Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (297)

Search Parameters:
Keywords = line width measurement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1638 KiB  
Article
Analysis of Factors Influencing Corrective Power of Akin’s Osteotomy in 2D Plain Radiographs: What to Consider to Obtain Good Correction in Hallux Valgus Surgery
by Enrique Adrian Testa, Alberto Ruiz Nasarre, Fernando Alvarez Goenaga, Daniel Poggio Cano, Annamaria Porreca, Albert Baduell, Ruben Garcia Elvira, Miki Dalmau-Pastor and Pablo Ruiz Riquelme
Diagnostics 2025, 15(13), 1618; https://doi.org/10.3390/diagnostics15131618 - 26 Jun 2025
Viewed by 351
Abstract
Background/Objectives: Akin osteotomy, in the context of corrective surgery for hallux valgus, is an effective tool available to surgeons. However, few studies have thoroughly investigated the anatomical and technical characteristics to be considered in order to perform an optimal osteotomy. This cross-sectional observational [...] Read more.
Background/Objectives: Akin osteotomy, in the context of corrective surgery for hallux valgus, is an effective tool available to surgeons. However, few studies have thoroughly investigated the anatomical and technical characteristics to be considered in order to perform an optimal osteotomy. This cross-sectional observational study aims to identify the ideal site for performing Akin osteotomy and to identify the factors that influence its corrective power. Methods: To this end, an analysis was conducted on a random sample of 100 patients (186 feet) who underwent X-rays without surgical treatment. Variations in the width between the metaphysis and diaphysis were measured at five different points. For each cut level, corresponding to wedge bases of 2, 3 and 4 mm, three corrective angles were calculated. In addition, the distance between the cut line and the joint was recorded. Results: The base width ranged from 12.6 to 23.2 mm, showing greater variability in the metaphyseal region. The corrective power of the osteotomy showed wide variability, ranging from 5.9 to 18.4 degrees. Four determining factors emerged: the width of the base, the inclination of the medial cortex, the height at which the cut is made and the thickness of the wedge of bone removed. The data obtained suggest that osteotomy should not be performed less than 10 mm from the joint line to avoid the risk of joint invasion. Conclusions: In conclusion, there is no universally ideal site for performing an Akin osteotomy: the choice depends on the degree of correction desired, which in turn is influenced by the factors identified in the study. Full article
(This article belongs to the Special Issue Advances in Foot and Ankle Surgery: Diagnosis and Management)
Show Figures

Figure 1

24 pages, 2289 KiB  
Article
Advanced Control Strategy for Induction Motors Using Dual SVM-PWM Inverters and MVT-Based Observer
by Omar Allag, Abdellah Kouzou, Meriem Allag, Ahmed Hafaifa, Jose Rodriguez and Mohamed Abdelrahem
Machines 2025, 13(6), 520; https://doi.org/10.3390/machines13060520 - 14 Jun 2025
Viewed by 341
Abstract
This paper introduces a novel field-oriented control (FOC) strategy for an open-end stator three-phase winding induction motor (OEW-TP-IM) using dual space vector modulation-pulse width modulation (SVM-PWM) inverters. This configuration reduces common mode voltage at the motor’s terminals, enhancing efficiency and reliability. The study [...] Read more.
This paper introduces a novel field-oriented control (FOC) strategy for an open-end stator three-phase winding induction motor (OEW-TP-IM) using dual space vector modulation-pulse width modulation (SVM-PWM) inverters. This configuration reduces common mode voltage at the motor’s terminals, enhancing efficiency and reliability. The study presents a backstepping control approach combined with a mean value theorem (MVT)-based observer to improve control accuracy and stability. Stability analysis of the backstepping controller for key control loops, including flux, speed, and currents, is conducted, achieving asymptotic stability as confirmed through Lyapunov’s methods. An advanced observer using sector nonlinearity (SNL) and time-varying parameters from convex theory is developed to manage state observer error dynamics effectively. Stability conditions, defined as linear matrix inequalities (LMIs), are solved using MATLAB R2016b to optimize the observer’s estimator gains. This approach simplifies system complexity by measuring only two line currents, enhancing responsiveness. Comprehensive simulations validate the system’s performance under various conditions, confirming its robustness and effectiveness. This strategy improves the operational dynamics of OEW-TP-IM machine and offers potential for broad industrial applications requiring precise and reliable motor control. Full article
(This article belongs to the Section Electromechanical Energy Conversion Systems)
Show Figures

