Review of Aging Mechanism and Diagnostic Methods for Lithium-Ion Batteries
Abstract
1. Preface
2. Analysis of the Aging Mechanism of Lithium-Ion Battery
2.1. The Basic Working Principle of Batteries
2.2. Analysis of Battery Aging Mechanism
3. Battery Aging Diagnosis Means
3.1. Implementable Methods
3.1.1. Based on Battery Charge and Discharge Curve
3.1.2. Based on OCV Curve
3.1.3. Based on Differential Curves
- IC Curve
- 2.
- DV Curve
- 3.
- CV Curve
- 4.
- PDF Curve
3.1.4. Electrochemical Impedance Spectrum
3.2. Laboratory Techniques
3.2.1. Analysis of Elemental Composition and Valence State
- Inductively Coupled Plasma
- 2.
- Secondary Ion Mass Spectrometry and Hyperspectral Imaging
- 3.
- X-ray Photoelectron Spectroscopy
- 4.
- Electron Energy Loss Spectroscopy
3.2.2. Morphological Representation
- Scanning Electron Microscopy
- 2.
- Transmission Electron Microscopy
- 3.
- Scanning Transmission X-ray Microscopy
- 4.
- Scanning Probe Microscopy
3.2.3. Material Crystal Structure Change
- X-ray Diffraction
- 2.
- X-ray Absorption Spectroscopy
- 3.
- Neutron Diffraction
- 4.
- Nuclear Magnetic Resonance
- 5.
- Raman Spectroscopy
- 6.
- Scanning Transmission Electron Microscopy with Aberration Correction
3.2.4. Characterization of Material Functional Groups
- Raman Spectroscopy
- 2.
- Infrared Spectroscopy
3.2.5. Observation of Ion Transport Process in Materials
- Scanning Tunneling Microscopy
3.2.6. Microscopic Mechanical Properties of Materials
- Atomic Force Microscopy
- 2.
- Nanometer, Scanning Tunneling Microscopy Probe Combined with Transmission Electron Microscopy Test
- Nanoprobe combined with TEM test method: Nanoprobe can be introduced into TEM to achieve mechanical operation of samples at the nanoscale, and to achieve accurate analysis of samples. Common nanoprobe includes ion beam etching probe, atomic force microscope probe, etc. Nanoprobe-TEM enables the in situ mechanical testing of electrode materials at nanoscale resolution, revealing crack propagation mechanisms and phase-dependent mechanical property changes during cycling.
- STM probe combined with TEM test method: The STM probe can realize the in situ electrical property analysis of samples in TEM. The electrical property information of samples can be obtained by scanning the surface of the samples and detecting the electronic structure of the samples. STM-TEM combines atomic-scale imaging with simultaneous electrical characterization, allowing the direct correlation of structural defects with local conductivity changes in aged electrodes.
3.2.7. Other Microscopic Diagnostic Techniques
- Ultrasonic Guided Wave Scanning
- 2.
- Magnetic Sensing
- 3.
- Computerized Tomography
- 4.
- Differential Thermal Analysis
4. Specific Diagnostic Protocols for Each Aging Mechanism
4.1. Diagnostic Methods Dominated by LLI
4.1.1. Electrolyte Decomposition
4.1.2. SEI/CEI Film Thickens
4.1.3. Lithium Dendrite Phenomenon
4.2. A Diagnostic Method Dominated by LAM
4.2.1. Graphite Flaking
4.2.2. Electrode Particle Microcrack
4.2.3. Metal Dissolves
4.2.4. The Structure Is Disordered
4.2.5. Electrode Composition Changed
4.2.6. The Adhesive Decomposed
4.2.7. Collective Fluid Corrosion
5. Diagnostic Process and Development Trend
5.1. Routine Diagnostic Process
5.2. Trend in Development
5.2.1. Machine Learning
5.2.2. New Sensor Technology
5.2.3. Cross-Disciplinary Methods for Studying Battery Aging Mechanisms
5.2.4. Vehicle–Cloud Data Fusion
6. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Ouyang, Y.; Guo, J. Carbon capture and storage investment strategy towards the dual carbon goals. J. Asian Econ. 2022, 82, 101527. [Google Scholar] [CrossRef]
- Jiang, B.; Raza, M.Y. Research on China’s renewable energy policies under the dual carbon goals: A political discourse analysis. Energy Strategy Rev. 2023, 48, 101118. [Google Scholar] [CrossRef]
- Menyhart, J. Electric Vehicles and Energy Communities: Vehicle-to-Grid Opportunities and a Sustainable Future. Energies 2025, 18, 854. [Google Scholar] [CrossRef]
- Rufino Júnior, C.A.; Sanseverino, E.R.; Gallo, P.; Amaral, M.M.; Koch, D.; Kotak, Y.; Diel, S.; Walter, G.; Schweiger, H.-G.; Zanin, H. Unraveling the degradation mechanisms of lithium-ion batteries. Energies 2024, 17, 3372. [Google Scholar] [CrossRef]
- Delmas, C.; Maccario, M.; Croguennec, L.; Le Cras, F.; Weill, F. Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model. Nat. Mater. 2008, 7, 665–671. [Google Scholar] [CrossRef] [PubMed]
- Clarke, R.; Uher, C. High pressure properties of graphite and its intercalation compounds. Adv. Phys. 1984, 33, 469–566. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Y.; Zhu, Z.; Zheng, F.; Gao, R. Food-derived collagen peptides: Safety, metabolism, and anti-skin-aging effects. Curr. Opin. Food Sci. 2023, 51, 101012. [Google Scholar] [CrossRef]
