Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (757)

Search Parameters:
Keywords = local activation unit

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 18533 KiB  
Article
Modeling of Marine Assembly Logistics for an Offshore Floating Photovoltaic Plant Subject to Weather Dependencies
by Lu-Jan Huang, Simone Mancini and Minne de Jong
J. Mar. Sci. Eng. 2025, 13(8), 1493; https://doi.org/10.3390/jmse13081493 (registering DOI) - 2 Aug 2025
Abstract
Floating solar technology has gained significant attention as part of the global expansion of renewable energy due to its potential for installation in underutilized water bodies. Several countries, including the Netherlands, have initiated efforts to extend this technology from inland freshwater applications to [...] Read more.
Floating solar technology has gained significant attention as part of the global expansion of renewable energy due to its potential for installation in underutilized water bodies. Several countries, including the Netherlands, have initiated efforts to extend this technology from inland freshwater applications to open offshore environments, particularly within offshore wind farm areas. This development is motivated by the synergistic benefits of increasing site energy density and leveraging the existing offshore grid infrastructure. The deployment of offshore floating photovoltaic (OFPV) systems involves assembling multiple modular units in a marine environment, introducing operational risks that may give rise to safety concerns. To mitigate these risks, weather windows must be considered prior to the task execution to ensure continuity between weather-sensitive activities, which can also lead to additional time delays and increased costs. Consequently, optimizing marine logistics becomes crucial to achieving the cost reductions necessary for making OFPV technology economically viable. This study employs a simulation-based approach to estimate the installation duration of a 5 MWp OFPV plant at a Dutch offshore wind farm site, started in different months and under three distinct risk management scenarios. Based on 20 years of hindcast wave data, the results reveal the impacts of campaign start months and risk management policies on installation duration. Across all the scenarios, the installation duration during the autumn and winter period is 160% longer than the one in the spring and summer period. The average installation durations, based on results from 12 campaign start months, are 70, 80, and 130 days for the three risk management policies analyzed. The result variation highlights the additional time required to mitigate operational risks arising from potential discontinuity between highly interdependent tasks (e.g., offshore platform assembly and mooring). Additionally, it is found that the weather-induced delays are mainly associated with the campaigns of pre-laying anchors and platform and mooring line installation compared with the other campaigns. In conclusion, this study presents a logistics modeling methodology for OFPV systems, demonstrated through a representative case study based on a state-of-the-art truss-type design. The primary contribution lies in providing a framework to quantify the performance of OFPV installation strategies at an early design stage. The findings of this case study further highlight that marine installation logistics are highly sensitive to local marine conditions and the chosen installation strategy, and should be integrated early in the OFPV design process to help reduce the levelized cost of electricity. Full article
(This article belongs to the Special Issue Design, Modeling, and Development of Marine Renewable Energy Devices)
19 pages, 3154 KiB  
Article
Optimizing the Operation of Local Energy Communities Based on Two-Stage Scheduling
by Ping He, Lei Zhou, Jingwen Wang, Zhuo Yang, Guozhao Lv, Can Cai and Hongbo Zou
Processes 2025, 13(8), 2449; https://doi.org/10.3390/pr13082449 (registering DOI) - 2 Aug 2025
Abstract
Flexible energy sources such as electric vehicles and the battery energy storage systems of intelligent distribution systems can provide system-wide auxiliary services such as frequency regulation for power systems. This paper proposes an optimal method for operating the local energy community that is [...] Read more.
Flexible energy sources such as electric vehicles and the battery energy storage systems of intelligent distribution systems can provide system-wide auxiliary services such as frequency regulation for power systems. This paper proposes an optimal method for operating the local energy community that is based on two-stage scheduling. Firstly, the basic concepts of the local energy community and flexible service are introduced in detail. Taking LEC as the reserve unit of artificial frequency recovery, an energy information interaction model among LEC, balance service providers, and the power grid is established. Then, a two-stage scheduling framework is proposed to ensure the rationality and economy of community energy scheduling. In the first stage, day-ahead scheduling uses the energy community management center to predict the up/down flexibility capacity that LEC can provide by adjusting the BESS control parameters. In the second stage, real-time scheduling aims at maximizing community profits and scheduling LEC based on the allocation and activation of standby flexibility determined in real time. Finally, the correctness of the two-stage scheduling framework is verified through a case study. The results show that the control parameters used in the day-ahead stage can significantly affect the real-time profitability of LEC, and that LEC benefits more in the case of low BESS utilization than in the case of high BESS utilization and non-participation in frequency recovery reserve. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