Figure 1

9 pages, 3584 KiB  
Article
Parameter Study of 500 nm Thick Slot-Type Photonic Crystal Cavities for Cavity Optomechanical Sensing
by Zhe Li, Jun Liu, Yi Zhang, Chenguwei Xian, Yifan Wang, Kai Chen, Gen Qiu, Guangwei Deng, Yongjun Huang and Boyu Fan
Photonics 2025, 12(6), 584; https://doi.org/10.3390/photonics12060584 - 8 Jun 2025
Viewed by 1836
Abstract
In recent years, research on light-matter interactions in silicon-based micro/nano cavity optomechanical systems demonstrates high-resolution sensing capabilities (e.g., sub-fm-level displacement sensitivity). Conventional 2D photonic crystal (PhC) cavity optomechanical sensors face inherent limitations: thin silicon layers (200–300 nm) restrict both the mass block (critical [...] Read more.
In recent years, research on light-matter interactions in silicon-based micro/nano cavity optomechanical systems demonstrates high-resolution sensing capabilities (e.g., sub-fm-level displacement sensitivity). Conventional 2D photonic crystal (PhC) cavity optomechanical sensors face inherent limitations: thin silicon layers (200–300 nm) restrict both the mass block (critical for thermal noise suppression) and optical Q-factor. Enlarging the detection mass in such thin layers exacerbates in-plane height nonuniformity, severely limiting high-precision sensing. This study proposes a 500 nm thick silicon-based 2D slot-type PhC cavity design for advanced sensing applications, fabricated on a silicon-on-insulator (SOI) substrate with optimized air slot structures. Systematic parameter optimization via finite element simulations defines structural parameters for the 1550 nm band, followed by 6 × 6 × 6 combinatorial experiments on lattice constant, air hole radius, and line-defect waveguide width. Experimental results demonstrate a loaded Q-factor of 57,000 at 510 nm lattice constant, 175 nm air hole radius, and 883 nm line-defect waveguide width (measured sidewall angle: 88.4°). The thickened silicon layer delivers dual advantages: enhanced mass block for thermal noise reduction and high Q-factor for optomechanical coupling efficiency, alongside improved ridge waveguide compatibility. This work advances the practical development of CMOS-compatible micro-opto-electromechanical systems (MOEMS). Full article
Show Figures

