Heavy Metal Accumulation and Potential Risk Assessment in a Soil–Plant System Treated with Carbonated Argon Oxygen Decarburization Slag
Abstract
1. Introduction
2. Materials and Methods
2.1. OAS and CAS
2.2. Soil
2.3. Batch Leaching Tests
2.4. Pot Experiments
2.5. Characterization
2.5.1. Mineralogical Characterization
2.5.2. Leachate Characterization
2.5.3. Characterization of Pakchoi and Soil Following Growth for 28 Days
2.6. Data Processing
2.7. Statistical Analysis
3. Results and Discussion
3.1. Mineralogical Components of the CAS
3.2. Effects of CAS Fertilization on the Heavy Metal Content of the Original Soil
3.3. Effects of CAS Fertilization on Elemental Release from the Soil
3.4. Effects of CAS Fertilization on Pakchoi Seedling Growth
3.5. Heavy Metal Accumulation and Migration in the Soil–Plant System
3.6. Health Risk Assessment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SSS | Stainless steel slag |
AOD | Argon oxygen decarburization |
EAF | Electronic arc furnace |
CAS | Carbonated AOD slag |
OAS | Original AOD slag |
BTC | Biological transfer coefficient |
BAC | Biological accumulation coefficient |
THQ | Target hazard quotient |
EDI | Estimated daily intake |
ROS | Reactive oxygen species |
References
- Wang, Z.; Sohn, I. Selective elemental concentration during the solidification of stainless steel slags for increased Cr recovery with MnO addition. J. Am. Ceram. Soc. 2020, 103, 6012–6024. [Google Scholar] [CrossRef]
- Rosales, J.; Cabrera, M.; Agrela, F. Effect of stainless steel slag waste as a replacement for cement in mortars. Mechanical and statistical study. Constr. Build. Mater. 2017, 142, 444–458. [Google Scholar] [CrossRef]
- Sas, Z.; Sha, W.; Soutsos, M.; Doherty, R.; Bondar, D.; Gijbels, K.; Schroeyers, W. Radiological characterisation of alkali-activated construction materials containing red mud, fly ash and ground granulated blast-furnace slag. Sci. Total Environ. 2019, 659, 1496–4504. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Ling, T.C.; Pan, S.Y. Environmental benefit assessment of steel slag utilization and carbonation: A systematic review. Sci. Total Environ. 2022, 806, 150280. [Google Scholar] [CrossRef] [PubMed]
- Huo, X.; Zhang, X.; Ding, Z.; Zhang, M.; Guo, M. A clean approach for detoxification of industrial chromium-bearing stainless steel slag: Selective crystallization control and binary basicity effect. J. Hazard. Mater. 2023, 446, 130746. [Google Scholar] [CrossRef]
- Deng, L.; Yao, B.; Lu, W.; Zhang, M.; Li, H.; Chen, H.; Zhao, M.; Du, Y.; Zhang, M.; Ma, Y.; et al. Effect of SiO2/Al2O3 ratio on the crystallization and heavy metal immobilization of glass ceramics derived from stainless steel slag. J. Non-Cryst. Solids 2022, 593, 121770. [Google Scholar] [CrossRef]
- Lim, J.Y.; Kang, Y.G.; Sohn, K.M.; Kim, P.J.; Galgo, S.J.C. Creating new value of blast furnace slag as soil amendment to mitigate methane emission and improve rice cropping environments. Sci. Total Environ. 2022, 806, 150961. [Google Scholar] [CrossRef]