23 pages, 471 KiB  
Article
Moralizing Consent: Three Field Studies Testing a Student-Led Intervention at University Parties
by Ana P. Gantman, Ajua Duker, Jordan G. Starck, Alex Sanchez and Elizabeth Levy Paluck
Behav. Sci. 2025, 15(8), 1025; https://doi.org/10.3390/bs15081025 - 29 Jul 2025
Viewed by 190
Abstract
Moralization is the process by which preferences become moral values. We investigated a practice that is changing its moral status on college campuses in the United States: affirmative consent to sexual activity. We tested whether messages given to students just before they entered [...] Read more.
Moralization is the process by which preferences become moral values. We investigated a practice that is changing its moral status on college campuses in the United States: affirmative consent to sexual activity. We tested whether messages given to students just before they entered a party impacted their thinking about consent in moral terms—i.e., as a clear issue, with broad consensus, and an imperative to action. At two social clubs on a college campus in 2017, we randomly assigned moralistic vs. informational messages about consent, delivered at the party’s door. At the club that had pre-existing messaging about consent, the moralistic (vs. informational) message increased students’ thinking about consent in moral terms. By contrast, in the club without prior consent messaging, the informational (vs. moralistic) pledge increased students’ thinking about consent in moral terms. We then investigated and found weak evidence for a small reduction in administrative-level student conduct complaints compared to prior and subsequent years as a result of a one-night consent message treatment unique to each of the 12 clubs hosting a party. Theoretically, our findings make progress toward understanding processes of moralization. Pragmatically, they suggest the importance of locally tailored messages that reflect and shape the values of social groups. Full article
(This article belongs to the Special Issue Social Cognition and Cooperative Behavior)
Show Figures

Figure 1

27 pages, 31172 KiB  
Article
Digital Twin for Analog Mars Missions: Investigating Local Positioning Alternatives for GNSS-Denied Environments
by Benjamin Reimeir, Amelie Leininger, Raimund Edlinger, Andreas Nüchter and Gernot Grömer
Sensors 2025, 25(15), 4615; https://doi.org/10.3390/s25154615 - 25 Jul 2025
Viewed by 178
Abstract
Future planetary exploration missions will rely heavily on efficient human–robot interaction to ensure astronaut safety and maximize scientific return. In this context, digital twins offer a promising tool for planning, simulating, and optimizing extravehicular activities. This study presents the development and evaluation of [...] Read more.
Future planetary exploration missions will rely heavily on efficient human–robot interaction to ensure astronaut safety and maximize scientific return. In this context, digital twins offer a promising tool for planning, simulating, and optimizing extravehicular activities. This study presents the development and evaluation of a digital twin for the AMADEE-24 analog Mars mission, organized by the Austrian Space Forum and conducted in Armenia in March 2024. Alternative local positioning methods were evaluated to enhance the system’s utility in Global Navigation Satellite System (GNSS)-denied environments. The digital twin integrates telemetry from the Aouda space suit simulators, inertial measurement unit motion capture (IMU-MoCap), and sensor data from the Intuitive Rover Operation and Collecting Samples (iROCS) rover. All nine experiment runs were reconstructed successfully by the developed digital twin. A comparative analysis of localization methods found that Simultaneous Localization and Mapping (SLAM)-based rover positioning and IMU-MoCap localization of the astronaut matched Global Positioning System (GPS) performance. Adaptive Cluster Detection showed significantly higher deviations compared to the previous GNSS alternatives. However, the IMU-MoCap method was limited by discontinuous segment-wise measurements, which required intermittent GPS recalibration. Despite these limitations, the results highlight the potential of alternative localization techniques for digital twin integration. Full article
Show Figures

