Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (309)

Search Parameters:
Keywords = local energy trading

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1541 KiB  
Article
Economic Dispatch Strategy for Power Grids Considering Waste Heat Utilization in High-Energy-Consuming Enterprises
by Lei Zhou, Ping He, Siru Wang, Cailian Ma, Yiming Zhou, Can Cai and Hongbo Zou
Processes 2025, 13(8), 2450; https://doi.org/10.3390/pr13082450 - 2 Aug 2025
Viewed by 231
Abstract
Under the construction background of carbon peak and carbon neutrality, high-energy-consuming enterprises, represented by the electrolytic aluminum industry, have become important carriers for energy conservation and emission reduction. These enterprises are characterized by significant energy consumption and high carbon emissions, greatly impacting the [...] Read more.
Under the construction background of carbon peak and carbon neutrality, high-energy-consuming enterprises, represented by the electrolytic aluminum industry, have become important carriers for energy conservation and emission reduction. These enterprises are characterized by significant energy consumption and high carbon emissions, greatly impacting the economic and environmental benefits of regional power grids. Existing research often focuses on grid revenue, leaving high-energy-consuming enterprises in a passive regulatory position. To address this, this paper constructs an economic dispatch strategy for power grids that considers waste heat utilization in high-energy-consuming enterprises. A typical representative, electrolytic aluminum load and its waste heat utilization model, for the entire production process of high-energy-consuming loads, is established. Using a tiered carbon trading calculation formula, a low-carbon production scheme for high-energy-consuming enterprises is developed. On the grid side, considering local load levels, the uncertainty of wind power output, and the energy demands of aluminum production, a robust day-ahead economic dispatch model is established. Case analysis based on the modified IEEE-30 node system demonstrates that the proposed method balances economic efficiency and low-carbon performance while reducing the conservatism of traditional optimization approaches. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

31 pages, 2421 KiB  
Article
Optimization of Cooperative Operation of Multiple Microgrids Considering Green Certificates and Carbon Trading
by Xiaobin Xu, Jing Xia, Chong Hong, Pengfei Sun, Peng Xi and Jinchao Li
Energies 2025, 18(15), 4083; https://doi.org/10.3390/en18154083 - 1 Aug 2025
Viewed by 155
Abstract
In the context of achieving low-carbon goals, building low-carbon energy systems is a crucial development direction and implementation pathway. Renewable energy is favored because of its clean characteristics, but the access may have an impact on the power grid. Microgrid technology provides an [...] Read more.
In the context of achieving low-carbon goals, building low-carbon energy systems is a crucial development direction and implementation pathway. Renewable energy is favored because of its clean characteristics, but the access may have an impact on the power grid. Microgrid technology provides an effective solution to this problem. Uncertainty exists in single microgrids, so multiple microgrids are introduced to improve system stability and robustness. Electric carbon trading and profit redistribution among multiple microgrids have been challenges. To promote energy commensurability among microgrids, expand the types of energy interactions, and improve the utilization rate of renewable energy, this paper proposes a cooperative operation optimization model of multi-microgrids based on the green certificate and carbon trading mechanism to promote local energy consumption and a low carbon economy. First, this paper introduces a carbon capture system (CCS) and power-to-gas (P2G) device in the microgrid and constructs a cogeneration operation model coupled with a power-to-gas carbon capture system. On this basis, a low-carbon operation model for multi-energy microgrids is proposed by combining the local carbon trading market, the stepped carbon trading mechanism, and the green certificate trading mechanism. Secondly, this paper establishes a cooperative game model for multiple microgrid electricity carbon trading based on the Nash negotiation theory after constructing the single microgrid model. Finally, the ADMM method and the asymmetric energy mapping contribution function are used for the solution. The case study uses a typical 24 h period as an example for the calculation. Case study analysis shows that, compared with the independent operation mode of microgrids, the total benefits of the entire system increased by 38,296.1 yuan and carbon emissions were reduced by 30,535 kg through the coordinated operation of electricity–carbon coupling. The arithmetic example verifies that the method proposed in this paper can effectively improve the economic benefits of each microgrid and reduce carbon emissions. Full article
Show Figures

