Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (987)

Search Parameters:
Keywords = lithium-ion power battery

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3136 KiB  
Article
Systematic Characterization of Lithium-Ion Cells for Electric Mobility and Grid Storage: A Case Study on Samsung INR21700-50G
by Saroj Paudel, Jiangfeng Zhang, Beshah Ayalew and Rajendra Singh
Batteries 2025, 11(8), 313; https://doi.org/10.3390/batteries11080313 (registering DOI) - 16 Aug 2025
Abstract
Accurate parametric modeling of lithium-ion batteries is essential for battery management system (BMS) design in electric vehicles and broader energy storage applications, enabling reliable state estimation and effective thermal control under diverse operating conditions. This study presents a detailed characterization of lithium-ion cells [...] Read more.
Accurate parametric modeling of lithium-ion batteries is essential for battery management system (BMS) design in electric vehicles and broader energy storage applications, enabling reliable state estimation and effective thermal control under diverse operating conditions. This study presents a detailed characterization of lithium-ion cells to support advanced BMS in electric vehicles and stationary storage. A second-order equivalent circuit model is developed to capture instantaneous and dynamic voltage behavior, with parameters extracted through Hybrid Pulse Power Characterization over a broad range of temperatures (−10 °C to 45 °C) and state-of-charge levels. The method includes multi-duration pulse testing and separates ohmic and transient responses using two resistor–capacitor branches, with parameters tied to physical processes like charge transfer and diffusion. A weakly coupled electro-thermal model is presented to support real-time BMS applications, enabling accurate voltage, temperature, and heat generation prediction. This study also evaluates open-circuit voltage and direct current internal resistance across pulse durations, leading to power capability maps (“fish charts”) that capture discharge and regenerative performance across SOC and temperature. The analysis highlights performance asymmetries between charging and discharging and confirms model accuracy through curve fitting across test conditions. These contributions enhance model realism, thermal control, and power estimation for real-world lithium-ion battery applications. Full article
23 pages, 5678 KiB  
Article
Modeling, Dynamic Characterization, and Performance Analysis of a 2.2 kW BLDC Motor Under Fixed Load Torque Levels and Variable Speed Inputs: An Experimental Study
by Ayman Ibrahim Abouseda, Resat Doruk, Ali Emin and Ozgur Akdeniz
Actuators 2025, 14(8), 400; https://doi.org/10.3390/act14080400 - 12 Aug 2025
Viewed by 257
Abstract
Accurate modeling and performance analysis of brushless DC (BLDC) motors are essential for high-efficiency control in modern drive systems. In this article, a BLDC motor was modeled using system identification techniques. In addition, experimental data were collected from the BLDC motor, including its [...] Read more.
Accurate modeling and performance analysis of brushless DC (BLDC) motors are essential for high-efficiency control in modern drive systems. In this article, a BLDC motor was modeled using system identification techniques. In addition, experimental data were collected from the BLDC motor, including its speed response to various input signals. Using system identification tools, particularly those provided by MATLAB/Simulink R2024b, an approximation model of the BLDC motor was constructed to represent the motor’s dynamic behavior. The identified model was experimentally validated using various input signals, demonstrating its accuracy and generalizability under different operating conditions. Additionally, a series of mechanical load tests was conducted using the AVL eddy-current dynamometer to evaluate performance under practical operating conditions. Fixed load torques were applied across a range of motor speeds, and multiple torque levels were tested to assess the motor’s dynamic response. Electrical power, mechanical power, and efficiency of the entire system were computed for each case to assess overall system performance. Moreover, the real-time state of charge (SOC) of Lithium-ion (Li-ion) battery was estimated using the Coulomb counting method to analyze the impact of Li-ion battery energy level on the BLDC motor efficiency. The study offers valuable insights into the motor’s dynamic and energetic behavior, forming a foundation for robust control design and real-time application development. Full article
Show Figures