Figure 1

12 pages, 1225 KiB  
Article
Sonographic Evaluations of the Pubic Symphysis at Different Stages of Pregnancy
by Slawomir Wozniak, Aleksandra Piatek, Bozena Kurc-Darak, Zygmunt Domagala, Friedrich Paulsen and Jerzy Florjanski
J. Clin. Med. 2025, 14(11), 3898; https://doi.org/10.3390/jcm14113898 - 1 Jun 2025
Viewed by 1169
Abstract
Background/Objectives: The pubic symphysis is formed by the fusion of the right and left pubic bones. The metrics, such as breadth, length, and depth, increase during pregnancy and can be measured and analyzed using standard sonography. Obstetricians require clear and consistent criteria [...] Read more.
Background/Objectives: The pubic symphysis is formed by the fusion of the right and left pubic bones. The metrics, such as breadth, length, and depth, increase during pregnancy and can be measured and analyzed using standard sonography. Obstetricians require clear and consistent criteria for standard sonography evaluation. Methods: Sonographic examinations were performed on a cohort of 225 pregnant women, aged between 23 and 41 years, as part of a prospective observational study. The parameters measured included pubic symphysis entry middle width, intertubercular distance, pubic symphysis width, and pubic symphysis depth. Results: The width of the pubic symphysis exhibited the greatest consistency, measuring between 2.2 and 11.3 mm, whereas the depth displayed the highest variability, ranging from 5.4 to 22.6 mm. The measurements most correlated with fetal weight included pubic symphysis entry width (6.5 ± 3.4 mm; p ˂ 0.001), pubic symphysis width (6.4 ± 2.9 mm; p ˂ 0.001), and depth (14.8 ± 4.8 mm; p = 0.03). The intertubercular distance exhibited the strongest correlation with maternal age (15.1 ± 5.4 mm; p = 0.03). In contrast, pubic symphysis entry width (6.4 ± 3.3 mm; p = 0.02; 6.4 ± 3.4 mm; p ˂ 0.001) and pubic symphysis width (6.3 ± 2.6 mm; p = 0.01; 6.3 ± 2.6; p ˂ 0.001) demonstrated stronger associations with maternal weight and weight gained during pregnancy, respectively. In the singular pregnancy group, the width of the pubic symphysis exhibited significant correlations with fetal weight categories: under or equal to 1000 g (4.56 ± 1.5 mm; p = 0.02), 1001–2000 g (5.51 ± 2.6 mm; p = 0.02), and more than 3000 g (7.3 ± 3.9 mm; p = 0.02). Pubic symphysis entry width is significantly correlated with fetal weight in the range of 1001–2000 g (5.5 ± 3 mm; p = 0.02) and fetal weight exceeding 3000 g (7.4 ± 3.9 mm; p = 0.02). In singular pregnancies, statistically significant differences were noted in intertubercular distance (15.9 ± 7.2 mm vs. 13.4 ± 6.2 mm; p = 0.03) when comparing fetuses weighing 2000 g or less between nulliparous and multiparous women. Conclusions: Fetal and maternal weight were the primary parameters that were positively correlated with these measurements. The term ‘pubic symphysis entry’ is proposed to describe a trapezoidal space situated superior to the pubic symphysis disc, delineated by an imaginary line connecting the bilateral pubic tubercles. Full article
(This article belongs to the Section Obstetrics & Gynecology)
Show Figures

Figure 1

20 pages, 5088 KiB  
Article
Study on the Temperature Model and Influence Effect of Uncovered Steel Box Girder with Large Height–Width Ratio and Straight Web Plate
by Zengwu Liu, Shuai Luo and Menglin Jiang
Buildings 2025, 15(11), 1818; https://doi.org/10.3390/buildings15111818 - 26 May 2025
Viewed by 406
Abstract
While building the steel–concrete composite girder bridge by means of the incremental launching method, the steel box is directly in the sunlight, and the temperature impact should not be neglected. However, the existing specifications fail to offer the temperature gradient pattern applicable to [...] Read more.
While building the steel–concrete composite girder bridge by means of the incremental launching method, the steel box is directly in the sunlight, and the temperature impact should not be neglected. However, the existing specifications fail to offer the temperature gradient pattern applicable to the steel box featuring a significant height–width ratio and straight web. This paper, relying on the Fenshui River Bridge situated in the southwest region of China, carried out a temperature test. By analyzing the experimental data, the rules of temperature changes at the measuring points in various positions of the steel box were studied, and the temperature disparities of the steel box across different seasons were contrasted. Through the analysis of the test data, the rule governing temperature distribution across the height dimension of the cross-section and its change with time were studied, and a model designed to represent the temperature gradient within the steel box was put forward. By utilizing the numerical model, the effect of the temperature gradient on the force acting on the structure in the process of incremental launching was analyzed. The findings indicate that the temperature of the top plate of the steel box is the highest from 14:00 to 16:00. There is a lag phenomenon in the temperature rise in the bottom plate. The greatest temperature disparity between the upper and lower plates of the steel box is not always present in the season when the temperature is comparatively high. The curve of temperature gradient change exhibits nonlinear features, and the variation in temperature is considerable within the scope of 1 m. In this article, a double-broken line temperature gradient model is put forward, with the corresponding temperature gradient of 17.8 °C. The temperature gradient obviously affects the structural stress, changing the stress distribution, and it notably impacts the deformation. The deformation generated on the guide beam due to the temperature gradient makes up 39% of the total deformation. The temperature gradient is not a fixed value. When the steel box girder is under the jacking process, especially while the structure remains in its maximum cantilever condition and is about to cross the pier, the time should be avoided when the temperature gradient is at its highest. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