Figure 1

19 pages, 5970 KiB  
Article
Interface Material Modification to Enhance the Performance of a Thin-Film Piezoelectric-on-Silicon (TPoS) MEMS Resonator by Localized Annealing Through Joule Heating
by Adnan Zaman, Ugur Guneroglu, Abdulrahman Alsolami, Liguan Li and Jing Wang
Micromachines 2025, 16(8), 885; https://doi.org/10.3390/mi16080885 - 29 Jul 2025
Viewed by 257
Abstract
This paper presents a novel approach employing localized annealing through Joule heating to enhance the performance of Thin-Film Piezoelectric-on-Silicon (TPoS) MEMS resonators that are crucial for applications in sensing, energy harvesting, frequency filtering, and timing control. Despite recent advancements, piezoelectric MEMS resonators still [...] Read more.
This paper presents a novel approach employing localized annealing through Joule heating to enhance the performance of Thin-Film Piezoelectric-on-Silicon (TPoS) MEMS resonators that are crucial for applications in sensing, energy harvesting, frequency filtering, and timing control. Despite recent advancements, piezoelectric MEMS resonators still suffer from anchor-related energy losses and limited quality factors (Qs), posing significant challenges for high-performance applications. This study investigates interface modification to boost the quality factor (Q) and reduce the motional resistance, thus improving the electromechanical coupling coefficient and reducing insertion loss. To balance the trade-off between device miniaturization and performance, this work uniquely applies DC current-induced localized annealing to TPoS MEMS resonators, facilitating metal diffusion at the interface. This process results in the formation of platinum silicide, modifying the resonator’s stiffness and density, consequently enhancing the acoustic velocity and mitigating the side-supporting anchor-related energy dissipations. Experimental results demonstrate a Q-factor enhancement of over 300% (from 916 to 3632) and a reduction in insertion loss by more than 14 dB, underscoring the efficacy of this method for reducing anchor-related dissipations due to the highest annealing temperature at the anchors. The findings not only confirm the feasibility of Joule heating for interface modifications in MEMS resonators but also set a foundation for advancements of this post-fabrication thermal treatment technology. Full article
(This article belongs to the Special Issue MEMS Nano/Micro Fabrication, 2nd Edition)
Show Figures

Figure 1

21 pages, 2965 KiB  
Article
Inspection Method Enabled by Lightweight Self-Attention for Multi-Fault Detection in Photovoltaic Modules
by Shufeng Meng and Tianxu Xu
Electronics 2025, 14(15), 3019; https://doi.org/10.3390/electronics14153019 - 29 Jul 2025
Viewed by 270
Abstract
Bird-dropping fouling and hotspot anomalies remain the most prevalent and detrimental defects in utility-scale photovoltaic (PV) plants; their co-occurrence on a single module markedly curbs energy yield and accelerates irreversible cell degradation. However, markedly disparate visual–thermal signatures of the two phenomena impede high-fidelity [...] Read more.
Bird-dropping fouling and hotspot anomalies remain the most prevalent and detrimental defects in utility-scale photovoltaic (PV) plants; their co-occurrence on a single module markedly curbs energy yield and accelerates irreversible cell degradation. However, markedly disparate visual–thermal signatures of the two phenomena impede high-fidelity concurrent detection in existing robotic inspection systems, while stringent onboard compute budgets also preclude the adoption of bulky detectors. To resolve this accuracy–efficiency trade-off for dual-defect detection, we present YOLOv8-SG, a lightweight yet powerful framework engineered for mobile PV inspectors. First, a rigorously curated multi-modal dataset—RGB for stains and long-wave infrared for hotspots—is assembled to enforce robust cross-domain representation learning. Second, the HSV color space is leveraged to disentangle chromatic and luminance cues, thereby stabilizing appearance variations across sensors. Third, a single-head self-attention (SHSA) block is embedded in the backbone to harvest long-range dependencies at negligible parameter cost, while a global context (GC) module is grafted onto the detection head to amplify fine-grained semantic cues. Finally, an auxiliary bounding box refinement term is appended to the loss to hasten convergence and tighten localization. Extensive field experiments demonstrate that YOLOv8-SG attains 86.8% mAP@0.5, surpassing the vanilla YOLOv8 by 2.7 pp while trimming 12.6% of parameters (18.8 MB). Grad-CAM saliency maps corroborate that the model’s attention consistently coincides with defect regions, underscoring its interpretability. The proposed method, therefore, furnishes PV operators with a practical low-latency solution for concurrent bird-dropping and hotspot surveillance. Full article
Show Figures