Figure 1

23 pages, 2856 KiB  
Article
A Study on the Effectiveness of a Hybrid Digital-Physical Board Game Incorporating the Sustainable Development Goals in Elementary School Sustainability Education
by Jhih-Ning Jhang, Yi-Chun Lin and Yen-Ting Lin
Sustainability 2025, 17(15), 6775; https://doi.org/10.3390/su17156775 - 25 Jul 2025
Viewed by 334
Abstract
The Sustainable Development Goals (SDGs), launched by the United Nations in 2015, outline 17 interconnected objectives designed to promote human well-being and sustainable development worldwide. Education is recognized by the United Nations as a key factor in promoting sustainable development. To cultivate students [...] Read more.
The Sustainable Development Goals (SDGs), launched by the United Nations in 2015, outline 17 interconnected objectives designed to promote human well-being and sustainable development worldwide. Education is recognized by the United Nations as a key factor in promoting sustainable development. To cultivate students with both global perspectives and local engagement, it is essential to integrate sustainability education into elementary curricula. Accordingly, this study aimed to enhance elementary school students’ understanding of the SDGs by designing a structured instructional activity and developing a hybrid digital-physical board game. The game was implemented as a supplementary review tool to traditional classroom teaching, leveraging the motivational and knowledge-retention benefits of physical board games while incorporating digital features to support learning process monitoring. To address the limitations of conventional review approaches—such as reduced student engagement and increased cognitive load—the instructional model incorporated the board game during review sessions following formal instruction. This was intended to maintain student attention and reduce unnecessary cognitive effort, thereby supporting learning in sustainability-related content. A quasi-experimental design was employed to evaluate the effectiveness of the instructional intervention and the board game system, focusing on three outcome variables: learning motivation, cognitive load, and learning achievement. The results indicated that students in the game-based Sustainable Development Goals group achieved significantly higher delayed posttest scores (M = 72.91, SD = 15.17) than the traditional review group (M = 61.30, SD = 22.82; p < 0.05). In addition, they reported significantly higher learning motivation (M = 4.40, SD = 0.64) compared to the traditional group (M = 3.99, SD = 0.69; p < 0.05) and lower cognitive load (M = 1.84, SD = 1.39) compared to the traditional group (M = 2.66, SD = 1.30; p < 0.05), suggesting that the proposed approach effectively supported student learning in sustainability education at the elementary level. Full article
Show Figures

Figure 1

22 pages, 2461 KiB  
Article
Environmental Drivers of Phytoplankton Structure in a Semi-Arid Reservoir
by Fangze Zi, Tianjian Song, Wenxia Cai, Jiaxuan Liu, Yanwu Ma, Xuyuan Lin, Xinhong Zhao, Bolin Hu, Daoquan Ren, Yong Song and Shengao Chen
Biology 2025, 14(8), 914; https://doi.org/10.3390/biology14080914 - 22 Jul 2025
Viewed by 291
Abstract
Artificial reservoirs in arid regions provide unique ecological environments for studying the spatial and functional dynamics of plankton communities under the combined stressors of climate change and anthropogenic activities. This study conducted a systematic investigation of the phytoplankton community structure and its environmental [...] Read more.
Artificial reservoirs in arid regions provide unique ecological environments for studying the spatial and functional dynamics of plankton communities under the combined stressors of climate change and anthropogenic activities. This study conducted a systematic investigation of the phytoplankton community structure and its environmental drivers in 17 artificial reservoirs in the Ili region of Xinjiang in August and October 2024. The Ili region is located in the temperate continental arid zone of northwestern China. A total of 209 phytoplankton species were identified, with Bacillariophyta, Chlorophyta, and Cyanobacteria comprising over 92% of the community, indicating an oligarchic dominance pattern. The decoupling between numerical dominance (diatoms) and biomass dominance (cyanobacteria) revealed functional differentiation and ecological complementarity among major taxa. Through multivariate analyses, including Mantel tests, principal component analysis (PCA), and redundancy analysis (RDA), we found that phytoplankton community structures at different ecological levels responded distinctly to environmental gradients. Oxidation-reduction potential (ORP), dissolved oxygen (DO), and mineralization parameters (EC, TDS) were key drivers of morphological operational taxonomic unit (MOTU). In contrast, dominant species (SP) were more responsive to salinity and pH. A seasonal analysis demonstrated significant shifts in correlation structures between summer and autumn, reflecting the regulatory influence of the climate on redox conditions and nutrient solubility. Machine learning using the random forest model effectively identified core taxa (e.g., MOTU1 and SP1) with strong discriminatory power, confirming their potential as bioindicators for water quality assessments and the early warning of ecological shifts. These core taxa exhibited wide spatial distribution and stable dominance, while localized dominant species showed high sensitivity to site-specific environmental conditions. Our findings underscore the need to integrate taxonomic resolution with functional and spatial analyses to reveal ecological response mechanisms in arid-zone reservoirs. This study provides a scientific foundation for environmental monitoring, water resource management, and resilience assessments in climate-sensitive freshwater ecosystems. Full article
(This article belongs to the Special Issue Wetland Ecosystems (2nd Edition))
Show Figures