- Shouket, S.; Khan, J.; Batool, R.; Sarwar, A.; Aziz, T.; Alhomrani, M.; Alamri, A.S.; Sameeh, M.Y.; Filimban, F.Z. Enhancement of shelf-life of food items via immobilized enzyme nanoparticles on varied supports: A sustainable approach towards food safety and sustainability. Food Res. Int. 2023, 169, 112940. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Yang, H.; Fang, W.; Huang, X.; Shi, J.; Zou, X. Effects of variety and pulsed electric field on the quality of fresh-cut apples. Agriculture 2023, 13, 929. [Google Scholar] [CrossRef]
- Shi, Y.; Zhao, Q.; Xin, Y.; Yang, Q.; Dhanasekaran, S.; Zhang, X.; Zhang, H. Aureobasidium pullulans S2 controls tomato gray mold and produces volatile organic compounds and biofilms. Postharvest Biol. Technol. 2023, 204, 112450. [Google Scholar] [CrossRef]
- Xiong, R.; Zhang, Y.; Wang, J.; He, H.; Peng, S.; Pecht, M. Lithium-ion battery aging mechanisms and diagnosis method for automotive applications: Recent advances and perspectives. Renew. Sustain. Energy Rev. 2020, 131, 110048. [Google Scholar] [CrossRef]
- Birkl, C.R.; Roberts, M.R.; McTurk, E.; Bruce, P.G.; Howey, D.A. Degradation diagnostics for lithium-ion cells. J. Power Sources 2017, 341, 373–386. [Google Scholar] [CrossRef]
- Shi, Y.; Li, W.; Hu, X.; Zhang, X.; Huang, X.; Li, Z.; Zhai, X.; Shen, T.; Shi, J.; He, Y. A novel sustainable biomass-based fluorescent probe for sensitive detection of salicylic acid in rice. Food Chem. 2024, 434, 137260. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhao, F.; Shi, T.; Xiong, Z.; Gao, R.; Yuan, L. Suanyu fermentation strains screening, process optimization and the effect of thermal processing methods on its flavor. Food Res. Int. 2023, 173, 113296. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Boateng, I.D.; Chen, S.; Yang, X.-M.; Soetanto, D.A.; Liu, W. Pulsed light irradiation improves degradation of ginkgolic acids and retainment of ginkgo flavonoids and terpene trilactones in Ginkgo biloba leaves. Ind. Crops Prod. 2023, 204, 117297. [Google Scholar] [CrossRef]
- Shi, J.; Liang, J.; Pu, J.; Li, Z.; Zou, X. Nondestructive detection of the bioactive components and nutritional value in restructured functional foods. Curr. Opin. Food Sci. 2023, 50, 100986. [Google Scholar] [CrossRef]
- Saha, B.; Goebel, K. Battery Data Set. In NASA Ames Prognostics Data Repository; NASA Ames Research Center: Mountain View, CA, USA, 2007. [Google Scholar]
- Adam, A.; Knobbe, E.; Wandt, J.; Kwade, A. Application of the differential charging voltage analysis to determine the onset of lithium-plating during fast charging of lithium-ion cells. J. Power Sources 2021, 495, 229794. [Google Scholar] [CrossRef]
- Feng, X.; Li, J.; Ouyang, M.; Lu, L.; Li, J.; He, X. Using probability density function to evaluate the state of health of lithium-ion batteries. J. Power Sources 2013, 232, 209–218. [Google Scholar] [CrossRef]
- Meddings, N.; Heinrich, M.; Overney, F.; Lee, J.-S.; Ruiz, V.; Napolitano, E.; Seitz, S.; Hinds, G.; Raccichini, R.; Gaberšček, M. Application of electrochemical impedance spectroscopy to commercial Li-ion cells: A review. J. Power Sources 2020, 480, 228742. [Google Scholar] [CrossRef]
- Bruj, O.; Calborean, A. Electrochemical impedance spectroscopy investigation on the charge-discharge cycle life performance of lithium-ion batteries. Energies 2025, 18, 1324. [Google Scholar] [CrossRef]
- Khan, S.R.; Sharma, B.; Chawla, P.A.; Bhatia, R. Inductively coupled plasma optical emission spectrometry (ICP-OES): A powerful analytical technique for elemental analysis. Food Anal. Methods 2022, 15, 666–688. [Google Scholar] [CrossRef]
- Qin, W.-C.; Qiu, B.-J.; Xue, X.-Y.; Chen, C.; Xu, Z.-F.; Zhou, Q.-Q. Droplet deposition and control effect of insecticides sprayed with an unmanned aerial vehicle against plant hoppers. Crop Prot. 2016, 85, 79–88. [Google Scholar] [CrossRef]
- Limbeck, A.; Galler, P.; Bonta, M.; Bauer, G.; Nischkauer, W.; Vanhaecke, F. Recent advances in quantitative LA-ICP-MS analysis: Challenges and solutions in the life sciences and environmental chemistry. Anal. Bioanal. Chem. 2015, 407, 6593–6617. [Google Scholar] [CrossRef] [PubMed]
- Bonnin, E.A.; Rizzoli, S.O. Novel secondary ion mass spectrometry methods for the examination of metabolic effects at the cellular and subcellular levels. Front. Behav. Neurosci. 2020, 14, 124. [Google Scholar] [CrossRef] [PubMed]
- Khulal, U.; Zhao, J.; Hu, W.; Chen, Q. Nondestructive quantifying total volatile basic nitrogen (TVB-N) content in chicken using hyperspectral imaging (HSI) technique combined with different data dimension reduction algorithms. Food Chem. 2016, 197, 1191–1199. [Google Scholar] [CrossRef] [PubMed]
- Ferry, M.; Miserque, F. Radio-oxidation of electric cable models: Ageing evaluation at the atomic scale. Energies 2022, 15, 1631. [Google Scholar] [CrossRef]