Figure 1

16 pages, 9287 KiB  
Article
Nanosecond Laser Cutting of Double-Coated Lithium Metal Anodes: Toward Scalable Electrode Manufacturing
by Masoud M. Pour, Lars O. Schmidt, Blair E. Carlson, Hakon Gruhn, Günter Ambrosy, Oliver Bocksrocker, Vinayakraj Salvarrajan and Maja W. Kandula
J. Manuf. Mater. Process. 2025, 9(8), 275; https://doi.org/10.3390/jmmp9080275 - 11 Aug 2025
Viewed by 180
Abstract
The transition to high-energy-density lithium metal batteries (LMBs) is essential for advancing electric vehicle (EV) technologies beyond the limitations of conventional lithium-ion batteries. A key challenge in scaling LMB production is the precise, contamination-free separation of lithium metal (LiM) anodes, hindered by lithium’s [...] Read more.
The transition to high-energy-density lithium metal batteries (LMBs) is essential for advancing electric vehicle (EV) technologies beyond the limitations of conventional lithium-ion batteries. A key challenge in scaling LMB production is the precise, contamination-free separation of lithium metal (LiM) anodes, hindered by lithium’s strong adhesion to mechanical cutting tools. This study investigates high-speed, contactless laser cutting as a scalable alternative for shaping double-coated LiM anodes. The effects of pulse duration, pulse energy, repetition frequency, and scanning speed were systematically evaluated using a nanosecond pulsed laser system on 30 µm LiM foils laminated on both sides of an 8 µm copper current collector. A maximum single-pass cutting speed of 3.0 m/s was achieved at a line energy of 0.06667 J/mm, with successful kerf formation requiring both a minimum pulse energy (>0.4 mJ) and peak power (>2.4 kW). Cut edge analysis showed that shorter pulse durations (72 ns) significantly reduced kerf width, the heat-affected zone (HAZ), and bulge height, indicating a shift to vapor-dominated ablation, though with increased spatter due to recoil pressure. Optimal edge quality was achieved with moderate pulse durations (261–508 ns), balancing energy delivery and thermal control. These findings define critical laser parameter thresholds and process windows for the high-speed, high-fidelity cutting of double-coated LiM battery anodes, supporting the industrial adoption of nanosecond laser systems in scalable LMB electrode manufacturing. Full article
Show Figures

Figure 1

34 pages, 1084 KiB  
Review
Battery Management System for Electric Vehicles: Comprehensive Review of Circuitry Configuration and Algorithms
by Andrey Kurkin, Alexander Chivenkov, Dmitriy Aleshin, Ivan Trofimov, Andrey Shalukho and Danil Vilkov
World Electr. Veh. J. 2025, 16(8), 451; https://doi.org/10.3390/wevj16080451 - 8 Aug 2025
Viewed by 547
Abstract
Electric vehicles (EVs) are the fastest-growing type of transport. Battery packs are a key component in EVs. Modern lithium-ion battery cells are characterized by low self-discharge current, high power density, and durability. At the same time, the battery management system (BMS) plays a [...] Read more.
Electric vehicles (EVs) are the fastest-growing type of transport. Battery packs are a key component in EVs. Modern lithium-ion battery cells are characterized by low self-discharge current, high power density, and durability. At the same time, the battery management system (BMS) plays a pivotal role in ensuring high efficiency and durability of battery cells and packs. The BMS monitors and controls the battery charge and discharge to ensure EV safety and optimum operation. This paper is devoted to analyzing BMS circuitry configurations and algorithms. The analysis includes circuit solutions and algorithms for implementing the main BMS functions, such as parameter monitoring, protection, cell balancing, state estimation, charging and discharging management, communication, and data logging. The paper provides insights into the recent research literature on BMS, and the advantages and disadvantages of methods for implementing BMS functions are compared. The paper also discusses the application of artificial intelligence technologies and aspects of further work on next-generation BMS technologies. Full article
Show Figures