22 pages, 8426 KiB  
Article
Development of an In-Line Vision-Based Measurement System for Shape and Size Calculation of Cross-Cutting Boards—Straightening Process Case
by Shitao Ge, Wei Zhang, Licheng Han, Yan Peng and Jianliang Sun
Appl. Sci. 2025, 15(10), 5752; https://doi.org/10.3390/app15105752 - 21 May 2025
Viewed by 283
Abstract
In the production process of cross-cutting boards, real-time measurement of dimensions online has been a long-standing technical problem in the production field. Currently, the detection of board dimensions in the production field relies on manual observation based on workers’ operational experience or stopping [...] Read more.
In the production process of cross-cutting boards, real-time measurement of dimensions online has been a long-standing technical problem in the production field. Currently, the detection of board dimensions in the production field relies on manual observation based on workers’ operational experience or stopping the machine for measurement. This paper proposes a machine vision-based real-time online measurement system for dimensional measurements of cross-cutting units. A certain angle measurement model is established by using a face-array industrial camera, and a more accurate edge contour extraction is realized by deep learning. A novel edge intersection extraction algorithm based on line fitting and least squares method was proposed to accurately measure the length, width, diagonal lines of cross-cutting boards using four intersection coordinates. The measurement of 100 cross-cutting boards in the industrial production site shows that the proposed online measurement system for cross-cut board dimensions in this article has high accuracy, with a length perception error of ±50 mm, width of ±2 mm, and diagonal difference of ±5 mm, meeting the production requirements in industrial settings. The on-site shutdown measurement work was reduced, thereby doubling the production efficiency and saving two staff members. Full article
Show Figures

Figure 1

24 pages, 7642 KiB  
Article
Efficiency of Modular Bridge Configurations: A Study on the Structural Stability and Capacity of Single- and Double-Story Modular Bridges
by Mohamed Embaby and M. Hesham El Naggar
Buildings 2025, 15(10), 1709; https://doi.org/10.3390/buildings15101709 - 18 May 2025
Viewed by 525
Abstract
This study investigates the structural performance and load-bearing capacity of single- and double-story modular bridge configurations using both experimental testing and finite element analysis. A full-scale field test was conducted on a 45.7 m double-story bridge subjected to truck loading at ten distinct [...] Read more.
This study investigates the structural performance and load-bearing capacity of single- and double-story modular bridge configurations using both experimental testing and finite element analysis. A full-scale field test was conducted on a 45.7 m double-story bridge subjected to truck loading at ten distinct positions along the span. Midspan deflections and axial strains of key members were measured and analyzed at each loading position to assess the bridge’s response under service loads. The experimental data were used to validate three-dimensional finite element (FE) models and refine modeling techniques for the double-story modular bridge. The validated FE models enabled further analysis of the structural performance of double-truss–double-story (DD) and quadruple-truss–single-story (QS) modular bridge configurations, both in single- and double-lane setups. The numerical results demonstrated that the double-story configuration with double truss lines per side provided a notable improvement in stiffness and load-carrying capacity compared to the single-story configuration with quadruple truss lines. Moreover, single-lane bridges exhibited better performance than their double-lane equivalents, emphasizing the impact of bridge width on structural stability. Wider, double-lane bridges were found to be more prone to out-of-plane buckling at midspan, with the top chords experiencing significantly greater deformation. Buckling analyses indicated that, although the DD and QS configurations had comparable critical loads, their failure mechanisms differed. Finally, live load factors predicted through the models were compared with the requirements of the Canadian Highway Bridge Design Code (CHBDC), confirming that the DD configuration in a two-lane setup meets code expectations and demonstrates effective structural performance. Full article
(This article belongs to the Special Issue Sustainable and Low-Carbon Building Materials and Structures)
Show Figures