- Yu, L.; Li, M.; Wen, J.; Amine, K.; Lu, J. (S)TEM-EELS as an advanced characterization technique for lithium-ion batteries. Mater. Chem. Front. 2021, 5, 5186–5193. [Google Scholar] [CrossRef]
- Guo, Z.; Huang, W.; Peng, Y.; Chen, Q.; Ouyang, Q.; Zhao, J. Color compensation and comparison of shortwave near infrared and long wave near infrared spectroscopy for determination of soluble solids content of ‘Fuji’ apple. Postharvest Biol. Technol. 2016, 115, 81–90. [Google Scholar] [CrossRef]
- Samigullin, R.R.; Bobyleva, Z.V.; Zakharkin, M.V.; Zharikova, E.V.; Rozova, M.G.; Drozhzhin, O.A.; Antipov, E.V. On the thermal stability of selected electrode materials and electrolytes for Na-ion batteries. Energies 2024, 17, 3970. [Google Scholar] [CrossRef]
- Li, B.; Zhao, L.; Chen, H.; Sun, D.; Deng, B.; Li, J.; Liu, Y.; Wang, F. Inactivation of lipase and lipoxygenase of wheat germ with temperature-controlled short wave infrared radiation and its effect on storage stability and quality of wheat germ oil. PLoS ONE 2016, 11, e0167330. [Google Scholar] [CrossRef] [PubMed]
- Aurbach, D.; Markovsky, B.; Rodkin, A.; Cojocaru, M.; Levi, E.; Kim, H.-J. An analysis of rechargeable lithium-ion batteries after prolonged cycling. Electrochim. Acta 2002, 47, 1899–1911. [Google Scholar] [CrossRef]
- Li, W.; Shi, Y.; Huang, X.; Li, Z.; Zhang, X.; Zou, X.; Hu, X.; Shi, J. Study on the diffusion and optimization of sucrose in gaido seak based on finite element analysis and hyperspectral imaging technology. Foods 2024, 13, 249. [Google Scholar] [CrossRef] [PubMed]
- Shen, K.; Xu, X.; Tang, Y. Recent progress of magnetic field application in lithium-based batteries. Nano Energy 2022, 92, 106703. [Google Scholar] [CrossRef]
- Kita, N.T.; Ushikubo, T.; Fu, B.; Valley, J.W. High precision SIMS oxygen isotope analysis and the effect of sample topography. Chem. Geol. 2009, 264, 43–57. [Google Scholar] [CrossRef]
- Zhou, Y.-F.; Yang, M.-Z.; She, F.-Q.; Gong, L.; Zhang, X.-Q.; Chen, J.; Song, S.-Q.; Xie, F.-Y. Application of X-ray photoelectron spectroscopy to study interfaces for solid-state lithium ion battery. Acta Phys. Sin. 2021, 70, 178801. [Google Scholar] [CrossRef]
- Patel, M.U.; Arčon, I.; Aquilanti, G.; Stievano, L.; Mali, G.; Dominko, R. X-ray absorption near-edge structure and nuclear magnetic resonance study of the lithium-sulfur battery and its components. ChemPhysChem 2014, 15, 894–904. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Kim, S.-J.; Kim, K.; Jeoun, Y.; Yu, S.-H.; Kim, C.; Sung, Y.-E.; Cairns, E.J. Understandings about functionalized porous carbon via scanning transmission x-ray microscopy (STXM) for high sulfur utilization in lithium-sulfur batteries. Nano Energy 2022, 100, 107446. [Google Scholar] [CrossRef]
- Liu, P.; Zhao, Y.; Qin, R.; Mo, S.; Chen, G.; Gu, L.; Chevrier, D.M.; Zhang, P.; Guo, Q.; Zang, D. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 2016, 352, 797–800. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Balan, A.; Das, P.M.; Thiruraman, J.P.; Drndić, M. Computer vision AC-STEM automated image analysis for 2D nanopore applications. Ultramicroscopy 2021, 231, 113249. [Google Scholar] [CrossRef] [PubMed]
- Inaba, M.; Kawatate, Y.; Funabiki, A.; Jeong, S.-K.; Abe, T.; Ogumi, Z. STM study on graphite/electrolyte interface in lithium-ion batteries: Solid electrolyte interface formation in trifluoropropylene carbonate solution. Electrochim. Acta 1999, 45, 99–105. [Google Scholar] [CrossRef]
- Leroy, S.; Blanchard, F.; Dedryvère, R.; Martinez, H.; Carré, B.; Lemordant, D.; Gonbeau, D. Surface film formation on a graphite electrode in Li-ion batteries: AFM and XPS study. Surf. Interface Anal. 2005, 37, 773–781. [Google Scholar] [CrossRef]
- Li, X.; Wu, C.; Fu, C.; Zheng, S.; Tian, J. State characterization of lithium-ion battery based on ultrasonic guided wave scanning. Energies 2022, 15, 6027. [Google Scholar] [CrossRef]
- Wang, J.; Tang, Y.; Yang, J.; Li, R.; Liang, G.; Sun, X. Nature of LiFePO4 aging process: Roles of impurity phases. J. Power Sources 2013, 238, 454–463. [Google Scholar] [CrossRef]
- Kraft, V.; Grützke, M.; Weber, W.; Winter, M.; Nowak, S. Ion chromatography electrospray ionization mass spectrometry method development and investigation of lithium hexafluorophosphate-based organic electrolytes and their thermal decomposition products. J. Chromatogr. A 2014, 1354, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Zinigrad, E.; Larush-Asraf, L.; Gnanaraj, J.S.; Gottlieb, H.E.; Sprecher, M.; Aurbach, D. Calorimetric studies of the thermal stability of electrolyte solutions based on alkyl carbonates and the effect of the contact with lithium. J. Power Sources 2005, 146, 176–179. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, B.; Yu, M.; Han, J.; Wang, Y.; Tan, Z.; Yan, Y. Simultaneous separation/enrichment and detection of trace ciprofloxacin and lomefloxacin in food samples using thermosensitive smart polymers aqueous two-phase flotation system combined with HPLC. Food Chem. 2016, 210, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Gnanaraj, J.S.; Zinigrad, E.; Asraf, L.; Gottlieb, H.E.; Sprecher, M.; Schmidt, M.; Geissler, W.; Aurbach, D. A detailed investigation of the thermal reactions of LiPF6 solution in organic carbonates using ARC and DSC. J. Electrochem. Soc. 2003, 150, A1533. [Google Scholar] [CrossRef]