Figure 1

23 pages, 6048 KiB  
Article
Design and Implementation of a Hybrid Real-Time Salinity Intrusion Monitoring and Early Warning System for Bang Kachao, Thailand
by Uma Seeboonruang, Pinit Tanachaichoksirikun, Thanavit Anuwongpinit and Uba Sirikaew
Water 2025, 17(14), 2162; https://doi.org/10.3390/w17142162 - 21 Jul 2025
Viewed by 335
Abstract
Salinity intrusion is a growing threat to freshwater resources, particularly in low-lying coastal and estuarine regions, necessitating the development of effective early warning systems (EWS) to support timely mitigation. Although various water quality monitoring technologies exist, many face challenges related to long-term sustainability, [...] Read more.
Salinity intrusion is a growing threat to freshwater resources, particularly in low-lying coastal and estuarine regions, necessitating the development of effective early warning systems (EWS) to support timely mitigation. Although various water quality monitoring technologies exist, many face challenges related to long-term sustainability, ongoing maintenance, and accessibility for local users. This study introduces a novel hybrid real-time salinity intrusion early warning system that uniquely integrates fixed and portable monitoring technologies with strong community participation—an approach not yet widely applied in comparable urban-adjacent delta regions. Unlike traditional systems, this model emphasizes local ownership, flexible data collection, and system scalability in resource-constrained environments. This study presents a real-time salinity intrusion early warning system for Bang Kachao, Thailand, combining eight fixed monitoring stations and 20 portable salinity measurement devices. The system was developed in response to community needs, with local input guiding both station placement and the design of mobile measurement tools. By integrating fixed stations for continuous, high-resolution data collection with portable devices for flexible, on-demand monitoring, the system achieves comprehensive spatial coverage and adaptability. A core innovation lies in its emphasis on community participation, enabling villagers to actively engage in monitoring and decision-making. The use of IoT-based sensors, Remote Telemetry Units (RTUs), and cloud-based data platforms further enhances system reliability, efficiency, and accessibility. Automated alerts are issued when salinity thresholds are exceeded, supporting timely interventions. Field deployment and testing over a seven-month period confirmed the system’s effectiveness, with fixed stations achieving 90.5% accuracy and portable devices 88.7% accuracy in detecting salinity intrusions. These results underscore the feasibility and value of a hybrid, community-driven monitoring approach for protecting freshwater resources and building local resilience in vulnerable regions. Full article
Show Figures