Figure 1

21 pages, 13910 KiB  
Article
Modeling and Simulation for Predicting Thermo-Mechanical Behavior of Wafer-Level Cu-PI RDLs During Manufacturing
by Xianglong Chu, Shitao Wang, Chunlei Li, Zhizhen Wang, Shenglin Ma, Daowei Wu, Hai Yuan and Bin You
Micromachines 2025, 16(5), 582; https://doi.org/10.3390/mi16050582 - 15 May 2025
Viewed by 826
Abstract
The development of chip manufacturing and advanced packaging technologies has significantly changed redistribution layers (RDLs), leading to shrinking line width/spacing, increasing the number of build-up layers and package size, and introducing organic materials such as polyimide (PI) for dielectrics. The fineness and complexity [...] Read more.
The development of chip manufacturing and advanced packaging technologies has significantly changed redistribution layers (RDLs), leading to shrinking line width/spacing, increasing the number of build-up layers and package size, and introducing organic materials such as polyimide (PI) for dielectrics. The fineness and complexity of structures, combined with the temperature-dependent and viscoelastic properties of organic materials, make it increasingly difficult to predict the thermo-mechanical behavior of wafer-level Cu-PI RDL structures, posing a severe challenge in warpage prediction. This study models and simulates the thermo-mechanical response during the manufacturing process of Cu-PI RDL at the wafer level. A cross-scale wafer-level equivalent model was constructed using a two-level partitioning method, while the PI material properties were extracted via inverse fitting based on thermal warpage measurements. The warpage prediction results were compared against experimental data using the maximum warpage as the indicator to validate the extracted PI properties, yielding errors under less than 10% at typical process temperatures. The contribution of RDL build-up, wafer backgrinding, chemical mechanical polishing (CMP), and through-silicon via (TSV)/through-glass via (TGV) interposers to the warpage was also analyzed through simulation, providing insight for process risk evaluation. Finally, an artificial neural network was developed to correlate the copper ratios of four RDLs with the wafer warpages for a specific process scenario, demonstrating the potential for wafer-level warpage control through copper ratio regulation in RDLs. Full article
(This article belongs to the Special Issue 3D Integration: Trends, Challenges and Opportunities)
Show Figures

Figure 1

10 pages, 3221 KiB  
Article
Research on a Miniature Underwater Vehicle Based on a Multi-Unit Underwater Coupled Jet Drive
by Dong Zhang, Xingming Ma, Xue Zhang, Peng Gao and Kai Li
Actuators 2025, 14(5), 244; https://doi.org/10.3390/act14050244 - 13 May 2025
Viewed by 435
Abstract
The underwater unstructured environment poses new challenges for the miniaturization and flexibility of underwater vehicles. This paper proposes a method of using micrometer-scale vibrations of piezoelectric vibrators to drive macroscopic jets. Then, we use two coupled piezoelectric jet driving units to construct a [...] Read more.
The underwater unstructured environment poses new challenges for the miniaturization and flexibility of underwater vehicles. This paper proposes a method of using micrometer-scale vibrations of piezoelectric vibrators to drive macroscopic jets. Then, we use two coupled piezoelectric jet driving units to construct a miniature underwater vehicle. Numerical simulation is used to investigate the flow field characteristics of coupled jets. Finally, the impact of the angle between the two piezoelectric jet drive units on the propulsion force is analyzed. The miniature underwater vehicle measures 77.8 mm in length and 87 mm in width. While achieving miniaturization, it maintains high flexibility, maneuverability, and controllability. By adjusting the input signals to the two piezoelectric jet drive units, the miniature underwater vehicle can move in a straight line, turn, and rotate. Its maximum linear velocity reaches 54.23 mm/s. Its outstanding motion ability and environmental adaptability allow it to perform various tasks in unknown and complex environments. It also has broad application prospects. Full article
(This article belongs to the Special Issue Piezoelectric Ultrasonic Actuators and Motors)
Show Figures