Figure 1

36 pages, 13501 KiB  
Review
Research Progress on Risk Prevention and Control Technology for Lithium-Ion Battery Energy Storage Power Stations: A Review
by Weihang Pan
Batteries 2025, 11(8), 301; https://doi.org/10.3390/batteries11080301 - 6 Aug 2025
Viewed by 445
Abstract
Amidst the background of accelerated global energy transition, the safety risk of lithium-ion battery energy storage systems, especially the fire hazard, has become a key bottleneck hindering their large-scale application, and there is an urgent need to build a systematic prevention and control [...] Read more.
Amidst the background of accelerated global energy transition, the safety risk of lithium-ion battery energy storage systems, especially the fire hazard, has become a key bottleneck hindering their large-scale application, and there is an urgent need to build a systematic prevention and control program. This paper focuses on the fire characteristics and thermal runaway mechanism of lithium-ion battery energy storage power stations, analyzing the current situation of their risk prevention and control technology across the dimensions of monitoring and early warning technology, thermal management technology, and fire protection technology, and comparing and analyzing the characteristics of each technology from multiple angles. Building on this analysis, this paper summarizes the limitations of the existing technologies and puts forward prospective development paths, including the development of multi-parameter coupled monitoring and warning technology, integrated and intelligent thermal management technology, clean and efficient extinguishing agents, and dynamic fire suppression strategies, aiming to provide solid theoretical support and technical guidance for the precise risk prevention and control of lithium-ion battery storage power stations. Full article
(This article belongs to the Special Issue Advanced Battery Safety Technologies: From Materials to Systems)
Show Figures

Graphical abstract

51 pages, 4099 KiB  
Review
Artificial Intelligence and Digital Twin Technologies for Intelligent Lithium-Ion Battery Management Systems: A Comprehensive Review of State Estimation, Lifecycle Optimization, and Cloud-Edge Integration
by Seyed Saeed Madani, Yasmin Shabeer, Michael Fowler, Satyam Panchal, Hicham Chaoui, Saad Mekhilef, Shi Xue Dou and Khay See
Batteries 2025, 11(8), 298; https://doi.org/10.3390/batteries11080298 - 5 Aug 2025
Viewed by 1062
Abstract
The rapid growth of electric vehicles (EVs) and new energy systems has put lithium-ion batteries at the center of the clean energy change. Nevertheless, to achieve the best battery performance, safety, and sustainability in many changing circumstances, major innovations are needed in Battery [...] Read more.
The rapid growth of electric vehicles (EVs) and new energy systems has put lithium-ion batteries at the center of the clean energy change. Nevertheless, to achieve the best battery performance, safety, and sustainability in many changing circumstances, major innovations are needed in Battery Management Systems (BMS). This review paper explores how artificial intelligence (AI) and digital twin (DT) technologies can be integrated to enable the intelligent BMS of the future. It investigates how powerful data approaches such as deep learning, ensembles, and models that rely on physics improve the accuracy of predicting state of charge (SOC), state of health (SOH), and remaining useful life (RUL). Additionally, the paper reviews progress in AI features for cooling, fast charging, fault detection, and intelligible AI models. Working together, cloud and edge computing technology with DTs means better diagnostics, predictive support, and improved management for any use of EVs, stored energy, and recycling. The review underlines recent successes in AI-driven material research, renewable battery production, and plans for used systems, along with new problems in cybersecurity, combining data and mass rollout. We spotlight important research themes, existing problems, and future drawbacks following careful analysis of different up-to-date approaches and systems. Uniting physical modeling with AI-based analytics on cloud-edge-DT platforms supports the development of tough, intelligent, and ecologically responsible batteries that line up with future mobility and wider use of renewable energy. Full article
Show Figures