Figure 1

22 pages, 9981 KiB  
Article
Design and Experiment of Autonomous Shield-Cutting End-Effector for Dual-Zone Maize Field Weeding
by Yunxiang Li, Yinsong Qu, Yuan Fang, Jie Yang and Yanfeng Lu
Agriculture 2025, 15(14), 1549; https://doi.org/10.3390/agriculture15141549 - 18 Jul 2025
Viewed by 262
Abstract
This study presented an autonomous shield-cutting end-effector for maize surrounding weeding (SEMSW), addressing the challenges of the low weed removal rate (WRR) and high seedling damage rate (SDR) in northern China’s 3–5 leaf stage maize. The SEMSW integrated seedling positioning, robotic arm control, [...] Read more.
This study presented an autonomous shield-cutting end-effector for maize surrounding weeding (SEMSW), addressing the challenges of the low weed removal rate (WRR) and high seedling damage rate (SDR) in northern China’s 3–5 leaf stage maize. The SEMSW integrated seedling positioning, robotic arm control, and precision weeding functionalities: a seedling positioning sensor identified maize seedlings and weeds, guiding XYZ translational motions to align the robotic arm. The seedling-shielding anti-cutting mechanism (SAM) enclosed crop stems, while the contour-adaptive weeding mechanism (CWM) activated two-stage retractable blades (TRWBs) for inter/intra-row weeding operations. The following key design parameters were determined: 150 mm inner diameter for the seedling-shielding disc; 30 mm minimum inscribed-circle for retractable clamping units (RCUs); 40 mm ground clearance for SAM; 170 mm shielding height; and 100 mm minimum inscribed-circle diameter for the TRWB. Mathematical optimization defined the shape-following weeding cam (SWC) contour and TRWB dimensional chain. Kinematic/dynamic models were introduced alongside an adaptive sliding mode controller, ensuring lateral translation error convergence. A YOLOv8 model achieved 0.951 precision, 0.95 mAP50, and 0.819 mAP50-95, striking a balance between detection accuracy and localization precision. Field trials of the prototype showed 88.3% WRR and 2.2% SDR, meeting northern China’s agronomic standards. Full article
Show Figures

Figure 1

12 pages, 206 KiB  
Article
Nutritional Challenges of Active Sports Tourists: A Qualitative Study from the Runners’ Perspective
by Mateusz Rozmiarek
Nutrients 2025, 17(14), 2339; https://doi.org/10.3390/nu17142339 - 17 Jul 2025
Viewed by 341
Abstract
Background/Objectives: Sports tourism, particularly international running events such as half marathons and marathons, has rapidly grown due to rising health consciousness and active lifestyles. Runners competing abroad face unique nutritional challenges that extend beyond physiological needs, including adaptation to local food cultures and [...] Read more.
Background/Objectives: Sports tourism, particularly international running events such as half marathons and marathons, has rapidly grown due to rising health consciousness and active lifestyles. Runners competing abroad face unique nutritional challenges that extend beyond physiological needs, including adaptation to local food cultures and psychosocial factors. This study aims to explore the nutritional difficulties encountered by international runners during competitions abroad, using participants of the Poznan Half Marathon 2025 as a case example. Methods: A qualitative research design was employed, involving semi-structured in-depth interviews with 12 international runners from the United Kingdom, Germany, and Ukraine. Participants had at least two years of experience competing internationally. Results: Four primary categories of nutritional challenges emerged: (1) quality and availability of food, (2) adaptation to local eating habits and physiological impacts, (3) hydration and access to appropriate fluids, and (4) logistical factors and the interactions between psychological stress, physical well-being, and nutritional choices. These factors influenced runners’ preparation, race-day performance, and recovery, highlighting the complexity of managing nutrition in unfamiliar environments. Conclusions: Nutritional challenges for international runners are multidimensional, requiring flexible and culturally sensitive nutritional strategies. Although these findings offer useful insights, they are based on a small, specific sample and should be generalized with caution. Further research is necessary to explore the broader applicability of the findings and their relevance to diverse athletic populations and contexts. Full article
23 pages, 300 KiB  
Article
National Context Impacts on SDG Mapping Needs and Approaches in Higher Education, a Tri-National Comparison
by Morgane Bousquet, Ashley Byrne, Daniel Forget, Georgina Gough, Louis-René Rheault, Stéphane Roche and David Siaussat
Sustainability 2025, 17(14), 6506; https://doi.org/10.3390/su17146506 - 16 Jul 2025
Viewed by 283
Abstract
Since 2015 and the Paris Agreements, several countries have committed to sustainable development (SD) and the Sustainable Development Goals (SDGs). Higher Education Institutions (HEIs) have an important role to play in providing education and supporting research activities that integrate SD and SDG concepts. [...] Read more.
Since 2015 and the Paris Agreements, several countries have committed to sustainable development (SD) and the Sustainable Development Goals (SDGs). Higher Education Institutions (HEIs) have an important role to play in providing education and supporting research activities that integrate SD and SDG concepts. However, the context where the HEI is located has an impact on the level of development and integration of strategic guidelines, methods, and tools for measuring the performance of SDGs within the HEI. The United Nations framework remains the most developed and used tool, but it stays very global and needs to be adapted to other contexts, which leads to local initiatives by some HEIs in developing their tools. The response of HEIs to this challenge differs from one context to another, and this article aims to (i) provide a framework to analyze the different HEI contexts based on their own global, national, and local context; (ii) present and compare the context analysis of three different HEIs (ULaval, Sorbonne Univ, and UWE) in three different countries worldwide (Canada, France, and England), and (iii) discuss the limits, challenges, and research opportunities in the subject of SDG integration within HEIs. Notably, the context analysis of ULaval and UWE case studies showed that the Canadian and UK scales give global orientations with a delegation to the Quebec Province and England government for the education and research strategies. A strong leadership comes from the HEIs themselves in developing their own methods and tools for assessing and monitoring the SDGs, as is the case with ULaval and UWE. On the other hand, the Sorbonne Univ case follows the French national and European-United Nation framework but is less committed to developing its own tools and methods. Full article
(This article belongs to the Section Sustainable Education and Approaches)
27 pages, 5760 KiB  
Review
Recent Advances in Soft Acoustic Metamaterials: A Comprehensive Review of Geometry, Mechanisms, and System Responsiveness
by Ju-Hee Lee, Haesol Kwak, Eunjik Kim and Min-Woo Han
Appl. Sci. 2025, 15(14), 7910; https://doi.org/10.3390/app15147910 - 16 Jul 2025
Viewed by 802
Abstract
Acoustic metamaterials (AMs) are artificially structured materials composed of subwavelength units that enable acoustic phenomena not achievable with conventional materials and structures. This review defines and presents a distinct category referred to as soft acoustic metamaterials (SAMs), which use soft materials or reconfigurable [...] Read more.
Acoustic metamaterials (AMs) are artificially structured materials composed of subwavelength units that enable acoustic phenomena not achievable with conventional materials and structures. This review defines and presents a distinct category referred to as soft acoustic metamaterials (SAMs), which use soft materials or reconfigurable structures to achieve enhanced acoustic functionality. These systems make use of the inherent flexibility of their materials or the deformability of their geometry to support passive, active, and adaptive functions. To capture this structural and functional diversity, we introduce a three-dimensional classification that considers geometry, acoustic control mechanisms, and functional responsiveness as interrelated aspects. The geometry is classified into two-dimensional metasurfaces and three-dimensional bulk structures. The control mechanisms include local resonance, phase modulation, attenuation, and structural reconfiguration. The response type refers to whether the system behaves passively, actively, or adaptively. Using this approach, we provide an overview of representative implementations and compare different design approaches to highlight their working principles and application areas. This review presents a structured classification for soft acoustic metamaterials and offers a foundation for future research, with broad potential in intelligent sound systems, wearable acoustics, and architectural applications. Full article
Show Figures

