Research on a Miniature Underwater Vehicle Based on a Multi-Unit Underwater Coupled Jet Drive
Abstract
:1. Introduction
2. Structural Design
3. Multi-Unit Underwater Coupled Jet Propulsion Mechanism and Motion Control Strategy for the Miniature Underwater Vehicle
3.1. Multi-Unit Underwater Coupled Jet Propulsion Mechanism
3.2. Analysis of the Optimal Angle of the Multi-Unit Underwater Coupled Jet
3.3. Motion Control Strategy of the Miniature Underwater Vehicle
4. Motion Performance Test of the Miniature Underwater Vehicle
5. Performance Comparison
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xing, J.; Jin, W.; Yang, K.-H.; Howard, I.M. A Bionic Piezoelectric Robotic Jellyfish with a Large Deformation Flexure Hinge. IEEE Trans. Ind. Electron. 2023, 70, 12596–12605. [Google Scholar] [CrossRef]
- Zhou, X.X.; Zhang, L.; Chen, W.S.; Liang, Q.W.; Liu, B.; Zheng, H.Y.; Li, K. Study of an Untethered Bioinspired Piezoelectric Father-Son Robot for Deep-Sea Narrow Space. IEEE Trans. Ind. Electron. 2024, 12, 16108–16119. [Google Scholar] [CrossRef]
- Chu, W.S.; Lee, K.T.; Song, S.H.; Han, M.W.; Lee, J.Y.; Kim, H.S.; Kim, M.S.; Park, Y.J.; Cho, K.J.; Ahn, S.H. Review of biomimetic underwater robots using smart actuators. Int. J. Precis. Eng. Manuf. 2012, 13, 1281–1292. [Google Scholar] [CrossRef]
- Wang, R.; Wang, S.; Wang, Y.; Cheng, L.; Tan, M. Development and Motion Control of Biomimetic Underwater Robots: A Survey. IEEE Trans. Syst. Man Cybern. Syst. 2022, 52, 833–844. [Google Scholar] [CrossRef]
- Fokou, M.R.T.; Xia, Q.R.; Jin, H.; Xu, M.; Dong, E.R. A Soft Robotic Fish Actuated by Artificial Muscle Modules (SoRoFAAM-1). J. Bionic Eng. 2023, 20, 2030–2043. [Google Scholar] [CrossRef]
- Qian, Y.; Kong, D.Q.; Nagasaki, D.; Aoyagi, M.; Kurosawa, M.K. A miniature swimmer actuated by a PZT ring ultrasonic underwater propulsion system. Jpn. J. Appl. Phys. 2024, 63, 7. [Google Scholar] [CrossRef]
- Borgen, M.G.; Washington, G.N.; Kinzel, G.L. Design and evolution of a piezoelectrically actuated miniature swimming vehicle. IEEE-ASME Trans. Mechatron. 2003, 8, 66–76. [Google Scholar] [CrossRef]
- Wang, L.; Hou, Y.J.; Zhao, K.D.; Shen, H.; Wang, Z.W.; Zhao, C.S.; Lu, X.L. A novel piezoelectric inertial rotary motor for actuating micro underwater vehicles. Sens. Actuator A-Phys. 2019, 295, 428–438. [Google Scholar] [CrossRef]
- Takesue, N.; Mitsuzumi, T.; Nagasawa, M. Proposal of miniature aquatic robot utilizing resonance of elastic plate. In Proceedings of the 2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Busan, Republic of Korea, 7–11 July 2015; pp. 1719–1724. [Google Scholar]
- Zhang, C.; Zhang, C.; Qu, J.; Qian, X. Underwater and Surface Aquatic Locomotion of Soft Biomimetic Robot Based on Bending Rolled Dielectric Elastomer Actuators. In Proceedings of the 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Detroit, MI, USA, 1–5 October 2023; pp. 4677–4682. [Google Scholar]