Figure 1

14 pages, 2454 KiB  
Article
A Comparative Study of Storage Batteries for Electrical Energy Produced by Photovoltaic Panels
by Petru Livinti
Appl. Sci. 2025, 15(15), 8549; https://doi.org/10.3390/app15158549 - 1 Aug 2025
Viewed by 304
Abstract
This article presents a comparative study of the storage of energy produced by photovoltaic panels by means of two types of batteries: Lead–Acid and Lithium-Ion batteries. The work involved the construction of a model in MATLAB-Simulink for controlling the loading/unloading of storage batteries [...] Read more.
This article presents a comparative study of the storage of energy produced by photovoltaic panels by means of two types of batteries: Lead–Acid and Lithium-Ion batteries. The work involved the construction of a model in MATLAB-Simulink for controlling the loading/unloading of storage batteries with energy produced by photovoltaic panels through a buck-type DC-DC convertor, controlled by means of the MPPT algorithm implemented through the method of incremental conductance based on a MATLAB function. The program for the MATLAB function was developed by the author in the C++ programming environment. The MPPT algorithm provides maximum energy transfer from the photovoltaic panels to the battery. The electric power taken over at a certain moment by Lithium-Ion batteries in photovoltaic panels is higher than the electric power taken over by Lead–Acid batteries. Two types of batteries were successively used in this model: Lead–Acid and Lithium-Ion batteries. Based on the results being obtained and presented in this work it may be affirmed that the storage battery Lithium-Ion is more performant than the Lead-Acid storage battery. At the Laboratory of Electrical Machinery and Drives of the Engineering Faculty of Bacau, an experimental stand was built for a storing system for electric energy produced by photovoltaic panels. For controlling DC-DC buck-type convertors, a program was developed in the programming environment Arduino IDE for implementing the MPPT algorithm for incremental conductance. The simulation part of this program is similar to that of the program developed in C++. Through conducting experiments, it was observed that, during battery charging, along with an increase in the charging voltage, an increase in the filling factor of the PWM signal controlling the buck DC-DC convertor also occurred. The findings of this study may be applicable to the storage of battery-generated electrical energy used for supplying electrical motors in electric cars. Full article
Show Figures

Figure 1

18 pages, 3493 KiB  
Article
Red-Billed Blue Magpie Optimizer for Modeling and Estimating the State of Charge of Lithium-Ion Battery
by Ahmed Fathy and Ahmed M. Agwa
Electrochem 2025, 6(3), 27; https://doi.org/10.3390/electrochem6030027 - 31 Jul 2025
Viewed by 289
Abstract
The energy generated from renewable sources has an intermittent nature since solar irradiation and wind speed vary continuously. Hence, their energy should be stored to be utilized throughout their shortage. There are various forms of energy storage systems while the most widespread technique [...] Read more.
The energy generated from renewable sources has an intermittent nature since solar irradiation and wind speed vary continuously. Hence, their energy should be stored to be utilized throughout their shortage. There are various forms of energy storage systems while the most widespread technique is the battery storage system since its cost is low compared to other techniques. Therefore, batteries are employed in several applications like power systems, electric vehicles, and smart grids. Due to the merits of the lithium-ion (Li-ion) battery, it is preferred over other kinds of batteries. However, the accuracy of the Li-ion battery model is essential for estimating the state of charge (SOC). Additionally, it is essential for consistent simulation and operation throughout various loading and charging conditions. Consequently, the determination of real battery model parameters is vital. An innovative application of the red-billed blue magpie optimizer (RBMO) for determining the model parameters and the SOC of the Li-ion battery is presented in this article. The Shepherd model parameters are determined using the suggested optimization algorithm. The RBMO-based modeling approach offers excellent execution in determining the parameters of the battery model. The suggested approach is compared to other programmed algorithms, namely dandelion optimizer, spider wasp optimizer, barnacles mating optimizer, and interior search algorithm. Moreover, the suggested RBMO is statistically evaluated using Kruskal–Wallis, ANOVA tables, Friedman rank, and Wilcoxon rank tests. Additionally, the Li-ion battery model estimated via the RBMO is validated under variable loading conditions. The fetched results revealed that the suggested approach achieved the least errors between the measured and estimated voltages compared to other approaches in two studied cases with values of 1.4951 × 10−4 and 2.66176 × 10−4. Full article
Show Figures