- Wang, Q.; Sun, J.; Lu, S.; Yao, X.; Chen, C. Study on the kinetics properties of lithium hexafluorophosphate thermal decomposition reaction. Solid State Ion. 2006, 177, 137–140. [Google Scholar] [CrossRef]
- Borodin, O.; Ren, X.; Vatamanu, J.; von Wald Cresce, A.; Knap, J.; Xu, K. Modeling insight into battery electrolyte electrochemical stability and interfacial structure. Acc. Chem. Res. 2017, 50, 2886–2894. [Google Scholar] [CrossRef] [PubMed]
- Grützke, M.; Kraft, V.; Weber, W.; Wendt, C.; Friesen, A.; Klamor, S.; Winter, M.; Nowak, S. Supercritical carbon dioxide extraction of lithium-ion battery electrolytes. J. Supercrit. Fluids 2014, 94, 216–222. [Google Scholar] [CrossRef]
- Wang, Q.; Jiang, L.; Yu, Y.; Sun, J. Progress of enhancing the safety of lithium ion battery from the electrolyte aspect. Nano Energy 2019, 55, 93–114. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, C.; Hu, J.; Zhang, P.; Zhang, L.; Lao, L. Investigation on calendar experiment and failure mechanism of lithium-ion battery electrolyte leakage. J. Energy Storage 2022, 54, 105286. [Google Scholar] [CrossRef]
- Wang, A.; Kadam, S.; Li, H.; Shi, S.; Qi, Y. Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. npj Comput. Mater. 2018, 4, 15. [Google Scholar] [CrossRef]
- Aguesse, F.; Manalastas, W.; Buannic, L.; Lopez del Amo, J.M.; Singh, G.; Llordés, A.; Kilner, J. Investigating the dendritic growth during full cell cycling of garnet electrolyte in direct contact with Li metal. ACS Appl. Mater. Interfaces 2017, 9, 3808–3816. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; Albertus, P.; Newman, J. Two-dimensional modeling of lithium deposition during cell charging. J. Electrochem. Soc. 2009, 156, A390. [Google Scholar] [CrossRef]
- Shen, X.; Zhang, R.; Wang, S.; Chen, X.; Zhao, C.; Kuzmina, E.; Karaseva, E.; Kolosnitsyn, V.; Zhang, Q. The dynamic evolution of aggregated lithium dendrites in lithium metal batteries. Chin. J. Chem. Eng. 2021, 37, 137–143. [Google Scholar] [CrossRef]
- Wang, Y.; Han, J.; Liu, Y.; Wang, L.; Ni, L.; Tang, X. Recyclable non-ligand dual cloud point extraction method for determination of lead in food samples. Food Chem. 2016, 190, 1130–1136. [Google Scholar] [CrossRef] [PubMed]
- Bai, P.; Li, J.; Brushett, F.R.; Bazant, M.Z. Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ. Sci. 2016, 9, 3221–3229. [Google Scholar] [CrossRef]
- Jana, A.; García, R.E. Lithium dendrite growth mechanisms in liquid electrolytes. Nano Energy 2017, 41, 552–565. [Google Scholar] [CrossRef]
- Pei, A.; Zheng, G.; Shi, F.; Li, Y.; Cui, Y. Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Lett. 2017, 17, 1132–1139. [Google Scholar] [CrossRef] [PubMed]
- Tatsuma, T.; Taguchi, M.; Oyama, N. Inhibition effect of covalently cross-linked gel electrolytes on lithium dendrite formation. Electrochim. Acta 2001, 46, 1201–1205. [Google Scholar] [CrossRef]
- Zheng, G.; Lee, S.W.; Liang, Z.; Lee, H.-W.; Yan, K.; Yao, H.; Wang, H.; Li, W.; Chu, S.; Cui, Y. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 2014, 9, 618–623. [Google Scholar] [CrossRef] [PubMed]
- Burns, J.C.; Stevens, D.A.; Dahn, J.R. In-situ detection of lithium plating using high precision coulometry. J. Electrochem. Soc. 2015, 162, A959. [Google Scholar] [CrossRef]
- Downie, L.E.; Krause, L.J.; Burns, J.C.; Jensen, L.D.; Chevrier, V.L.; Dahn, J.R. In situ detection of lithium plating on graphite electrodes by electrochemical calorimetry. J. Electrochem. Soc. 2013, 160, A588. [Google Scholar] [CrossRef]
- Paul, P.P.; McShane, E.J.; Colclasure, A.M.; Balsara, N.; Brown, D.E.; Cao, C.; Chen, B.-R.; Chinnam, P.R.; Cui, Y.; Dufek, E.J. A review of existing and emerging methods for lithium detection and characterization in Li-ion and Li-metal batteries. Adv. Energy Mater. 2021, 11, 2100372. [Google Scholar] [CrossRef]
- Li, Y.; Yan, K.; Lee, H.-W.; Lu, Z.; Liu, N.; Cui, Y. Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes. Nat. Energy 2016, 1, 15029. [Google Scholar] [CrossRef]
- Andersen, H.L.; Djuandhi, L.; Mittal, U.; Sharma, N. Strategies for the analysis of graphite electrode function. Adv. Energy Mater. 2021, 11, 2102693. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Riahi, A.R.; Alpas, A.T. A transmission electron microscopy study of crack formation and propagation in electrochemically cycled graphite electrode in lithium-ion cells. J. Power Sources 2011, 196, 8719–8727. [Google Scholar] [CrossRef]