Figure 1

32 pages, 5164 KiB  
Article
Decentralized Distributed Sequential Neural Networks Inference on Low-Power Microcontrollers in Wireless Sensor Networks: A Predictive Maintenance Case Study
by Yernazar Bolat, Iain Murray, Yifei Ren and Nasim Ferdosian
Sensors 2025, 25(15), 4595; https://doi.org/10.3390/s25154595 - 24 Jul 2025
Viewed by 380
Abstract
The growing adoption of IoT applications has led to increased use of low-power microcontroller units (MCUs) for energy-efficient, local data processing. However, deploying deep neural networks (DNNs) on these constrained devices is challenging due to limitations in memory, computational power, and energy. Traditional [...] Read more.
The growing adoption of IoT applications has led to increased use of low-power microcontroller units (MCUs) for energy-efficient, local data processing. However, deploying deep neural networks (DNNs) on these constrained devices is challenging due to limitations in memory, computational power, and energy. Traditional methods like cloud-based inference and model compression often incur bandwidth, privacy, and accuracy trade-offs. This paper introduces a novel Decentralized Distributed Sequential Neural Network (DDSNN) designed for low-power MCUs in Tiny Machine Learning (TinyML) applications. Unlike the existing methods that rely on centralized cluster-based approaches, DDSNN partitions a pre-trained LeNet across multiple MCUs, enabling fully decentralized inference in wireless sensor networks (WSNs). We validate DDSNN in a real-world predictive maintenance scenario, where vibration data from an industrial pump is analyzed in real-time. The experimental results demonstrate that DDSNN achieves 99.01% accuracy, explicitly maintaining the accuracy of the non-distributed baseline model and reducing inference latency by approximately 50%, highlighting its significant enhancement over traditional, non-distributed approaches, demonstrating its practical feasibility under realistic operating conditions. Full article
Show Figures

Figure 1

17 pages, 2181 KiB  
Article
Sustainability Analysis of the Global Hydrogen Trade Network from a Resilience Perspective: A Risk Propagation Model Based on Complex Networks
by Sai Chen and Yuxi Tian
Energies 2025, 18(15), 3944; https://doi.org/10.3390/en18153944 - 24 Jul 2025
Viewed by 218
Abstract
Hydrogen is being increasingly integrated into the international trade system as a clean and flexible energy carrier, motivated by the global energy transition and carbon neutrality objectives. The rapid expansion of the global hydrogen trade network has simultaneously exposed several sustainability challenges, including [...] Read more.
Hydrogen is being increasingly integrated into the international trade system as a clean and flexible energy carrier, motivated by the global energy transition and carbon neutrality objectives. The rapid expansion of the global hydrogen trade network has simultaneously exposed several sustainability challenges, including a centralized structure, overdependence on key countries, and limited resilience to external disruptions. Based on this, we develop a risk propagation model that incorporates the absorption capacity of nodes to simulate the propagation of supply shortage risks within the global hydrogen trade network. Furthermore, we propose a composite sustainability index constructed from structural, economic, and environmental resilience indicators, enabling a systematic assessment of the network’s sustainable development capacity under external shock scenarios. Findings indicate the following: (1) The global hydrogen trade network is undergoing a structural shift from a Western Europe-dominated unipolar configuration to a more polycentric pattern. Countries such as China and Singapore are emerging as key hubs linking Eurasian regions, with trade relationships among nations becoming increasingly dense and diversified. (2) Although supply shortage shocks trigger structural disturbances, economic losses, and risks of carbon rebound, their impacts are largely concentrated in a limited number of hub countries, with relatively limited disruption to the overall sustainability of the system. (3) Countries exhibit significant heterogeneity in structural, economic, and environmental resilience. Risk propagation demonstrates an uneven pattern characterized by hub-induced disruptions, chain-like transmission, and localized clustering. Accordingly, policy recommendations are proposed, including the establishment of a polycentric coordination mechanism, the enhancement of regional emergency coordination mechanisms, and the advancement of differentiated capacity-building efforts. Full article
Show Figures