Figure 1

20 pages, 3837 KiB  
Review
Recent Advances in the Application of VO2 for Electrochemical Energy Storage
by Yuxin He, Xinyu Gao, Jiaming Liu, Junxin Zhou, Jiayu Wang, Dan Li, Sha Zhao and Wei Feng
Nanomaterials 2025, 15(15), 1167; https://doi.org/10.3390/nano15151167 - 28 Jul 2025
Viewed by 279
Abstract
Energy storage technology is crucial for addressing the intermittency of renewable energy sources and plays a key role in power systems and electronic devices. In the field of energy storage systems, multivalent vanadium-based oxides have attracted widespread attention. Among these, vanadium dioxide (VO [...] Read more.
Energy storage technology is crucial for addressing the intermittency of renewable energy sources and plays a key role in power systems and electronic devices. In the field of energy storage systems, multivalent vanadium-based oxides have attracted widespread attention. Among these, vanadium dioxide (VO2) is distinguished by its key advantages, including high theoretical capacity, low cost, and strong structural designability. The diverse crystalline structures and plentiful natural reserves of VO2 offer a favorable foundation for facilitating charge transfer and regulating storage behavior during energy storage processes. This mini review provides an overview of the latest progress in VO2-based materials for energy storage applications, specifically highlighting their roles in lithium-ion batteries, zinc-ion batteries, photoassisted batteries, and supercapacitors. Particular attention is given to their electrochemical properties, structural integrity, and prospects for development. Additionally, it explores future development directions to offer theoretical insights and strategic guidance for ongoing research and industrial application of VO2. Full article
(This article belongs to the Special Issue Nanostructured Materials for Energy Storage)
Show Figures

Graphical abstract

16 pages, 3383 KiB  
Article
Thermal and Electrical Design Considerations for a Flexible Energy Storage System Utilizing Second-Life Electric Vehicle Batteries
by Rouven Christen, Simon Nigsch, Clemens Mathis and Martin Stöck
Batteries 2025, 11(8), 287; https://doi.org/10.3390/batteries11080287 - 26 Jul 2025
Viewed by 369
Abstract
The transition to electric mobility has significantly increased the demand for lithium-ion batteries, raising concerns about their end-of-life management. Therefore, this study presents the design, development and first implementation steps of a stationary energy storage system utilizing second-life electric vehicle (EV) batteries. These [...] Read more.
The transition to electric mobility has significantly increased the demand for lithium-ion batteries, raising concerns about their end-of-life management. Therefore, this study presents the design, development and first implementation steps of a stationary energy storage system utilizing second-life electric vehicle (EV) batteries. These batteries, no longer suitable for traction applications due to a reduced state of health (SoH) below 80%, retain sufficient capacity for less demanding stationary applications. The proposed system is designed to be flexible and scalable, serving both research and commercial purposes. Key challenges include heterogeneous battery characteristics, safety considerations due to increased internal resistance and battery aging, and the need for flexible power electronics. An optimized dual active bridge (DAB) converter topology is introduced to connect several batteries in parallel and to ensure efficient bidirectional power flow over a wide voltage range. A first prototype, rated at 50 kW, has been built and tested in the laboratory. This study contributes to sustainable energy storage solutions by extending battery life cycles, reducing waste, and promoting economic viability for industrial partners. Full article
Show Figures

Figure 1

18 pages, 6751 KiB  
Article
State-Aware Energy Management Strategy for Marine Multi-Stack Hybrid Energy Storage Systems Considering Fuel Cell Health
by Pan Geng and Jingxuan Xu
Energies 2025, 18(15), 3892; https://doi.org/10.3390/en18153892 - 22 Jul 2025
Viewed by 255
Abstract
To address the limitations of conventional single-stack fuel cell hybrid systems using equivalent hydrogen consumption strategies, this study proposes a multi-stack energy management strategy incorporating fuel cell health degradation. Leveraging a fuel cell efficiency decay model and lithium-ion battery cycle life assessment, power [...] Read more.
To address the limitations of conventional single-stack fuel cell hybrid systems using equivalent hydrogen consumption strategies, this study proposes a multi-stack energy management strategy incorporating fuel cell health degradation. Leveraging a fuel cell efficiency decay model and lithium-ion battery cycle life assessment, power distribution is reformulated as an equivalent hydrogen consumption optimization problem with stack degradation constraints. A hybrid Genetic Algorithm–Particle Swarm Optimization (GA-PSO) approach achieves global optimization. The experimental results demonstrate that compared with the Frequency Decoupling (FD) method, the GA-PSO strategy reduces hydrogen consumption by 7.03 g and operational costs by 4.78%; compared with the traditional Particle Swarm Optimization (PSO) algorithm, it reduces hydrogen consumption by 3.61 g per operational cycle and decreases operational costs by 2.66%. This strategy ensures stable operation of the marine power system while providing an economically viable solution for hybrid-powered vessels. Full article
Show Figures