Figure 1

13 pages, 1504 KiB  
Article
Mapping and Potential Risk Assessment of Marine Debris in Mangrove Wetlands in the Northern South China Sea
by Peng Zhou, Zhongchen Jiang, Li Zhao, Huina Hu and Dongmei Li
Sustainability 2025, 17(14), 6311; https://doi.org/10.3390/su17146311 - 9 Jul 2025
Viewed by 373
Abstract
Mangrove wetlands, acting as significant traps for marine debris, have received insufficient attention in previous research. Here, we conduct the first comprehensive investigation into the magnitude, accumulation, source, and fate of marine debris across seven mangrove areas in the northern South China Sea [...] Read more.
Mangrove wetlands, acting as significant traps for marine debris, have received insufficient attention in previous research. Here, we conduct the first comprehensive investigation into the magnitude, accumulation, source, and fate of marine debris across seven mangrove areas in the northern South China Sea (MNSCS) during 2019–2020. Systematic field surveys employed stratified random sampling, partitioning each site by vegetation density and tidal influence. Marine debris were collected and classified in sampling units by material (plastic, fabric, styrofoam), size (categorized into small, medium, and large), and origin (distinguishing between land-based and sea-based). Source identification and potential risk assessment were achieved through the integration of debris feature analysis. The results indicate relatively low debris levels in MNSCS mangroves, with plastics dominant. More than 70% of all debris weight with plastics (48.34%) and fabrics (14.59%) is land-based, and more than 70% comes from coastal/recreational activities. More than 90% of all debris items with plastics (52.50%) and Styrofoam (36.32%) are land-based, and more than 90% come from coastal/recreational activities. Medium/large-sized debris are trapped in mangrove wetlands under the influencing conditions of local tidal level, debris item materials, and sizes. Our study quantifies marine debris characteristics, sources, and ecological potential risks in MNSCS mangroves. From environmental, economic, and social sustainability perspectives, our findings are helpful for guiding marine debris management and mangrove conservation. By bridging research and policies, our work balances human activities with ecosystem health for long-term sustainability. Full article
(This article belongs to the Section Sustainable Oceans)
Show Figures