- Gavilán-Arriazu, E.M.; Pinto, O.A.; de Mishima, B.A.L.; Barraco, D.E.; Oviedo, O.A.; Leiva, E.P.M. The kinetic origin of the Daumas-Hérold model for the Li-ion/graphite intercalation system. Electrochem. Commun. 2018, 93, 133–137. [Google Scholar] [CrossRef]
- Heenan, T.M.M.; Wade, A.; Tan, C.; Parker, J.E.; Matras, D.; Leach, A.S.; Robinson, J.B.; Llewellyn, A.; Dimitrijevic, A.; Jervis, R. Identifying the origins of microstructural defects such as cracking within Ni-rich NMC811 cathode particles for lithium-ion batteries. Adv. Energy Mater. 2020, 10, 2002655. [Google Scholar] [CrossRef]
- Lee, Y.K. Effect of transition metal ions on solid electrolyte interphase layer on the graphite electrode in lithium ion battery. J. Power Sources 2021, 484, 229270. [Google Scholar] [CrossRef]
- Wu, J.; Li, C.; Pan, X.; Wang, X.; Zhao, X.; Gao, Y.; Yang, S.; Zhai, C. Model for detecting boom height based on an ultrasonic sensor for the whole growth cycle of wheat. Agriculture 2023, 14, 21. [Google Scholar] [CrossRef]
- Cui, H.-Y.; Wu, J.; Lin, L. Inhibitory effect of liposome-entrapped lemongrass oil on the growth of Listeria monocytogenes in cheese. J. Dairy Sci. 2016, 99, 6097–6104. [Google Scholar] [CrossRef] [PubMed]
- Aurbach, D.; Markovsky, B.; Salitra, G.; Markevich, E.; Talyossef, Y.; Koltypin, M.; Nazar, L.; Ellis, B.; Kovacheva, D. Review on electrode-electrolyte solution interactions, related to cathode materials for Li-ion batteries. J. Power Sources 2007, 165, 491–499. [Google Scholar] [CrossRef]
- Sahore, R.; O’Hanlon, D.C.; Tornheim, A.; Lee, C.-W.; Garcia, J.C.; Iddir, H.; Balasubramanian, M.; Bloom, I. Revisiting the mechanism behind transition-metal dissolution from delithiated LiNixMnyCozO2 (NMC) cathodes. J. Electrochem. Soc. 2020, 167, 020513. [Google Scholar] [CrossRef]
- Chen, H.; Ma, T.; Zeng, Y.; Guo, X.; Qiu, X. Mechanism of capacity fading caused by Mn(II) deposition on anodes for spinel lithium manganese oxide cell. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2017, 32, 1–10. [Google Scholar] [CrossRef]
- Zhan, C.; Lu, J.; Kropf, A.J.; Wu, T.; Jansen, A.N.; Sun, Y.-K.; Qiu, X.; Amine, K. Mn(II) deposition on anodes and its effects on capacity fade in spinel lithium manganate-carbon systems. Nat. Commun. 2013, 4, 2437. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, J.A.; Shkrob, I.A.; Abraham, D.P. Transition metal dissolution, ion migration, electrocatalytic reduction and capacity loss in lithium-ion full cells. J. Electrochem. Soc. 2017, 164, A389. [Google Scholar] [CrossRef]
- Gowda, S.R.; Gallagher, K.G.; Croy, J.R.; Bettge, M.; Thackeray, M.M.; Balasubramanian, M. Oxidation state of cross-over manganese species on the graphite electrode of lithium-ion cells. Phys. Chem. Chem. Phys. 2014, 16, 6898–6902. [Google Scholar] [CrossRef] [PubMed]
- Shkrob, I.A.; Kropf, A.J.; Marin, T.W.; Li, Y.; Poluektov, O.G.; Niklas, J.; Abraham, D.P. Manganese in graphite anode and capacity fade in Li ion batteries. J. Phys. Chem. C 2014, 118, 24335–24348. [Google Scholar] [CrossRef]
- Terada, Y.; Nishiwaki, Y.; Nakai, I.; Nishikawa, F. Study of Mn dissolution from LiMn2O4 spinel electrodes using in situ total reflection X-ray fluorescence analysis and fluorescence XAFS technique. J. Power Sources 2001, 97, 420–422. [Google Scholar] [CrossRef]
- Banks, C.E. Recent development of LiNixCoyMnzO2: Impact of micro/nano structures for imparting improvements in lithium batteries. Trans. Nonferrous Met. Soc. China 2013, 23, 108–119. [Google Scholar]
- Shao-Horn, Y.; Croguennec, L.; Delmas, C.; Nelson, E.C.; O’Keefe, M.A. Atomic resolution of lithium ions in LiCoO2. Nat. Mater. 2003, 2, 464–467. [Google Scholar] [CrossRef] [PubMed]
- Goodenough, J.B.; Park, K.-S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176. [Google Scholar] [CrossRef] [PubMed]
- Mishima, Y.; Hojo, T.; Nishio, T.; Sadamura, H.; Oyama, N.; Moriyoshi, C.; Kuroiwa, Y. MEM charge density study of olivine LiMPO4 and MPO4 (M = Mn, Fe) as cathode materials for lithium-ion batteries. J. Phys. Chem. C 2013, 117, 2608–2615. [Google Scholar] [CrossRef]
- Kim, J.C.; Moore, C.J.; Kang, B.; Hautier, G.; Jain, A.; Ceder, G. Synthesis and electrochemical properties of monoclinic LiMnBO3 as a Li intercalation material. J. Electrochem. Soc. 2011, 158, A309. [Google Scholar] [CrossRef]
- Key, B.; Bhattacharyya, R.; Morcrette, M.; Seznec, V.; Tarascon, J.-M.; Grey, C.P. Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries. J. Am. Chem. Soc. 2009, 131, 9239–9249. [Google Scholar] [CrossRef] [PubMed]
- Ohta, N.; Yagi, I. In situ surface-enhanced Raman scattering spectroscopic study of pyridine adsorbed on gold electrode surfaces comprised of plasmonic crystal structures. J. Phys. Chem. C 2008, 112, 17603–17610. [Google Scholar] [CrossRef]