Figure 1

26 pages, 2178 KiB  
Article
Optimizing Agri-PV System: Systematic Methodology to Assess Key Design Parameters
by Kedar Mehta and Wilfried Zörner
Energies 2025, 18(14), 3877; https://doi.org/10.3390/en18143877 - 21 Jul 2025
Viewed by 414
Abstract
Agrivoltaic (Agri-PV) systems face the critical challenge of balancing photovoltaic energy generation with crop productivity, yet systematic approaches to quantifying the trade-offs between these objectives remain scarce. In this study, we identify nine essential design indicators: panel tilt angle, elevation, photovoltaic coverage ratio, [...] Read more.
Agrivoltaic (Agri-PV) systems face the critical challenge of balancing photovoltaic energy generation with crop productivity, yet systematic approaches to quantifying the trade-offs between these objectives remain scarce. In this study, we identify nine essential design indicators: panel tilt angle, elevation, photovoltaic coverage ratio, shading factor, land equivalent ratio, photosynthetically active radiation (PAR) utilization, crop yield stability index, water use efficiency, and return on investment. We introduce a novel dual matrix Analytic Hierarchy Process (AHP) to evaluate their relative significance. An international panel of eighteen Agri-PV experts, encompassing academia, industry, and policy, provided pairwise comparisons of these indicators under two objectives: maximizing annual energy yield and sustaining crop output. The high consistency observed in expert responses allowed for the derivation of normalized weight vectors, which form the basis of two Weighted Influence Matrices. Analysis of Total Weighted Influence scores from these matrices reveal distinct priority sets: panel tilt, coverage ratio, and elevation are most influential for energy optimization, while PAR utilization, yield stability, and elevation are prioritized for crop productivity. This methodology translates qualitative expert knowledge into quantitative, actionable guidance, clearly delineating both synergies, such as the mutual benefit of increased elevation for energy and crop outcomes, and trade-offs, exemplified by the negative impact of high photovoltaic coverage on crop yield despite gains in energy output. By offering a transparent, expert-driven decision-support tool, this framework enables practitioners to customize Agri-PV system configurations according to local climatic, agronomic, and economic contexts. Ultimately, this approach advances the optimization of the food energy nexus and supports integrated sustainability outcomes in Agri-PV deployment. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