Figure 1

35 pages, 1595 KiB  
Article
Analysis of the Synergies of Air Pollutant and Greenhouse Gas Emission Reduction in Typical Chemical Enterprises
by Qi Gong, Yatfei Chan, Yijia Xia, Weiqi Tang and Weichun Ma
Sustainability 2025, 17(14), 6263; https://doi.org/10.3390/su17146263 - 8 Jul 2025
Viewed by 277
Abstract
In this study, we selected the production processes and main products of three typical chemical enterprises in Shanghai, namely SH Petrochemical (part of the oil-refining sector), SK Ethylene, and HS Chlor-Alkali, to quantitatively assess the synergistic effects across technology, policy, and emission mechanisms. [...] Read more.
In this study, we selected the production processes and main products of three typical chemical enterprises in Shanghai, namely SH Petrochemical (part of the oil-refining sector), SK Ethylene, and HS Chlor-Alkali, to quantitatively assess the synergistic effects across technology, policy, and emission mechanisms. The localized air pollutant levels and greenhouse gas emissions of the three enterprises were calculated. The synergistic effects between the end-of-pipe emission reductions for air pollutants and greenhouse gas emissions were analyzed using the pollutant reduction synergistic and cross-elasticity coefficients, including technology comparisons (e.g., acrylonitrile gas incineration (AOGI) technology vs. traditional flare). Based on these data, we used the SimaPro software and the CML-IA model to conduct a life cycle environmental impact assessment regarding the production and upstream processes of their unit products. By combining the life cycle method and the scenario simulation method, we predicted the trends in the environmental impacts of the three chemical enterprises after the implementation of low-carbon development policies in the chemical industry in 2030. We also quantified the synergistic effects of localized air pollutant and greenhouse gas (GHG) emission reductions within the low-carbon development scenario by using cross-elasticity coefficients based on life cycle environmental impacts. The research results show that, for every ton of air pollutant reduced through end-of-pipe treatment measures, the HS Chlor-Alkali enterprise would increase its maximum CO2 emissions, amounting to about 80 tons. For SK Ethylene, the synergistic coefficient for VOC reduction and CO2 emissions when using AOGI thermal incineration technology is superior to that for traditional flare thermal incineration. The activities of the three enterprises had an impact on several environmental indicators, particularly the fossil fuel resource depletion potential, accounting for 69.48%, 53.94%, and 34.23% of their total environmental impact loads, respectively. The scenario simulations indicate that, in a low-carbon development scenario, the overall environmental impact loads of SH Petrochemical (refining sector), SK Ethylene, and HS Chlor-Alkali would decrease by 3~5%. This result suggests that optimizing the upstream power structure, using “green hydrogen” instead of “grey hydrogen” in hydrogenation units within refining enterprises, and reducing the consumption of electricity and steam in the production processes of ethylene and chlor-alkali are effective measures in reducing carbon emissions in the chemical industry. The quantification of the synergies based on life cycle environmental impacts revealed that there are relatively strong synergies for air pollutant and GHG emission reductions in the oil-refining industry, while the chlor-alkali industry has the weakest synergies. Full article
Show Figures