- Ren, D.; Xie, L.; Wang, L.; He, X. A practical approach to predict volume deformation of lithium-ion batteries from crystal structure changes of electrode materials. Int. J. Energy Res. 2021, 45, 7732–7740. [Google Scholar] [CrossRef]
- Xu, B.; Fell, C.R.; Chi, M.; Meng, Y.S. Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study. Energy Environ. Sci. 2011, 4, 2223–2233. [Google Scholar] [CrossRef]
- Zhou, Y.-N.; Yue, J.-L.; Hu, E.; Li, H.; Gu, L.; Nam, K.-W.; Bak, S.-M.; Yu, X.; Liu, J.; Bai, J. High-rate charging induced intermediate phases and structural changes of layer-structured cathode for lithium-ion batteries. Adv. Energy Mater. 2016, 6, 1600597. [Google Scholar] [CrossRef]
- Yang, J.; Xia, Y. Suppressing the phase transition of the layered Ni-rich oxide cathode during high-voltage cycling by introducing low-content Li2MnO3. ACS Appl. Mater. Interfaces 2016, 8, 1297–1308. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Sun, Y.; Shi, J.; Zhang, W.; Zhang, X.; Hang, X.; Li, Z.; Zou, X. Convenient self-assembled PDADMAC/PSS/Au@Ag NRs filter paper for swift SERS evaluation of non-systemic pesticides on fruit and vegetable surfaces. Food Chem. 2023, 424, 136232. [Google Scholar] [CrossRef] [PubMed]
- Boesenberg, U.; Meirer, F.; Liu, Y.; Shukla, A.K.; Dell’Anna, R.; Tyliszczak, T.; Chen, G.; Andrews, J.C.; Richardson, T.J.; Kostecki, R. Mesoscale phase distribution in single particles of LiFePO4 following lithium deintercalation. Chem. Mater. 2013, 25, 1664–1672. [Google Scholar] [CrossRef] [PubMed]
- Kitao, H.; Fujihara, T.; Takeda, K.; Nakanishi, N.; Nohma, T. High-temperature storage performance of Li-ion batteries using a mixture of Li-Mn spinel and Li-Ni-Co-Mn oxide as a positive electrode material. Electrochem. Solid-State Lett. 2004, 8, A87. [Google Scholar] [CrossRef]
- Monnier, J.; Chen, H.; Joiret, S.; Bourgon, J.; Latroche, M. Identification of a new pseudo-binary hydroxide during calendar corrosion of (La,Mg)2Ni7-type hydrogen storage alloys for Nickel-Metal Hydride batteries. J. Power Sources 2014, 266, 162–169. [Google Scholar] [CrossRef]
- Tahir, H.E.; Zou, X.; Huang, X.; Shi, J.; Mariod, A.A. Discrimination of honeys using colorimetric sensor arrays, sensory analysis and gas chromatography techniques. Food Chem. 2016, 206, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Zheng, J.; Zhang, H.; Jin, L.; Yang, D.; Lv, H.; Shen, C.; Shellikeri, A.; Zheng, Y.; Gong, R. Electrode materials, electrolytes, and challenges in nonaqueous lithium-ion capacitors. Adv. Mater. 2018, 30, 1705670. [Google Scholar] [CrossRef] [PubMed]
- Sayers, C.N.; Armstrong, N.R. X-ray photoelectron spectroscopy of TiO2 and other titanate electrodes and various standard titanium oxide materials: Surface compositional changes of the TiO2 electrode during photoelectrolysis. Surf. Sci. 1978, 77, 301–320. [Google Scholar] [CrossRef]
- Higgins, T.M.; Park, S.-H.; King, P.J.; Zhang, C.; McEvoy, N.; Berner, N.C.; Daly, D.; Shmeliov, A.; Khan, U.; Duesberg, G. A commercial conducting polymer as both binder and conductive additive for silicon nanoparticle-based lithium-ion battery negative electrodes. ACS Nano 2016, 10, 3702–3713. [Google Scholar] [CrossRef] [PubMed]
- Vogt, L.O.; El Kazzi, M.; Jämstorp Berg, E.; Pérez Villar, S.; Novák, P.; Villevieille, C. Understanding the interaction of the carbonates and binder in Na-ion batteries: A combined bulk and surface study. Chem. Mater. 2015, 27, 1210–1216. [Google Scholar] [CrossRef]
- Younesi, R.; Hahlin, M.; Treskow, M.; Scheers, J.; Johansson, P.; Edström, K. Ether based electrolyte, LiB(CN)4 salt and binder degradation in the Li-O2 battery studied by hard X-ray photoelectron spectroscopy (HAXPES). J. Phys. Chem. C 2012, 116, 18597–18604. [Google Scholar] [CrossRef]
- Zhang, S.S.; Xu, K.; Jow, T.R. Evaluation on a water-based binder for the graphite anode of Li-ion batteries. J. Power Sources 2004, 138, 226–231. [Google Scholar] [CrossRef]
- Cui, H.-Y.; Ma, C.; Lin, L. Synergistic antibacterial efficacy of cold nitrogen plasma and clove oil against Escherichia coli O157:H7 biofilms on lettuce. Food Control 2016, 66, 8–16. [Google Scholar] [CrossRef]
- Chou, S.-L.; Pan, Y.; Wang, J.-Z.; Liu, H.-K.; Dou, S.-X. Small things make a big difference: Binder effects on the performance of Li and Na batteries. Phys. Chem. Chem. Phys. 2014, 16, 20347–20359. [Google Scholar] [CrossRef] [PubMed]
- Chou, S.-L.; Wang, J.-Z.; Wexler, D.; Konstantinov, K.; Zhong, C.; Liu, H.-K.; Dou, S.-X. High-surface-area α-Fe2O3/carbon nanocomposite: One-step synthesis and its highly reversible and enhanced high-rate lithium storage properties. J. Mater. Chem. 2010, 20, 2092–2098. [Google Scholar] [CrossRef]
- Nasybulin, E.; Xu, W.; Engelhard, M.H.; Nie, Z.; Li, X.S.; Zhang, J.-G. Stability of polymer binders in Li-O2 batteries. J. Power Sources 2013, 243, 899–907. [Google Scholar] [CrossRef]