Figure 1

35 pages, 28111 KiB  
Review
Review of Aging Mechanism and Diagnostic Methods for Lithium-Ion Batteries
by Tiansi Wang, Hao Wang, Xiaoling Shen, Chenhao Lu, Lei Pei, Yixiang Xu, Wanlin Wang and Huanhuan Li
Energies 2025, 18(14), 3884; https://doi.org/10.3390/en18143884 - 21 Jul 2025
Viewed by 680
Abstract
As an important component of current power and energy storage systems, lithium-ion batteries have essential scientific significance and application value in terms of accurately and reliably diagnosing their aging to determine system performance, identify potential faults in modules, and prolong their service life. [...] Read more.
As an important component of current power and energy storage systems, lithium-ion batteries have essential scientific significance and application value in terms of accurately and reliably diagnosing their aging to determine system performance, identify potential faults in modules, and prolong their service life. For this purpose, this paper first briefly describes the working principle of lithium-ion batteries and illustrates the possible impacts of various aging mechanisms on the state of battery capacity. Secondly, starting from both implementable and laboratory perspectives, it sorts out and summarizes the diagnostic mechanisms and applicable scenarios of current typical battery aging state assessment and diagnosis methods. Then, targeting the specific aging mechanisms involved in batteries, it elaborates on the targeted diagnosis processes for each aging mechanism. Finally, combined with implementable and laboratory diagnosis methods, it systematically summarizes a highly standardized and universal routine diagnosis process for battery aging. In addition, in combination with the latest development of aging diagnosis and related technologies, this paper reflects on and discusses the possible future development directions of battery diagnosis technologies. Full article
(This article belongs to the Section L: Energy Sources)
Show Figures

Figure 1

19 pages, 15854 KiB  
Article
Failure Analysis of Fire in Lithium-Ion Battery-Powered Heating Insoles: Case Study
by Rong Yuan, Sylvia Jin and Glen Stevick
Batteries 2025, 11(7), 271; https://doi.org/10.3390/batteries11070271 - 17 Jul 2025
Viewed by 483
Abstract
This study investigates a lithium-ion battery failure in heating insoles that ignited during normal walking while powered off. Through comprehensive material characterization, electrical testing, thermal analysis, and mechanical gait simulation, we systematically excluded electrical or thermal abuse as failure causes. X-ray/CT imaging localized [...] Read more.
This study investigates a lithium-ion battery failure in heating insoles that ignited during normal walking while powered off. Through comprehensive material characterization, electrical testing, thermal analysis, and mechanical gait simulation, we systematically excluded electrical or thermal abuse as failure causes. X-ray/CT imaging localized the ignition source to the lateral heel edge of the pouch cell, correlating precisely with peak mechanical stress identified through gait analysis. Remarkably, the cyclic load was less than 10% of the single crush load threshold specified in safety standards. Key findings reveal multiple contributing factors as follows: the uncoated polyethylene separator’s inability to prevent stress-induced internal short circuits, the circuit design’s lack of battery health monitoring functionality that permitted undetected degradation, and the hazardous placement inside clothing that exacerbated burn injuries. These findings necessitate a multi-level safety framework for lithium-ion battery products, encompassing enhanced cell design to prevent internal short circuit, improved circuit protection with health monitoring capabilities, optimized product integration to mitigate mechanical and environmental impact, and effective post-failure containment measures. This case study exposes a critical need for product-specific safety standards that address the unique demands of wearable lithium-ion batteries, where existing certification requirements fail to prevent real-use failure scenarios. Full article
(This article belongs to the Section Battery Performance, Ageing, Reliability and Safety)
Show Figures