Figure 1

33 pages, 5308 KiB  
Review
A Comprehensive Review of Explainable Artificial Intelligence (XAI) in Computer Vision
by Zhihan Cheng, Yue Wu, Yule Li, Lingfeng Cai and Baha Ihnaini
Sensors 2025, 25(13), 4166; https://doi.org/10.3390/s25134166 - 4 Jul 2025
Viewed by 1284
Abstract
Explainable Artificial Intelligence (XAI) is increasingly important in computer vision, aiming to connect complex model outputs with human understanding. This review provides a focused comparative analysis of representative XAI methods in four main categories, attribution-based, activation-based, perturbation-based, and transformer-based approaches, selected from a [...] Read more.
Explainable Artificial Intelligence (XAI) is increasingly important in computer vision, aiming to connect complex model outputs with human understanding. This review provides a focused comparative analysis of representative XAI methods in four main categories, attribution-based, activation-based, perturbation-based, and transformer-based approaches, selected from a broader literature landscape. Attribution-based methods like Grad-CAM highlight key input regions using gradients and feature activation. Activation-based methods analyze the responses of internal neurons or feature maps to identify which parts of the input activate specific layers or units, helping to reveal hierarchical feature representations. Perturbation-based techniques, such as RISE, assess feature importance through input modifications without accessing internal model details. Transformer-based methods, which use self-attention, offer global interpretability by tracing information flow across layers. We evaluate these methods using metrics such as faithfulness, localization accuracy, efficiency, and overlap with medical annotations. We also propose a hierarchical taxonomy to classify these methods, reflecting the diversity of XAI techniques. Results show that RISE has the highest faithfulness but is computationally expensive, limiting its use in real-time scenarios. Transformer-based methods perform well in medical imaging, with high IoU scores, though interpreting attention maps requires care. These findings emphasize the need for context-aware evaluation and hybrid XAI methods balancing interpretability and efficiency. The review ends by discussing ethical and practical challenges, stressing the need for standard benchmarks and domain-specific tuning. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

28 pages, 8102 KiB  
Article
Multi-Neighborhood Sparse Feature Selection for Semantic Segmentation of LiDAR Point Clouds
by Rui Zhang, Guanlong Huang, Fengpu Bao and Xin Guo
Remote Sens. 2025, 17(13), 2288; https://doi.org/10.3390/rs17132288 - 3 Jul 2025
Viewed by 333
Abstract
LiDAR point clouds, as direct carriers of 3D spatial information, comprehensively record the geometric features and spatial topological relationships of object surfaces, providing intelligent systems with rich 3D scene representation capability. However, current point cloud semantic segmentation methods primarily extract features through operations [...] Read more.
LiDAR point clouds, as direct carriers of 3D spatial information, comprehensively record the geometric features and spatial topological relationships of object surfaces, providing intelligent systems with rich 3D scene representation capability. However, current point cloud semantic segmentation methods primarily extract features through operations such as convolution and pooling, yet fail to adequately consider sparse features that significantly influence the final results of point cloud-based scene perception, resulting in insufficient feature representation capability. To address these problems, a sparse feature dynamic graph convolutional neural network, abbreviated as SFDGNet, is constructed in this paper for LiDAR point clouds of complex scenes. In the context of this paper, sparse features refer to feature representations in which only a small number of activation units or channels exhibit significant responses during the forward pass of the model. First, a sparse feature regularization method was used to motivate the network model to learn the sparsified feature weight matrix. Next, a split edge convolution module, abbreviated as SEConv, was designed to extract the local features of the point cloud from multiple neighborhoods by dividing the input feature channels, and to effectively learn sparse features to avoid feature redundancy. Finally, a multi-neighborhood feature fusion strategy was developed that combines the attention mechanism to fuse the local features of different neighborhoods and obtain global features with fine-grained information. Taking S3DIS and ScanNet v2 datasets, we evaluated the feasibility and effectiveness of SFDGNet by comparing it with six typical semantic segmentation models. Compared with the benchmark model DGCNN, SFDGNet improved overall accuracy (OA), mean accuracy (mAcc), mean intersection over union (mIoU), and sparsity by 1.8%, 3.7%, 3.5%, and 85.5% on the S3DIS dataset, respectively. The mIoU on the ScanNet v2 validation set, mIoU on the test set, and sparsity were improved by 3.2%, 7.0%, and 54.5%, respectively. Full article
(This article belongs to the Special Issue Remote Sensing for 2D/3D Mapping)
Show Figures

Graphical abstract

Back to TopTop