- Yoon, E.; Lee, J.; Byun, S.; Kim, D.; Yoon, T. Passivation failure of Al current collector in LiPF6-based electrolytes for lithium-ion batteries. Adv. Funct. Mater. 2022, 32, 2200026. [Google Scholar] [CrossRef]
- Zhu, P.; Gastol, D.; Marshall, J.; Sommerville, R.; Goodship, V.; Kendrick, E. A review of current collectors for lithium-ion batteries. J. Power Sources 2021, 485, 229321. [Google Scholar] [CrossRef]
- Lu, Y.; Yao, H.; Li, C.; Han, J.; Tan, Z.; Yan, Y. Separation, concentration and determination of trace chloramphenicol in shrimp from different waters by using polyoxyethylene lauryl ether-salt aqueous two-phase system coupled with high-performance liquid chromatography. Food Chem. 2016, 192, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Myung, S.-T.; Sasaki, Y.; Sakurada, S.; Sun, Y.-K.; Yashiro, H. Electrochemical behavior of current collectors for lithium batteries in non-aqueous alkyl carbonate solution and surface analysis by ToF-SIMS. Electrochim. Acta 2009, 55, 288–297. [Google Scholar] [CrossRef]
- Li, D.; Hu, H.; Chen, B.; Lai, W.-Y. Advanced current collector materials for high-performance lithium metal anodes. Small 2022, 18, 2200010. [Google Scholar] [CrossRef] [PubMed]
- Sethuraman, V.A.; Hardwick, L.J.; Srinivasan, V.; Kostecki, R. Surface structural disordering in graphite upon lithium intercalation/deintercalation. J. Power Sources 2010, 195, 3655–3660. [Google Scholar] [CrossRef]
- Jarry, A.; Gottis, S.; Yu, Y.-S.; Roque-Rosell, J.; Kim, C.; Cabana, J.; Kerr, J.; Kostecki, R. The formation mechanism of fluorescent metal complexes at the LiXNi0.5Mn1.5O4-δ/carbonate ester electrolyte interface. J. Am. Chem. Soc. 2015, 137, 3533–3539. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Sun, Q.; Liu, G.; Song, X.; Battaglia, V.S. Correlation between dissolution behavior and electrochemical cycling performance for LiNi1/3Co1/3Mn1/3O2-based cells. J. Power Sources 2012, 207, 134–140. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, H.; Wang, H. A new method for fast state of charge estimation using retired battery parameters. J. Energy Storage 2022, 55, 105621. [Google Scholar] [CrossRef]
- Yayan, U.; Arslan, A.T.; Yücel, H. A novel method for SoH prediction of batteries based on stacked LSTM with quick charge data. Appl. Artif. Intell. 2021, 35, 421–439. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, B.J. Online capacity estimation of lithium-ion batteries based on novel feature extraction and adaptive multi-kernel relevance vector machine. Energies 2015, 8, 12439–12457. [Google Scholar] [CrossRef]
- Klass, V.; Behm, M.; Lindbergh, G. A support vector machine-based state-of-health estimation method for lithium-ion batteries under electric vehicle operation. J. Power Sources 2014, 270, 262–272. [Google Scholar] [CrossRef]
- Pan, H.; Lü, Z.; Wang, H.; Wei, H.; Chen, L. Novel battery state-of-health online estimation method using multiple health indicators and an extreme learning machine. Energy 2018, 160, 466–477. [Google Scholar] [CrossRef]
- Tagade, P.; Hariharan, K.S.; Ramachandran, S.; Khandelwal, A.; Naha, A.; Kolake, S.M.; Han, S.H. Deep Gaussian process regression for lithium-ion battery health prognosis and degradation mode diagnosis. J. Power Sources 2020, 445, 227281. [Google Scholar] [CrossRef]
- Zhang, H.; Apaliya, M.T.; Mahunu, G.K.; Chen, L.; Li, W. Control of ochratoxin A-producing fungi in grape berry by microbial antagonists: A review. Trends Food Sci. Technol. 2016, 51, 88–97. [Google Scholar] [CrossRef]
- Wang, H.; Liu, S.; Wang, T.; Zhang, C.; Feng, T.; Tian, C. Three-dimensional interventional photoacoustic imaging for biopsy needle guidance with a linear array transducer. J. Biophotonics 2019, 12, e201900212. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yu, K.; Mao, L.; He, Q.; Wu, Q.; Li, Z. Evaluation of lithium-ion battery pack capacity consistency using one-dimensional magnetic field scanning. IEEE Trans. Instrum. Meas. 2022, 71, 1–10. [Google Scholar] [CrossRef]
- Xu, B.-G.; Zhang, M.; Bhandari, B.; Sun, J.; Gao, Z. Infusion of CO2 in a solid food: A novel method to enhance the low-frequency ultrasound effect on immersion freezing process. Innov. Food Sci. Emerg. Technol. 2016, 35, 194–203. [Google Scholar] [CrossRef]
- Liu, D.; Zhu, L.; Guo, Y.; Zhao, Y.; Betchem, G.; Yolandani, Y.; Ma, H. Enhancing submerged fermentation of Antrodia camphorata by low-frequency alternating magnetic field. Innov. Food Sci. Emerg. Technol. 2023, 86, 103382. [Google Scholar] [CrossRef]
- Waleed, A.; Fadhl, J.A.; Abdullah, A.B.; Al-Adeeb, A.; Mahdi, A.A.; Al-Maqtari, Q.A.; Mushtaq, B.S.; Fan, M.; Li, Y.; Qian, H. Effect of highland barley germination on thermomechanical, rheological, and microstructural properties of wheat-oat composite flour dough. Food Biosci. 2023, 53, 102521. [Google Scholar]