50 pages, 9734 KiB  
Article
Efficient Hotspot Detection in Solar Panels via Computer Vision and Machine Learning
by Nayomi Fernando, Lasantha Seneviratne, Nisal Weerasinghe, Namal Rathnayake and Yukinobu Hoshino
Information 2025, 16(7), 608; https://doi.org/10.3390/info16070608 - 15 Jul 2025
Viewed by 575
Abstract
Solar power generation is rapidly emerging within renewable energy due to its cost-effectiveness and ease of deployment. However, improper inspection and maintenance lead to significant damage from unnoticed solar hotspots. Even with inspections, factors like shadows, dust, and shading cause localized heat, mimicking [...] Read more.
Solar power generation is rapidly emerging within renewable energy due to its cost-effectiveness and ease of deployment. However, improper inspection and maintenance lead to significant damage from unnoticed solar hotspots. Even with inspections, factors like shadows, dust, and shading cause localized heat, mimicking hotspot behavior. This study emphasizes interpretability and efficiency, identifying key predictive features through feature-level and What-if Analysis. It evaluates model training and inference times to assess effectiveness in resource-limited environments, aiming to balance accuracy, generalization, and efficiency. Using Unmanned Aerial Vehicle (UAV)-acquired thermal images from five datasets, the study compares five Machine Learning (ML) models and five Deep Learning (DL) models. Explainable AI (XAI) techniques guide the analysis, with a particular focus on MPEG (Moving Picture Experts Group)-7 features for hotspot discrimination, supported by statistical validation. Medium Gaussian SVM achieved the best trade-off, with 99.3% accuracy and 18 s inference time. Feature analysis revealed blue chrominance as a strong early indicator of hotspot detection. Statistical validation across datasets confirmed the discriminative strength of MPEG-7 features. This study revisits the assumption that DL models are inherently superior, presenting an interpretable alternative for hotspot detection; highlighting the potential impact of domain mismatch. Model-level insight shows that both absolute and relative temperature variations are important in solar panel inspections. The relative decrease in “blueness” provides a crucial early indication of faults, especially in low-contrast thermal images where distinguishing normal warm areas from actual hotspot is difficult. Feature-level insight highlights how subtle changes in color composition, particularly reductions in blue components, serve as early indicators of developing anomalies. Full article
Show Figures

Graphical abstract

30 pages, 795 KiB  
Article
A Novel Heterogeneous Federated Edge Learning Framework Empowered with SWIPT
by Yinyin Fang, Sheng Shu, Yujun Zhu, Heju Li and Kunkun Rui
Symmetry 2025, 17(7), 1115; https://doi.org/10.3390/sym17071115 - 11 Jul 2025
Viewed by 217
Abstract
Federated edge learning (FEEL) is an innovative approach that facilitates collaborative training among numerous distributed edge devices while eliminating the need to transfer sensitive information. However, the practical deployment of FEEL faces significant constraints, owing to the limited and asymmetric computational and communication [...] Read more.
Federated edge learning (FEEL) is an innovative approach that facilitates collaborative training among numerous distributed edge devices while eliminating the need to transfer sensitive information. However, the practical deployment of FEEL faces significant constraints, owing to the limited and asymmetric computational and communication resources of these devices, along with their energy availability. To this end, we propose a novel asymmetry-tolerant training approach for FEEL, enabled via simultaneous wireless information and power transfer (SWIPT). This framework leverages SWIPT to offer sustainable energy support for devices while enabling them to train models with varying intensities. Given a limited energy budget, we highlight the critical trade-off between heterogeneous local training intensities and the quality of wireless transmission, suggesting that the design of local training and wireless transmission should be closely integrated, rather than treated as separate entities. To elucidate this perspective, we rigorously derive a new explicit upper bound that captures the combined impact of local training accuracy and the mean square error of wireless aggregation on the convergence performance of FEEL. To maximize overall system performance, we formulate two key optimization problems: the first aims to maximize the energy harvesting capability among all devices, while the second addresses the joint learning–communication optimization under the optimal energy harvesting solution. Comprehensive experiments demonstrate that our proposed framework achieves significant performance improvements compared to existing baselines. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