Figure 1

11 pages, 5790 KiB  
Communication
A Quasi-Distributed Crack Sensor Based on Weakly Coupled Vertical U-Shaped Ring Array
by Chenjie Chu, Jiayi Huang, Xuan Xie and Jun Zhang
Sensors 2025, 25(9), 2852; https://doi.org/10.3390/s25092852 - 30 Apr 2025
Viewed by 364
Abstract
Cracks are common defects in metallic components, the presence of which can significantly affect service life and operational stability. Sensors based on electromagnetic resonators have relatively high sensitivity; however, they are limited in size, which restricts their coverage and makes large-area monitoring unattainable. [...] Read more.
Cracks are common defects in metallic components, the presence of which can significantly affect service life and operational stability. Sensors based on electromagnetic resonators have relatively high sensitivity; however, they are limited in size, which restricts their coverage and makes large-area monitoring unattainable. The uneven internal field distribution within the resonator is a critical factor contributing to sensitivity variation at different locations. In this study, a vertical U-shaped ring structure is excited using a microstrip line. This allows the sensor to achieve large-area monitoring while maintaining sensitivity. The shift in resonance frequency is investigated and extracted as a characteristic feature for crack identification. The sensitivity of the measurement is 0.95 GHz/mm2 for depth and 0.685 GHz/mm2 for width. The proposed sensor can be used to detect potential cracks in metal structures. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

15 pages, 3818 KiB  
Article
Measurement of Maize Leaf Phenotypic Parameters Based on 3D Point Cloud
by Yuchen Su, Ran Li, Miao Wang, Chen Li, Mingxiong Ou, Sumei Liu, Wenhui Hou, Yuwei Wang and Lu Liu
Sensors 2025, 25(9), 2854; https://doi.org/10.3390/s25092854 - 30 Apr 2025
Cited by 1 | Viewed by 489
Abstract
Plant height (PH), leaf width (LW), and leaf angle (LA) are critical phenotypic parameters in maize that reliably indicate plant growth status, lodging resistance, and yield potential. While various lidar-based methods have been developed for acquiring these parameters, existing approaches face limitations, including [...] Read more.
Plant height (PH), leaf width (LW), and leaf angle (LA) are critical phenotypic parameters in maize that reliably indicate plant growth status, lodging resistance, and yield potential. While various lidar-based methods have been developed for acquiring these parameters, existing approaches face limitations, including low automation, prolonged measurement duration, and weak environmental interference resistance. This study proposes a novel estimation method for maize PH, LW, and LA based on point cloud projection. The methodology comprises four key stages. First, 3D point cloud data of maize plants are acquired during middle–late growth stages using lidar sensors. Second, a Gaussian mixture model (GMM) is employed for point cloud registration to enhance plant morphological features, resulting in spliced maize point clouds. Third, filtering techniques remove background noise and weeds, followed by a combined point cloud projection and Euclidean clustering approach for stem–leaf segmentation. Finally, PH is determined by calculating vertical distance from plant apex to base, LW is measured through linear fitting of leaf midveins with perpendicular line intersections on projected contours, and LA is derived from plant skeleton diagrams constructed via linear fitting to identify stem apex, stem–leaf junctions, and midrib points. Field validation demonstrated that the method achieves 99%, 86%, and 97% accuracy for PH, LW, and LA estimation, respectively, enabling rapid automated measurement during critical growth phases and providing an efficient solution for maize cultivation automation. Full article
Show Figures

