Interests: molecular plant-virus interactions; maize viral diseases; viral pathogenicity factors; plant viruses; plant immunity

E-Mail Website
Guest Editor
College of Plant Protection, Henan Agricultural University, Zhengzhou, China
Interests: molecular maize-virus interactions; viral pathogenicity factors maize/soybean defense factors

Special Issue Information

Dear Colleagues,

Maize (Zea mays) and soybean (Glycine max) are among the most important crops used for food, feed, oil, and industrial applications globally. Viral diseases seriously threaten the sustainable production of soybean and maize in the world. More than 50 viruses have been reported worldwide to infect maize including maize chlorotic mottle virus (MCMV), mosaic dwarf mosaic virus (MDMV), maize streak virus (MSV), maize mosaic virus (MMV), maize yellow mosaic virus (MaYMV), maize rough dwarf virus (MRDV), rice black streaked dwarf virus (RBSDV), and sugarcane mosaic virus (SCMV). More than 100 viruses have been documented to infect soybean including bean common mosaic virus (BCMV), bean pod mottle virus (BPMV), bean yellow mosaic virus (BYMV), broad bean wilt virus 2 (BBWV2), soybean dwarf virus (SbDV), soybean mosaic virus (SMV), soybean vein necrosis virus (SVNV), soybean yellow mottle mosaic virus (SYMMV) and soybean stay-green associated virus (SoSGV, a novel geminivirus). The topics of research interest encompass viral protein function and its interactions with the host plants and transmission vectors, the mechanisms by which viral genomes are expressed and replicated, novel virus control strategies, and molecular breeding for virus resistance. Investigations into these areas will provide valuable insights into the multifaceted understanding of viral diseases in soybean and maize and promote collaboration among researchers from related disciplines.

This Special Issue of Viruses aims to publish the latest advances in any aspect of viral diseases in soybean and maize in the form of original research articles, reviews, or short communications.

Prof. Dr. Zaifeng Fan
Dr. Yan Shi
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Viruses is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • viral infection
  • viral pathogenicity
  • virus movement
  • replication
  • RNA silencing suppressor
  • host response
  • host factors
  • molecular plant–virus–vector interactions

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 1237 KiB  
Article
Biological, Molecular, and Physiological Characterization of Four Soybean Mosaic Virus Isolates Present in Argentine Soybean Crops
by Mariel Maugeri, Marianela Rodríguez, Nicolas Bejerman, Irma G. Laguna and Patricia Rodríguez Pardina
Viruses 2025, 17(7), 995; https://doi.org/10.3390/v17070995 - 16 Jul 2025
Viewed by 329
Abstract
Soybean mosaic virus (SMV) causes systemic infections in soybean plants, leading to chlorotic mosaic and significant yield losses. In Argentina, during the 1990s, three isolates were collected in Marcos Juárez (MJ), Manfredi (M), and Northwestern Argentina (NOA), along with the “Planta Vinosa” (PV) [...] Read more.
Soybean mosaic virus (SMV) causes systemic infections in soybean plants, leading to chlorotic mosaic and significant yield losses. In Argentina, during the 1990s, three isolates were collected in Marcos Juárez (MJ), Manfredi (M), and Northwestern Argentina (NOA), along with the “Planta Vinosa” (PV) isolate, which causes severe necrosis in some cultivars. These isolates were freeze-dried and stored at −70 °C for several years. They were recovered by mechanical inoculation and biologically, molecularly, and physiologically characterized for the first time. Three of the four isolates showed low genetic divergence in the P1, CI, and CP genes. Although SMV-NOA and SMV-PV had high nucleotide sequence identity, they differed in pathogenicity, seed mottling, and transmission efficiency by seeds or aphids. SMV-NOA caused early changes in photosystem II quantum efficiency (ɸPSII) and malondialdehyde (MDA) content before symptom expression (BS). After symptom development (LS), SMV-M significantly increased MDA, total soluble sugars, and starch compared to the other isolates. Thus, early changes in ɸPSII and sugars may influence late viral symptoms. Likewise, SMV-MJ induced more severe symptoms in the susceptible Davis cultivar than in Don Mario 4800. Therefore, our results demonstrate genomic, biological, and physiological differences among SMV isolates and variable interactions of SMV-MJ with two soybean cultivars. Full article
(This article belongs to the Special Issue Viral Diseases of Major Crops)
Show Figures

Figure 1

17 pages, 2042 KiB  
Article
Comprehensive Virome Profiling of Apple Mosaic Disease-Affected Trees in Iran Using RT-PCR and Next-Generation Sequencing
by Anahita Hamedi, Farshad Rakhshandehroo, Mohammad Reza Safarnejad, Gholamreza Salehi Jouzani, Amani Ben Slimen and Toufic Elbeaino
Viruses 2025, 17(7), 979; https://doi.org/10.3390/v17070979 - 13 Jul 2025
Viewed by 407
Abstract
Apples (Malus domestica), one of Iran’s oldest cultivated fruit crops, hold considerable economic importance. In this study, 170 apple leaf samples representing various commercial cultivars were collected across the country. RT-PCR screening targeted five common apple-infecting viruses and two viroids: apple [...] Read more.
Apples (Malus domestica), one of Iran’s oldest cultivated fruit crops, hold considerable economic importance. In this study, 170 apple leaf samples representing various commercial cultivars were collected across the country. RT-PCR screening targeted five common apple-infecting viruses and two viroids: apple chlorotic leaf spot virus (ACLSV), apple stem pitting virus (ASPV), apple stem grooving virus (ASGV), apple green crinkle-associated virus (AGCaV), apple mosaic virus (ApMV), apple scar skin viroid (ASSVd), and hop stunt viroid (HSVd). To identify additional or novel agents, 40 RT-PCR-negative samples were pooled into two composite groups and analyzed using next-generation sequencing (NGS). NGS was also performed on individual samples with mixed infections to retrieve full genomes. RT-PCR confirmed the presence of ACLSV, ASPV, ASGV, AGCaV, ApMV, and HSVd. NGS further revealed three additional pathogens: citrus concave gum-associated virus (CCGaV), apple hammerhead viroid (AHVd), and apricot vein clearing-associated virus (AVCaV), which were subsequently detected across the collection by RT-PCR. AGCaV was most prevalent (47.6%), followed by ACLSV (45.8%), HSVd (27.6%), AVCaV (20.5%), ASGV (17%), AHVd (15.2%), ASPV (14.1%), CCGaV (4.7%), and ApMV (3.5%). Mixed infections occurred in 67% of samples. Phylogenetic analysis based on CP genes (ACLSV, ASGV, AGCaV) and full genomes (AVCaV, AHVd) clustered Iranian isolates together, suggesting a common origin. This is the first report in Iran of AGCaV, CCGaV, ApMV, and AVCaV in apple, and notably, the first global report of AVCaV in a non-Prunus host. The findings provide the first comprehensive assessment of the sanitary status of apple trees in Iran. Full article
(This article belongs to the Special Issue Viral Diseases of Major Crops)
Show Figures

Figure 1

Back to TopTop