Graphical abstract

17 pages, 4099 KiB  
Article
Tetramethylene Sulfone (TMS) as an Electrolyte Additive for High-Power Lithium-Ion Batteries
by Wenting Liu, Gangxin Chen, Ningfeng Wang, Xianzhong Sun, Chen Li, Yanan Xu, Xiaohu Zhang, Xiong Zhang and Kai Wang
Batteries 2025, 11(7), 270; https://doi.org/10.3390/batteries11070270 - 17 Jul 2025
Viewed by 452
Abstract
High-power lithium-ion batteries impose stringent requirements on output power. Tetramethylene sulfone (TMS), serving as a novel electrolyte additive, effectively enhances the stability of electrolytes under high-voltage conditions due to its high flash point and high dielectric constant, thereby boosting the output performance of [...] Read more.
High-power lithium-ion batteries impose stringent requirements on output power. Tetramethylene sulfone (TMS), serving as a novel electrolyte additive, effectively enhances the stability of electrolytes under high-voltage conditions due to its high flash point and high dielectric constant, thereby boosting the output performance of lithium-ion batteries. In this work, we selected lithium hexafluorophosphate (LiPF6) as the lithium salt, using a solvent carrier consisting of a mixture of ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC). TMS was added as an additive to create a novel high-power electrolyte system. We prepared five electrolytes with different TMS concentrations and conducted in-depth investigations into their impacts on the performance of lithium-ion batteries. The findings indicate that the electrolytes with TMS ratios of 2 wt% and 5 wt% demonstrated good synergistic cathode–anode stability in the NCM//soft carbon system, and the electrolyte with a 5 wt% TMS ratio demonstrated the most significant improvement in the overall performance of the full battery. Full article
Show Figures

Figure 1

22 pages, 1906 KiB  
Article
Explainable and Optuna-Optimized Machine Learning for Battery Thermal Runaway Prediction Under Class Imbalance Conditions
by Abir El Abed, Ghalia Nassreddine, Obada Al-Khatib, Mohamad Nassereddine and Ali Hellany
Thermo 2025, 5(3), 23; https://doi.org/10.3390/thermo5030023 - 15 Jul 2025
Viewed by 523
Abstract
Modern energy storage systems for both power and transportation are highly related to lithium-ion batteries (LIBs). However, their safety depends on a potentially hazardous failure mode known as thermal runaway (TR). Predicting and classifying TR causes can widely enhance the safety of power [...] Read more.
Modern energy storage systems for both power and transportation are highly related to lithium-ion batteries (LIBs). However, their safety depends on a potentially hazardous failure mode known as thermal runaway (TR). Predicting and classifying TR causes can widely enhance the safety of power and transportation systems. This paper presents an advanced machine learning method for forecasting and classifying the causes of TR. A generative model for synthetic data generation was used to handle class imbalance in the dataset. Hyperparameter optimization was conducted using Optuna for four classifiers: Support Vector Machine (SVM), Multi-Layer Perceptron (MLP), tabular network (TabNet), and Extreme Gradient Boosting (XGBoost). A three-fold cross-validation approach was used to guarantee a robust evaluation. An open-source database of LIB failure events is used for model training and testing. The XGBoost model outperforms the other models across all TR categories by achieving 100% accuracy and a high recall (1.00). Model results were interpreted using SHapley Additive exPlanations analysis to investigate the most significant factors in TR predictors. The findings show that important TR indicators include energy adjusted for heat and weight loss, heater power, average cell temperature upon activation, and heater duration. These findings guide the design of safer battery systems and preventive monitoring systems for real applications. They can help experts develop more efficient battery management systems, thereby improving the performance and longevity of battery-operated devices. By enhancing the predictive knowledge of temperature-driven failure mechanisms in LIBs, the study directly advances thermal analysis and energy storage safety domains. Full article
Show Figures

Figure 1

Back to TopTop