19 pages, 2932 KiB  
Article
Numerical and Experimental Analysis of Thermal Stratification in Locally Heated Residential Spaces
by Víctor Tuninetti, Bastián Ales and Tomás Mora Chandía
Buildings 2025, 15(14), 2417; https://doi.org/10.3390/buildings15142417 - 10 Jul 2025
Cited by 1 | Viewed by 281
Abstract
This study investigates the limitations of localized heating in a single-story dwelling, using a validated computational fluid dynamics (CFD) model to analyze thermal stratification and its impact on occupant comfort. A comparative evaluation of turbulence models (k-ε and k-ω SST) and equations of [...] Read more.
This study investigates the limitations of localized heating in a single-story dwelling, using a validated computational fluid dynamics (CFD) model to analyze thermal stratification and its impact on occupant comfort. A comparative evaluation of turbulence models (k-ε and k-ω SST) and equations of state (Soave–Redlich–Kwong and Peng–Robinson) identified the k-ω SST model with the Soave–Redlich–Kwong equation as the most accurate and computationally efficient combination for capturing temperature gradients and achieving rapid convergence. Experimental validation demonstrated strong agreement between simulated and measured temperature profiles, confirming the model’s reliability. The results highlight a fundamental trade-off between localized thermal comfort and overall indoor temperature uniformity in conventionally heated spaces. While localized heating enhances comfort near the heat source, it generates vertical temperature disparities exceeding acceptable comfort thresholds at greater distances. Specifically, at 3 m from the heat source, the temperature difference between ankle and head height reached 6 °C, surpassing the 4 °C limit recommended by ASHRAE-55 for standing occupants. These findings underscore the need for alternative heating solutions that prioritize uniform heat distribution, energy efficiency, and optimized ventilation to improve indoor thermal comfort in residential buildings. This study provides critical insights to help develop and implement sustainable heating strategies and the design of energy-efficient dwellings. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

25 pages, 1771 KiB  
Article
Construction of Multi-Sample Public Building Carbon Emission Database Model Based on Energy Activity Data
by Yue Guo, Xin Zheng, Wei Wei, Yuancheng He, Xiang Peng, Fei Zhao, Hailong Wu, Wenxin Bi, Hongyang Yan and Xiaohan Ren
Energies 2025, 18(14), 3635; https://doi.org/10.3390/en18143635 - 9 Jul 2025
Viewed by 224
Abstract
In order to address the growing urgency of energy-related carbon emission reduction and improve the construction of the existing public building carbon emission database model, this study constructs a public building carbon emission database model based on energy activity data by collecting the [...] Read more.
In order to address the growing urgency of energy-related carbon emission reduction and improve the construction of the existing public building carbon emission database model, this study constructs a public building carbon emission database model based on energy activity data by collecting the energy consumption data of relevant buildings in the region and classifying the building types, aiming to quantitatively analyze the carbon emission characteristics of different types of public buildings and provide data support for the national and local governments, enterprises, universities and research institutions, and the power industry. This study is divided into three phases: The first stage is the mapping of carbon emission benchmarks. The second stage is the analysis of multi-dimensional-building carbon emission characteristics. The third stage is to evaluate the design optimization plan and propose technical improvement suggestions. At present, this research is in the first stage: collecting and analyzing information data such as the energy consumption of different types of buildings, building a carbon emission database model, and extracting and analyzing the carbon emission benchmarks and characteristics of each building type from the data of 184 public buildings in a given area. Moreover, preliminary exploration of the second phase has been conducted, focusing on identifying key influencing factors of carbon emissions during the operational phase of public buildings. Office buildings have been selected as representative samples to carry out baseline modeling and variable selection using linear regression analysis. The results of this study are of great significance in the energy field, providing data support for public building energy management, energy policy formulation, and carbon trading mechanisms. Full article
Show Figures