- Berlinger, F.; Duduta, M.; Gloria, H.; Clarke, D.R.; Nagpal, R.; Wood, R.J. A Modular Dielectric Elastomer Actuator to Drive Miniature Autonomous Underwater Vehicles. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 3429–3435. [Google Scholar]
- Guo, S.; Okuda, Y.; Zhang, W.; Ye, X.; Asaka, K. The development of a hybrid underwater micro biped robot. Appl. Bionics Biomech. 2006, 3, 143–150. [Google Scholar] [CrossRef]
- Sun, Q.M.; Han, J.Z.; Li, H.; Liu, S.; Shen, S.N.; Zhang, Y.F.; Sheng, J.Z. A Miniature Robotic Turtle With Target Tracking and Wireless Charging Systems Based on IPMCs. IEEE Access 2020, 8, 187156–187164. [Google Scholar] [CrossRef]
- Chen, X.; Wu, Z.; Zhou, C.; Yu, J. Design and Implementation of a Magnetically Actuated Miniature Robotic Fish. IFAC-PapersOnLine 2017, 50, 6851–6856. [Google Scholar] [CrossRef]
- Liao, P.; Zhang, S.W.; Sun, D. A dual caudal-fin miniature robotic fish with an integrated oscillation and jet propulsive mechanism. Bioinspir. Biomim. 2018, 13, 15. [Google Scholar] [CrossRef]
- Wang, W.; Li, W.Q.; Xu, J.C.; Dong, J.W.; Xiang, C.Q.; Guan, Y.S.; Zhang, T. Design and Implementation of a Miniature Jellyfish-Inspired Robot. IEEE Robot. Autom. Lett. 2023, 8, 3134–3141. [Google Scholar] [CrossRef]
- Valdastri, P.; Sinibaldi, E.; Caccavaro, S.; Tortora, G.; Menciassi, A.; Dario, P. A Novel Magnetic Actuation System for Miniature Swimming Robots. IEEE Trans. Robot. 2011, 27, 769–779. [Google Scholar] [CrossRef]
- Li, K.; Zhou, X.X.; Liu, Y.X.; Sun, J.H.; Tian, X.Q.; Zheng, H.Y.; Zhang, L.; Deng, J.; Liu, J.K.; Chen, W.S.; et al. A 5 cm-Scale Piezoelectric Jetting Agile Underwater Robot. Adv. Intell. Syst. 2023, 5, 9. [Google Scholar] [CrossRef]
- Zhou, X.X.; Li, K.; Liu, Y.X.; Sun, J.H.; Li, H.Y.; Chen, W.S.; Deng, J. Development of an Antihydropressure Miniature Underwater Robot with Multilocomotion Mode Using Piezoelectric Pulsed-Jet Actuator. IEEE Trans. Ind. Electron. 2023, 70, 5044–5054. [Google Scholar] [CrossRef]
- Zhou, X.X.; Chen, W.S.; Li, K.; Zheng, H.Y.; Liu, B.; Chen, S.; Zhang, L.; Qi, N.M. A 7 cm-Scale Spherical Underwater Robot Using Piezoelectric Double-Jet Actuator for Deep-Sea Environment. IEEE-ASME Trans. Mechatron. 2023, 12, 3277–3288. [Google Scholar] [CrossRef]
- Singh, R.; Mohapatra, S.; Matharu, P.S.; Tadesse, Y.T. Twisted and coiled polymer muscle actuated soft 3D printed robotic hand with Peltier cooler for drug delivery in medical management. Acta IMEKO 2022, 11, 1–6. [Google Scholar] [CrossRef]
- Yang, T.; Xiao, Y.H.; Zhang, Z.; Liang, Y.M.; Li, G.R.; Zhang, M.Q.; Li, S.J.; Wong, T.W.; Wang, Y.; Li, T.F.; et al. A soft artificial muscle driven robot with reinforcement learning. Sci. Rep. 2018, 8, 8. [Google Scholar] [CrossRef]
- Tang, C.; Ma, W.T.; Li, B.; Jin, M.L.; Chen, H.L. Cephalopod-Inspired Swimming Robot Using Dielectric Elastomer Synthetic Jet Actuator. Adv. Eng. Mater. 2020, 22, 1901130. [Google Scholar] [CrossRef]
- Ulloa, C.C.; Terrile, S.; Barrientos, A. Soft Underwater Robot Actuated by Shape-Memory Alloys “JellyRobcib” for Path Tracking Through Fuzzy Visual Control. Appl. Sci. 2020, 10, 7160. [Google Scholar] [CrossRef]