- Lin, S.; Wang, W.; Sardans, J.; Lan, X.; Fang, Y.; Singh, B.P.; Xu, X.; Wiesmeier, M.; Tariq, A.; Zeng, F.; et al. Effects of slag and biochar amendments on microorganisms and fractions of soil organic carbon during flooding in a paddy field after two years in southeastern China. Sci. Total Environ. 2022, 824, 153783. [Google Scholar] [CrossRef]
- Preston, H.A.F.; Nunes, G.H.D.S.; Preston, W.; Souza, E.B.D.; Mariano, R.D.L.R.; Datnoff, L.E.; Nascimento, C.W.A.D. Slag-based silicon fertilizer improves the resistance to bacterial fruit blotch and fruit quality of melon grown under field conditions. Crop Prot. 2021, 147, 105460. [Google Scholar] [CrossRef]
- Ali, M.A.; Oh, J.H.; Kim, P.J. Evaluation of silicate iron slag amendment on reducing methane emission from flood water rice farming. Agr. Ecosyst. Environ. 2008, 128, 21–26. [Google Scholar] [CrossRef]
- Fan, Y.; Li, Y.L.; Li, H.; Cheng, F. Evaluating heavy metal accumulation and potential risks in soil-plant systems applied with magnesium slag-based fertilizer. Chemosphere 2018, 197, 382–412. [Google Scholar] [CrossRef] [PubMed]
- Baciocchi, R.; Costa, G.; Di Gianfilippo, M.; Polettini, A.; Pomi, R.; Stramazzo, A. Thin-film versus slurry-phase carbonation of steel slag: CO2 uptake and effects on mineralogy. J. Hazard. Mater. 2015, 283, 302–313. [Google Scholar] [CrossRef] [PubMed]
- Hobson, A.J.; Stewart, D.I.; Bray, A.W.; Mortimer, R.J.G.; Mayes, W.M.; Rogerson, M.; Burke, I.T. Mechanism of vanadium leaching during surface weathering of basic oxygen furnace steel slag blocks: A microfocus X-ray absorption spectroscopy and electron microscopy study. Environ. Sci. Technol. 2017, 51, 7823–7830. [Google Scholar] [CrossRef] [PubMed]
- Anandkumar, A.; Li, J.; Prabakaran, K.; Jia, Z.; Leng, Z.; Nagarajan, R.; Du, D. Accumulation of toxic elements in an invasive crayfish species (Procambarus clarkii) and its health risk assessment to humans. J. Food Compos. Anal. 2020, 88, 103449. [Google Scholar] [CrossRef]
- Chen, L.; Zhou, M.; Wang, J.; Zhang, Z.; Duan, C.; Wang, X.; Zhao, S.; Bai, X.; Li, Z.; Li, Z.; et al. A global meta-analysis of heavy metal(loid)s pollution in soils near copper mines: Evaluation of pollution level and probabilistic health risks. Sci. Total Environ. 2022, 835, 155441. [Google Scholar] [CrossRef]
- Su, C.; Wang, J.; Chen, Z.; Meng, J.; Yin, G.; Zhou, Y.; Wang, T. Sources and health risks of heavy metals in soils and vegetables from intensive human intervention areas in South China. Sci. Total Environ. 2023, 857, 159389. [Google Scholar] [CrossRef]
- Wang, C.C.; Zhang, Q.C.; Kang, S.G.; Li, M.Y.; Zhang, M.Y.; Xu, W.M.; Xiang, P.; Ma, L.Q. Heavy metal(loid)s in agricultural soil from main grain production regions of China: Bioaccessibility and health risks to humans. Sci. Total Environ. 2023, 858, 159819. [Google Scholar] [CrossRef]
- Kama, R.; Liu, Y.; Aidara, M.; Kpalari, D.F.; Song, J.; Diatta, S.; Sulemana, H.; Li, H.; Li, Z. Plant-soil feedback combined with straw incorporation under Maize/Soybean intercropping increases heavy metals migration in soil-plant system and soil HMRG abundance under livestock wastewater irrigation. J. Soil Sci. Plant Nut. 2024, 24, 7090–7104. [Google Scholar] [CrossRef]
- Han, Z.; Wang, N.; Zhang, H.; Yang, X. Heavy metal contamination and risk assessment of human exposure near an e-waste processing site. Acta Agr. Scand. B-S.P. 2017, 67, 119–125. [Google Scholar] [CrossRef]