Figure 1

31 pages, 9063 KiB  
Article
Client Selection in Federated Learning on Resource-Constrained Devices: A Game Theory Approach
by Zohra Dakhia and Massimo Merenda
Appl. Sci. 2025, 15(13), 7556; https://doi.org/10.3390/app15137556 - 5 Jul 2025
Viewed by 445
Abstract
Federated Learning (FL), a key paradigm in privacy-preserving and distributed machine learning (ML), enables collaborative model training across decentralized data sources without requiring raw data exchange. FL enables collaborative model training across decentralized data sources while preserving privacy. However, selecting appropriate clients remains [...] Read more.
Federated Learning (FL), a key paradigm in privacy-preserving and distributed machine learning (ML), enables collaborative model training across decentralized data sources without requiring raw data exchange. FL enables collaborative model training across decentralized data sources while preserving privacy. However, selecting appropriate clients remains a major challenge, especially in heterogeneous environments with diverse battery levels, privacy needs, and learning capacities. In this work, a centralized reward-based payoff strategy (RBPS) with cooperative intent is proposed for client selection. In RBPS, each client evaluates participation based on locally measured battery level, privacy requirement, and the model’s accuracy in the current round computing a payoff from these factors and electing to participate if the payoff exceeds a predefined threshold. Participating clients then receive the updated global model. By jointly optimizing model accuracy, privacy preservation, and battery-level constraints, RBPS realizes a multi-objective selection mechanism. Under realistic simulations of client heterogeneity, RBPS yields more robust and efficient training compared to existing methods, confirming its suitability for deployment in resource-constrained FL settings. Experimental analysis demonstrates that RBPS offers significant advantages over state-of-the-art (SOA) client selection methods, particularly those relying on a single selection criterion such as accuracy, battery, or privacy alone. These one-dimensional approaches often lead to trade-offs where improvements in one aspect come at the cost of another. In contrast, RBPS leverages client heterogeneity not as a limitation, but as a strategic asset to maintain and balance all critical characteristics simultaneously. Rather than optimizing performance for a single device type or constraint, RBPS benefits from the diversity of heterogeneous clients, enabling improved accuracy, energy preservation, and privacy protection all at once. This is achieved by dynamically adapting the selection strategy to the strengths of different client profiles. Unlike homogeneous environments, where only one capability tends to dominate, RBPS ensures that no key property is sacrificed. RBPS thus aligns more closely with real-world FL deployments, where mixed-device participation is common and balanced optimization is essential. Full article
Show Figures

Figure 1

24 pages, 2389 KiB  
Article
A Multi-Objective Optimization Framework for Robust and Accurate Photovoltaic Model Parameter Identification Using a Novel Parameterless Algorithm
by Mohammed Alruwaili
Processes 2025, 13(7), 2111; https://doi.org/10.3390/pr13072111 - 3 Jul 2025
Viewed by 368
Abstract
Photovoltaic (PV) models are hard to optimize due to their intrinsic complexity and changing operation conditions. Root mean square error (RMSE) is often given precedence in classic single-objective optimization methods, limiting them to address the intricate nature of PV model calibration. To bypass [...] Read more.
Photovoltaic (PV) models are hard to optimize due to their intrinsic complexity and changing operation conditions. Root mean square error (RMSE) is often given precedence in classic single-objective optimization methods, limiting them to address the intricate nature of PV model calibration. To bypass these limitations, this research proposes a novel multi-objective optimization framework balancing accuracy and robustness by considering both maximum error and the L2 norm as significant objective functions. Along with that, we introduce the Random Search Around Bests (RSAB) algorithm, which is a parameterless metaheuristic designed to be effective at exploring the solution space. The primary contributions of this work are as follows: (1) an extensive performance evaluation of the proposed framework; (2) an adaptable function to adjust dynamically the trade-off between robustness and error minimization; and (3) the elimination of manual tuning of the RSAB parameters. Rigorous testing across three PV models demonstrates RSAB’s superiority over 17 state-of-the-art algorithms. By overcoming significant issues such as premature convergence and local minima entrapment, the proposed procedure provides practitioners with a reliable tool to optimize PV systems. Hence, this research supports the overarching goals of sustainable energy technology advancements by offering an organized and flexible solution enhancing the accuracy and efficiency of PV modeling, furthering research in renewable energy. Full article
Show Figures