- Liu, S.; Rong, Y.; Chen, Q.; Ouyang, Q. Colorimetric sensor array combined with chemometric methods for the assessment of aroma produced during the drying of tencha. Food Chem. 2024, 432, 137190. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Chen, L.; Zhou, C.; Mustapha, A.T.; Wahia, H. Advances in peeling techniques for tomato: A comprehensive review. Food Rev. Int. 2024, 40, 212–229. [Google Scholar] [CrossRef]
- Hao, M.; Li, Z.; Huang, X.; Wang, Y.; Wei, X.; Zou, X.; Shi, J.; Huang, Z.; Yin, L.; Gao, L. A cell-based electrochemical taste sensor for detection of hydroxy-α-sanshool. Food Chem. 2023, 418, 135941. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Mense, A.L.; Brewer, L.R.; Shi, Y.-C. Wheat bran layers: Composition, structure, fractionation, and potential uses in foods. Crit. Rev. Food Sci. Nutr. 2024, 64, 6636–6659. [Google Scholar] [CrossRef] [PubMed]
- Qayum, A.; Rashid, A.; Liang, Q.; Wu, Y.; Cheng, Y.; Kang, L.; Liu, Y.; Zhou, C.; Hussain, M.; Ren, X. Ultrasonic and homogenization: An overview of the preparation of an edible protein-polysaccharide complex emulsion. Compr. Rev. Food Sci. Food Saf. 2023, 22, 4242–4281. [Google Scholar] [CrossRef] [PubMed]
- Obadi, M.; Li, Y.; Xu, B. Recent advances in extending the shelf life of fresh wet noodles: Influencing factors and preservation technologies. J. Food Sci. 2023, 88, 3626–3648. [Google Scholar] [CrossRef] [PubMed]
- Liang, N.; Hu, X.; Zhang, X.; Li, W.; Guo, Z.; Huang, X.; Li, Z.; Zhang, R.; Shen, T.; Zou, X. Ratiometric sensing for ultratrace tetracycline using electrochemically active metal-organic frameworks as response signals. J. Agric. Food Chem. 2023, 71, 7584–7592. [Google Scholar] [CrossRef] [PubMed]
- Haruna, S.A.; Ivane, N.M.A.; Adade, S.Y.-S.S.; Luo, X.; Geng, W.; Zareef, M.; Jargbah, J.; Li, H.; Chen, Q. Rapid and simultaneous quantification of phenolic compounds in peanut (Arachis hypogaea L.) seeds using NIR spectroscopy coupled with multivariate calibration. J. Food Compos. Anal. 2023, 123, 105516. [Google Scholar] [CrossRef]
- Han, E.; Li, L.; Gao, T.; Pan, Y.; Cai, J. Nitrite determination in food using electrochemical sensor based on self-assembled MWCNTs/AuNPs/poly-melamine nanocomposite. Food Chem. 2024, 437, 137773. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wu, J.; Cheng, Y. Mechanical properties, microstructure, and in vitro digestion of transglutaminase-crosslinked whey protein and potato protein hydrolysate composite gels. Foods 2023, 12, 2040. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, Z.; Sun, Z.; Wang, D.; Liu, F.; Lin, L. In vitro and in situ characterization of psychrotrophic spoilage bacteria recovered from chilled chicken. Foods 2022, 12, 95. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Zhang, X.; Guo, Y.; Chen, Z.; Ma, H. Evaluation of ultrasonic-assisted pickling with different frequencies on NaCl transport, impedance properties, and microstructure in pork. Food Chem. 2024, 430, 137003. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Shan, P.; Zhang, Z.-H.; He, R.; Xing, L.; Liu, J.; He, D.; Ma, H.; Wang, Z.; Gao, X. Efficient degradation of soybean protein B3 subunit in soy sauce by ultrasound-assisted prolyl endopeptidase and its primary mechanism. Food Chem. 2023, 429, 136972. [Google Scholar] [CrossRef] [PubMed]
- Geng, D.; Chen, X.; Lu, D.; Chen, B. Discrimination of different edible vegetable oils based on GC-IMS and SIMCA. CyTA-J. Food 2023, 21, 49–56. [Google Scholar] [CrossRef]
- Tao, R.; Gu, Y.; Du, Z.; Lyu, X.; Li, J. Advanced electrode processing for lithium-ion battery manufacturing. Nat. Rev. Clean Technol. 2025, 1, 116–131. [Google Scholar] [CrossRef]
- Muck, N.; David, C.; Knöri, T. Integrating fiber sensing for spatially resolved temperature measurement in fuel cells. Energies 2024, 17, 16. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Wang, H.; Shen, X.; Lu, C.; Pei, L.; Xu, Y.; Wang, W.; Li, H. Review of Aging Mechanism and Diagnostic Methods for Lithium-Ion Batteries. Energies 2025, 18, 3884. https://doi.org/10.3390/en18143884
Wang T, Wang H, Shen X, Lu C, Pei L, Xu Y, Wang W, Li H. Review of Aging Mechanism and Diagnostic Methods for Lithium-Ion Batteries. Energies. 2025; 18(14):3884. https://doi.org/10.3390/en18143884
Chicago/Turabian StyleWang, Tiansi, Hao Wang, Xiaoling Shen, Chenhao Lu, Lei Pei, Yixiang Xu, Wanlin Wang, and Huanhuan Li. 2025. "Review of Aging Mechanism and Diagnostic Methods for Lithium-Ion Batteries" Energies 18, no. 14: 3884. https://doi.org/10.3390/en18143884
APA StyleWang, T., Wang, H., Shen, X., Lu, C., Pei, L., Xu, Y., Wang, W., & Li, H. (2025). Review of Aging Mechanism and Diagnostic Methods for Lithium-Ion Batteries. Energies, 18(14), 3884. https://doi.org/10.3390/en18143884