Figure 1

30 pages, 705 KiB  
Article
Strong, Weak and Merging Lines in Atomic Spectra
by Jean-Christophe Pain
Plasma 2025, 8(2), 17; https://doi.org/10.3390/plasma8020017 - 29 Apr 2025
Viewed by 2109
Abstract
We present analytical estimates for the maximum line strength in a transition array, as well as for the numbers of strong and weak lines. For that purpose, two main assumptions are used as concerns the line strength distribution. The first one, due to [...] Read more.
We present analytical estimates for the maximum line strength in a transition array, as well as for the numbers of strong and weak lines. For that purpose, two main assumptions are used as concerns the line strength distribution. The first one, due to Porter and Thomas, is more suitable for JJ sets, where J is the total atomic angular momentum, and the second one, based on a decreasing-exponential modeling of the line-amplitude distribution, is more relevant for an entire transition array. We also review the different approximations of overlapping and blanketing (band model), insisting on the computation and properties of the Elsasser function. We compare different approximations of the Ladenburg–Reiche function giving the equivalent width of an ensemble of lines in a frequency bin and discuss the possibility of using statistical indicators, such as the Chernoff bound or the Gini coefficient (initially introduced in economics for the measurement of income inequality), in the statistical characterization of transition arrays. Full article
Show Figures

Graphical abstract

25 pages, 4995 KiB  
Article
Characterization of Bunch Compactness in a Diverse Collection of Vitis vinifera L. Genotypes Enriched in Table Grape Cultivars Reveals New Candidate Genes Associated with Berry Number
by Marco Meneses, Claudia Muñoz-Espinoza, Sofía Reyes-Impellizzeri, Erika Salazar, Claudio Meneses, Katja Herzog and Patricio Hinrichsen
Plants 2025, 14(9), 1308; https://doi.org/10.3390/plants14091308 - 26 Apr 2025
Viewed by 799
Abstract
Bunch compactness (BC) is a complex, multi-trait characteristic that has been studied mostly in the context of wine grapes, with table grapes being scarcely considered. As these groups have marked phenotypic and genetic differences, including BC, the study of this trait is reported [...] Read more.
Bunch compactness (BC) is a complex, multi-trait characteristic that has been studied mostly in the context of wine grapes, with table grapes being scarcely considered. As these groups have marked phenotypic and genetic differences, including BC, the study of this trait is reported here using a genetically diverse collection of 116 Vitis vinifera L. cultivars and lines enriched for table grapes over two seasons. For this, 3D scanning-based morphological data were combined with ground measurements of 14 BC-related traits, observing high correlations among both approaches (R2 > 0.90–0.97). The multivariate analysis suggests that the attributes ‘berries per bunch’, ‘berry weight and width’, and ‘bunch weight and length’ could be considered as the main descriptors for BC, optimizing evaluation times. Then, GWASs based on a set of 70,335 SNPs revealed that GBS analysis in this same population enabled the detection of several SNPs associated with different sub-traits, with a locus for ‘berries per bunch’ in chromosome (chr) 18 being the most prominent. Enrichment analysis of significant and frequent SNPs found simultaneously in several traits and seasons revealed the over-representation of discrete functions such as alpha-linolenic acid metabolism and glycan degradation. In summary, the utility of 3D automated phenotyping was validated for table grape backgrounds, and new SNPs and candidate genes associated with the BC trait were detected. The latter could eventually become a selection tool for grapevine breeding programs. Full article
Show Figures