- Hossain, M.M.; Tripty, S.J.; Shishir, M.Z.A.; Wang, S.; Hossain, I.; Geng, A.; Han, S.; Zhu, D. Malondialdehyde and heavy metal contents in Piper betel: Possible risks of heavy metals in human health. J. Food Compos. Anal. 2024, 134, 106540. [Google Scholar] [CrossRef]
- Cai, S.; Ren, Q.; Zeng, Y.; Wang, L.; Zhang, Y.; Liu, B.; Li, J. Toxicity assessment of the utilization of AOD slag as a mineral fertilizer for pakchoi (Brassica chinensis L.) planting. J. Clean. Prod. 2022, 256, 120377. [Google Scholar] [CrossRef]
- Isteri, V.; Ohenoja, K.; Hanein, T.; Kinoshita, H.; Tanskanen, P.; Illikainen, M.; Fabritius, T. Production and properties of ferrite-rich CSAB cement from metallurgical industry residues. Sci. Total Environ. 2020, 712, 136208. [Google Scholar] [CrossRef]
- Huijgen, W.; Witkamp, G.J.; Comans, R. Mineral CO2 sequestration by steel slag carbonation. Environ. Sci. Technol. 2005, 39, 9676–9682. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.J.; Zeng, Y.N.; Li, J.G.; Zhang, Y.Z.; Zhao, Q.Z. Carbonation of argon oxygen decarburization stainless steel slag and its effect on chromium leachability. J. Clean. Prod. 2020, 328, 129617. [Google Scholar] [CrossRef]
- Fang, Y.; Chang, J. Rapid hardening beta-C2S mineral and microstructure changes activated by accelerated carbonation curing. J. Therm. Anal. Calorim. 2017, 129, 681–689. [Google Scholar] [CrossRef]
- Duan, Y.; Liu, X.; Hong, W.; Khalid, Z.; Lv, G.; Jiang, X. Leaching behavior and comprehensive toxicity evaluation of heavy metals in MSWI fly ash from grate and fluidized bed incinerators using various leaching methods: A comparative study. Sci. Total Environ. 2024, 914, 169595. [Google Scholar] [CrossRef]
- Islam, M.S.; Ahmed, M.K.; Mamun, M.H.A.; Masunaga, S. Trace metals in soil and vegetables and associated health risk assessment. Environ. Monit. Assess. 2014, 186, 8727–8739. [Google Scholar] [CrossRef]
- Qi, C.; Wu, F.; Deng, Q.; Liu, G.; Mo, C.; Liu, B.; Zhu, J. Distribution and accumulation of antimony in plants in the super-large Sb deposit areas, China. Microchem. J. 2011, 97, 44–51. [Google Scholar] [CrossRef]
- Ji, K.; Kim, J.; Lee, M.J.; Park, S.; Kwon, H.J.; Cheong, H.K.; Jang, J.Y.; Kim, D.S.; Yu, S.; Kim, Y.W.; et al. Assessment of exposure to HMs and health risks among residents near abandoned metal mines in Goseong, Korea. Environ. Pollut. 2013, 178, 322–328. [Google Scholar] [CrossRef]
- Yang, Q.; Xu, Y.; Liu, S.; He, J.; Long, F. Concentration and potential health risk of HMs in market vegetable in Chongqing, China. Ecotoxicol. Environ. Saf. 2011, 74, 1664–1669. [Google Scholar] [CrossRef]
- Storelli, M.M. Potential human health risks from metals (Hg, Cd, and Pb) and polychlorinated biphenyls (PCBs) via seafood consumption: Estimation of target hazard quotients (THQs) and toxic equivalents. Food Chem. Toxicol. 2008, 46, 2782–2788. [Google Scholar] [CrossRef]
- Salman, M.; Cizer, O.; Pontikes, Y.; Santos, R.M.; Snellings, R.; Vandewalle, L.; Blanpain, B.; Balen, K.V. Effect of accelerated carbonation on AOD stainless steel slag for its valorisation as a CO2-sequestering construction material. Chem. Eng. J. 2014, 246, 39–52. [Google Scholar] [CrossRef]