- Akle, B.; Najem, J.S.; Leo, D.J.; Blottman, J.B. Design and development of bio-inspired underwater jellyfish like robot using ionic polymer metal composite (IPMC) actuators. In Proceedings of the Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, San Diego, CA, USA, 6–10 March 2011. [Google Scholar]
- Godaba, H.; Li, J.; Wang, Y.; Zhu, J. A Soft Jellyfish Robot Driven by a Dielectric Elastomer Actuator. IEEE Robot. Autom. Lett. 2016, 1, 624–631. [Google Scholar] [CrossRef]
- Wang, Z.; Lin, X.; Feng, X.; Qin, H.; Xu, S. A motion simulation of bionic jellyfish based on shape memory alloy. In Proceedings of the 2017 36th Chinese Control Conference (CCC), Dalian, China, 26–28 July 2017; pp. 6590–6595. [Google Scholar]
- Zhang, L.; Lv, M.; Zhao, X.; Fan, H.; Xie, T.; Shan, X.; Li, K. Achieving travelling wave drag reduction by micro piezoelectric actuator. Int. J. Mech. Sci. 2024, 275, 109326. [Google Scholar] [CrossRef]
- Zhang, L.; Li, K.; Shan, X.B.; Zhai, Y.; Yan, S.; Xie, T. Active Drag Reduction for the Wall of Microunderwater Vehicles by Piezoelectric Actuated Drag Reducer. IEEE-ASME Trans. Mechatron. 2022, 27, 5981–5993. [Google Scholar] [CrossRef]
- Zhang, L.; Lv, M.F.; Zhao, X.X.; Fan, H.Y.; Xie, Z.J.; Li, K. Arrangement and Control Parameter Selection Methods of Piezoelectric Traveling Wave Drag Reducer. IEEE Trans. Ind. Electron. 2024, 11, 16264–16274. [Google Scholar] [CrossRef]
Parameters | Sun et al. [13] | Raphael Tsimbo Fokou et al. [5] | Chen et al. [14] | Wang et al. [16] | Valdastri et al. [15] | Berlinger et al. [11] | Guo et al. [12] | Qian et al. [6] | Tang et al. [23] | Our Design |
---|---|---|---|---|---|---|---|---|---|---|
Size (mm) | 95 × 60 × 15 | 280 | 89 | 110 × 140 | 35 × 18 | 100 × 30 × 60 | 45 × 10 | 7 | 27.5 × 35 | 78 × 87 |
Velocity (BL/s) | 0.19 | 0.31 | 1.92 | 0.36 | 0.95 | 0.55 | 0.12 | 2.82 | 0.43 | 0.69 |
Motor pattern | Straight and turning | Straight and turning | Straight and turning | Straight | Straight and turning | Straight | Straight | - | Straight | Straight, turning, rotating and hovering |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Ma, X.; Zhang, X.; Gao, P.; Li, K. Research on a Miniature Underwater Vehicle Based on a Multi-Unit Underwater Coupled Jet Drive. Actuators 2025, 14, 244. https://doi.org/10.3390/act14050244
Zhang D, Ma X, Zhang X, Gao P, Li K. Research on a Miniature Underwater Vehicle Based on a Multi-Unit Underwater Coupled Jet Drive. Actuators. 2025; 14(5):244. https://doi.org/10.3390/act14050244
Chicago/Turabian StyleZhang, Dong, Xingming Ma, Xue Zhang, Peng Gao, and Kai Li. 2025. "Research on a Miniature Underwater Vehicle Based on a Multi-Unit Underwater Coupled Jet Drive" Actuators 14, no. 5: 244. https://doi.org/10.3390/act14050244
APA StyleZhang, D., Ma, X., Zhang, X., Gao, P., & Li, K. (2025). Research on a Miniature Underwater Vehicle Based on a Multi-Unit Underwater Coupled Jet Drive. Actuators, 14(5), 244. https://doi.org/10.3390/act14050244