Figure 1

14 pages, 10765 KiB  
Article
Experimental Study of Pre-Tensioned Polygonal Prestressed T-Beam Under Combined Loading Condition
by Zengbo Yao, Mingguang Wei, Hai Yan, Dinghao Yu, Gang Li, Chunlei Zhang, Jinglin Tao and Huiteng Pei
Buildings 2025, 15(8), 1379; https://doi.org/10.3390/buildings15081379 - 21 Apr 2025
Viewed by 448
Abstract
In order to investigate the mechanical behavior of a novel pre-tensioned polygonal prestressed T-beam subject to combined bending, shear, and torsion, this study meticulously designed and fabricated a full-scale specimen with a calculated span of 28.28 m, a beam height of 1.8 m, [...] Read more.
In order to investigate the mechanical behavior of a novel pre-tensioned polygonal prestressed T-beam subject to combined bending, shear, and torsion, this study meticulously designed and fabricated a full-scale specimen with a calculated span of 28.28 m, a beam height of 1.8 m, and a top flange width of 1.75 m. A systematic static loading test was conducted. A multi-source data acquisition methodology was employed throughout the experiment. A variety of embedded and external sensors were strategically arranged, in conjunction with non-contact digital image correlation (VIC-3D) technology, to thoroughly monitor and analyze key mechanical performance indicators, including deformation capacity, strain distribution characteristics, cracking resistance, and crack propagation behavior. This study provides valuable insights into the damage evolution process of novel polygonal pre-tensioned T-beams under complex loading conditions. The experimental results indicate that the loading process of the specimen when subjected to combined bending, shear, and torsion, can be divided into two distinct stages: the elastic stage and the crack development stage. Cracks initially manifested at the junction of the upper flange and web at the extremities of the beam and at the bottom flange of the loaded segment. Subsequently, numerous diagonal and flexural–shear cracks developed within the web, while diagonal cracks also commenced to form on the top surface, exhibiting a propensity to propagate toward the support section. Following the appearance of diagonal cracks in the web concrete, both stirrup strain and concrete strain demonstrated abrupt changes. The peak strain observed within the upper stirrups was markedly greater than that measured in the middle and lower regions. On the front elevation of the web, the principal strain peak was concentrated near the connection line between the loading bottom and the upper support. In contrast, on the back elevation of the web, the principal tensile strain was more pronounced near the connection line between the loading top and the lower support. Full article
(This article belongs to the Special Issue Structural Vibration Analysis and Control in Civil Engineering)
Show Figures

Figure 1

13 pages, 3590 KiB  
Article
Study on the Wavelength-Dependent Temporal Waveform Characteristics of a High-Pressure CO2 Master Oscillator Power Amplifier System
by Zefan Huang, Ming Wen, Ziren Zhu, Jinzhou Bai, Jingjin Fu, Heng Wang, Tianjian Wan, Rongqing Tan and Yijun Zheng
Photonics 2025, 12(4), 346; https://doi.org/10.3390/photonics12040346 - 8 Apr 2025
Viewed by 304
Abstract
This study systematically investigates the temporal characteristics of a high-pressure CO2 master oscillator power amplifier (MOPA) system under tunable spectral lines. Based on a continuously tunable CO2 oscillator–amplifier system, we experimentally measured the variation in the laser pulse width before and [...] Read more.
This study systematically investigates the temporal characteristics of a high-pressure CO2 master oscillator power amplifier (MOPA) system under tunable spectral lines. Based on a continuously tunable CO2 oscillator–amplifier system, we experimentally measured the variation in the laser pulse width before and after amplification at different spectral lines, with the oscillator and amplifier operating at pressures of 7 atm and 3 atm, respectively. The results indicate that, for most spectral lines, the laser pulse width remained nearly unchanged after amplification. However, at certain spectral lines, a distinct phenomenon was observed: pulse broadening for strong lines and pulse narrowing for weak lines. To explain this phenomenon, theoretical calculations were conducted based on a high-pressure CO2 six-temperature model, and the experimental results were analyzed from the perspective of small-signal gain dynamics. This study reveals that variations in the laser pulse width primarily originated from differences in the gain build-up time across different spectral lines, which in turn influenced the amplification of both the pulse pedestal and the main pulse. For strong spectral lines, the amplifier gain built up rapidly, leading to more uniform amplification of the entire laser pulse and resulting in pulse broadening. Conversely, for weak spectral lines, the amplifier gain built up more slowly, with amplification primarily concentrated in the main pulse, causing a reduction in the pulse width. This finding has significant implications for optimizing narrow-pulse CO2 lasers and provides crucial insights into the temporal characteristics of applications, such as laser isotope separation and extreme ultraviolet (EUV) light source generation. Full article
Show Figures

Figure 1

Back to TopTop