- Kriskova, L.; Pontikes, Y.; Cizer, O.; Mertens, G.; Veulemans, W.; Geysen, D.; Jones, P.T.; Vandewalle, L.; Van Balen, K.; Blanpain, B. Effect of mechanical activation on the hydraulic properties of stainless steel slags. Cement Concrete Res. 2012, 42, 778–788. [Google Scholar] [CrossRef]
- Chen, Z.M.; Li, R.; Liu, J. Preparation and properties of carbonated steel slag used in cement cementitious materials. Constr. Build. Mater. 2021, 283, 122667. [Google Scholar] [CrossRef]
- De Windt, L.; Chaurand, P.; Rose, J. Kinetic of steel slag leaching: Batch tests and modeling. Waste Manage. 2011, 31, 225–235. [Google Scholar] [CrossRef]
- Pietrini, F.; Iori, V.; Beone, T.; Mirabile, D.; Zacchini, M. Effects of a ladle furnace slag added to soil on morpho-physiological and biochemical parameters of Amaranthus paniculatus L. plants. J. Hazard. Mater. 2017, 329, 339–347. [Google Scholar] [CrossRef]
- Ghafariyan, M.H.; Malakouti, M.J.; Dadpour, M.R.; Stroeve, P.; Mahmoudi, M. Effects of magnetite nanoparticles on soybean chlorophyll. Environ. Sci. Technol. 2013, 47, 10645–10652. [Google Scholar] [CrossRef]
- Basu, S.; Kumar, G. Exploring the significant contribution of silicon in regulation of cellular redox homeostasis for conferring stress tolerance in plants. Plant Physiol. Bioch. 2021, 166, 393–404. [Google Scholar] [CrossRef]
- Zhang, W.Q.; Zwiazek, J.J. Responses of reclamation plants to high root zone pH: Effects of phosphorus and calcium availability. J. Environ. Qual. 2016, 45, 1652–1662. [Google Scholar] [CrossRef]
- Marschner, P. Marschner’s Mineral Nutrition of Higher Plants; Elsevier Ltd.: Waltham, MA, USA, 2012. [Google Scholar]
- Lynch, J.; Lauchli, A.; Emanuel, E. Vegetative growth of the common bean in response to phosphorus nutrition. Crop. Sci. 1991, 31, 380–387. [Google Scholar] [CrossRef]
- Ao, M.; Chen, X.; Deng, T.; Sun, S.; Tang, Y.; Morel, J.L.; Qiu, R.; Wang, S. Chromium biogeochemical behaviour in soil-plant systems and remediation strategies: A critical review. J. Hazard. Mater. 2022, 424, 127233. [Google Scholar] [CrossRef]
- GB 15618-2018; Soil environment quality-Risk control standard for soil contamination of agriculture land. Standardization Administration of the People’s Republic of China: Beijing, China, 2018.
- GB2762-2022; National standard for food safety-Limits of pollutants in food. Standardization Administration of the People’s Republic of China: Beijing, China, 2022.
- Kim, E.; Spooren, J.; Broos, K.; Horckmans, L.; Quaghebeur, M.; Vrancken, K.C. Selective recovery of Cr from stainless steel slag by alkaline roasting followed by water leaching. Hydrometallurgy 2015, 158, 139–148. [Google Scholar] [CrossRef]
- Zhao, F.; Ma, Y.; Zhu, Y.; Tang, Z.; McGrath, S.P. Soil contamination in China: Current status and mitigation strategies. Environ. Sci. Technol. 2015, 49, 750–759. [Google Scholar] [CrossRef]
Addition Rate | Cr (mg kg−1) | Ni (mg kg−1) | Pb (mg kg−1) | Cd (mg kg−1) | Hg (mg kg−1) |
---|---|---|---|---|---|
0% | 3.518 ± 0.262 | 5.212 ± 0.702 | 3.861 ± 0.479 | 0.082 ± 0.013 | 0.071 ± 0.022 |