Figure 1

30 pages, 2871 KiB  
Article
Intelligent Management of Renewable Energy Communities: An MLaaS Framework with RL-Based Decision Making
by Rafael Gonçalves, Diogo Gomes and Mário Antunes
Energies 2025, 18(13), 3477; https://doi.org/10.3390/en18133477 - 1 Jul 2025
Viewed by 277
Abstract
Given the increasing energy demand and the environmental consequences of fossil fuel consumption, the shift toward sustainable energy sources has become a global priority. Renewable Energy Communities (RECs)—comprising citizens, businesses, and legal entities—are emerging to democratise access to renewable energy. These communities allow [...] Read more.
Given the increasing energy demand and the environmental consequences of fossil fuel consumption, the shift toward sustainable energy sources has become a global priority. Renewable Energy Communities (RECs)—comprising citizens, businesses, and legal entities—are emerging to democratise access to renewable energy. These communities allow members to produce their own energy, sharing or selling any surplus, thus promoting sustainability and generating economic value. However, scaling RECs while ensuring profitability is challenging due to renewable energy intermittency, price volatility, and heterogeneous consumption patterns. To address these issues, this paper presents a Machine Learning as a Service (MLaaS) framework, where each REC microgrid has a customised Reinforcement Learning (RL) agent and electricity price forecasts are included to support decision-making. All the conducted experiments, using the open-source simulator Pymgrid, demonstrate that the proposed agents reduced operational costs by up to 96.41% compared to a robust baseline heuristic. Moreover, this study also introduces two cost-saving features: Peer-to-Peer (P2P) energy trading between communities and internal energy pools, allowing microgrids to draw local energy before using the main grid. Combined with the best-performing agents, these features achieved trading cost reductions of up to 45.58%. Finally, in terms of deployment, the system relies on an MLOps-compliant infrastructure that enables parallel training pipelines and an autoscalable inference service. Overall, this work provides significant contributions to energy management, fostering the development of more sustainable, efficient, and cost-effective solutions. Full article
(This article belongs to the Special Issue Artificial Intelligence in Energy Sector)
Show Figures

Figure 1

22 pages, 1530 KiB  
Article
Sustainable Power Coordination of Multi-Prosumers: A Bilevel Optimization Approach Based on Shared Energy Storage
by Qingqing Li, Wangwang Jin, Qian Li, Wangjie Pan, Zede Liang and Yuan Li
Sustainability 2025, 17(13), 5890; https://doi.org/10.3390/su17135890 - 26 Jun 2025
Viewed by 218
Abstract
Shared energy storage (SES) represents a transformative approach to advancing sustainable energy systems through improved resource utilization and renewable energy integration. In order to enhance the economic benefits of energy storage and prosumers, as well as to increase the consumption rate of renewable [...] Read more.
Shared energy storage (SES) represents a transformative approach to advancing sustainable energy systems through improved resource utilization and renewable energy integration. In order to enhance the economic benefits of energy storage and prosumers, as well as to increase the consumption rate of renewable energy, this paper proposes a bilevel optimization model for multi-prosumer power complementarity based on SES. The upper level is the long-term energy storage capacity configuration optimization, aiming to minimize the investment and operational costs of energy storage. The lower level is the intra-day operation optimization for prosumers, which reduces electricity costs through peer-to-peer (P2P) transactions among prosumers and the coordinated dispatch of SES. Meanwhile, an improved Nash bargaining method is introduced to reasonably allocate the P2P transaction benefits among prosumers based on their contributions to the transaction process. The case study shows that the proposed model can reduce the SES configuration capacity by 46.3% and decrease the annual electricity costs of prosumers by 0.98% to 27.30% compared with traditional SES, and the renewable energy consumption rate has reached 100%. Through peak–valley electricity price arbitrage, the annual revenue of the SES operator increases by 71.1%, achieving a win–win situation for prosumers and SES. This article, by optimizing the storage configuration and trading mechanism to make energy storage more accessible to users, enhances the local consumption of renewable energy, reduces both users′ energy costs and the investment costs of energy storage, and thereby promotes a more sustainable, resilient, and equitable energy future. Full article
Show Figures

Figure 1

Back to TopTop