0.25% | 14.737 ± 2.218 | 5.614 ± 0.816 | 4.008 ± 0.201 | 0.060 ± 0.001 | 0.058 ± 0.003 |
0.5% | 19.464 ± 0.173 | 6.061 ± 0.557 | 3.873 ± 0.004 | 0.066 ± 0.011 | 0.059 ± 0.004 |
1% | 41.646 ± 2.951 | 6.598 ± 1.438 | 3.759 ± 0.036 | 0.058 ± 0.003 | 0.076 ± 0.001 |
2% | 56.422 ± 3.875 | 7.071 ± 0.719 | 3.799 ± 0.510 | 0.057 ± 0.002 | 0.063 ± 0.008 |
4% | 117.147 ± 4.127 | 8.642 ± 1.193 | 3.759 ± 0.110 | 0.061 ± 0.005 | 0.062 ± 0.004 |
8% | 231.721 ± 8.119 | 12.060 ± 2.719 | 3.510 ± 0.118 | 0.065 ± 0.011 | 0.068 ± 0.009 |
Addition Rate | Cr (mg kg−1) | Ni (mg kg−1) | Pb (mg kg−1) | Cd (mg kg−1) | Hg (mg kg−1) |
---|---|---|---|---|---|
0% | 1.417 ± 0.101 | 1.509 ± 0.166 | 4.946 ± 0.524 | 0.189 ± 0.003 | 0.022 ± 0.004 |
0.25% | 10.883 ± 0.841 | 1.902 ± 0.415 | 5.227 ± 0.468 | 0.155 ± 0.000 | 0.022 ± 0.002 |
0.5% | 17.199 ± 3.799 | 2.101 ± 0.253 | 5.201 ± 0.022 | 0.172 ± 0.014 | 0.026 ± 0.005 |
1% | 34.443 ± 2.440 | 2.173 ± 0.141 | 5.436 ± 0.456 | 0.148 ± 0.017 | 0.021 ± 0.000 |
2% | 41.131 ± 5.582 | 3.012 ± 0.668 | 5.298 ± 0.127 | 0.173 ± 0.013 | 0.026 ± 0.006 |
4% | 104.292 ± 2.369 | 4.514 ± 0.676 | 4.746 ± 0.008 | 0.161 ± 0.013 | 0.024 ± 0.003 |
8% | 220.855 ± 7.863 | 9.844 ± 0.418 | 4.841 ± 0.893 | 0.139 ± 0.021 | 0.029 ± 0.004 |
Limit | 150 | 70 | 90 | 0.3 | 1.8 |
Addition Rate | Cr | Ni | Pb | Cd | Hg |
---|---|---|---|---|---|
Mean values of EDI (mg kg−1 d−1) | |||||
0% | 0.0015 | 0.0003 | 0.0001 | 0.0002 | 0.0000 |
0.25% | 0.0014 | 0.0003 | 0.0001 | 0.0003 | 0.0000 |
0.5% | 0.0015 | 0.0003 | 0.0001 | 0.0002 | 0.0000 |
1% | 0.0015 | 0.0003 | 0.0001 | 0.0003 | 0.0000 |
2% | 0.0014 | 0.0003 | 0.0001 | 0.0003 | 0.0000 |
4% | 0.0019 | 0.0004 | 0.0001 | 0.0003 | 0.0000 |
8% | 0.0044 | 0.0004 | 0.0001 | 0.0004 | 0.0000 |
Mean values of THQ | |||||
0% | 0.0010 | 0.0164 | 0.0372 | 0.3386 | 0.0348 |
0.25% | 0.0010 | 0.0171 | 0.0320 | 0.4660 | 0.0267 |
0.5% | 0.0010 | 0.0170 | 0.0343 | 0.5069 | 0.0272 |
1% | 0.0010 | 0.0168 | 0.0361 | 0.6836 | 0.0292 |
2% | 0.0010 | 0.0169 | 0.0346 | 0.5954 | 0.0305 |
4% | 0.0013 | 0.0180 | 0.0265 | 0.6318 | 0.0268 |
8% | 0.0029 | 0.0187 | 0.0317 | 0.6947 | 0.0336 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Yang, Z.; Zhang, Y.; Liu, B.; Cai, S. Heavy Metal Accumulation and Potential Risk Assessment in a Soil–Plant System Treated with Carbonated Argon Oxygen Decarburization Slag. Sustainability 2025, 17, 6979. https://doi.org/10.3390/su17156979
Zhang L, Yang Z, Zhang Y, Liu B, Cai S. Heavy Metal Accumulation and Potential Risk Assessment in a Soil–Plant System Treated with Carbonated Argon Oxygen Decarburization Slag. Sustainability. 2025; 17(15):6979. https://doi.org/10.3390/su17156979
Chicago/Turabian StyleZhang, Liangjin, Zihao Yang, Yuzhu Zhang, Bao Liu, and Shuang Cai. 2025. "Heavy Metal Accumulation and Potential Risk Assessment in a Soil–Plant System Treated with Carbonated Argon Oxygen Decarburization Slag" Sustainability 17, no. 15: 6979. https://doi.org/10.3390/su17156979
APA StyleZhang, L., Yang, Z., Zhang, Y., Liu, B., & Cai, S. (2025). Heavy Metal Accumulation and Potential Risk Assessment in a Soil–Plant System Treated with Carbonated Argon Oxygen Decarburization Slag. Sustainability, 17(15), 6979. https://doi.org/10.3390/su17156979