Structural Vibration Analysis and Control in Civil Engineering

A special issue of Buildings (ISSN 2075-5309). This special issue belongs to the section "Building Structures".

Deadline for manuscript submissions: 31 August 2025 | Viewed by 1819

Special Issue Editors


E-Mail Website
Guest Editor
State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116000, China
Interests: structural health monitoring; vibration control; energy harvesting

E-Mail Website
Guest Editor
State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China
Interests: analysis of earthquake disaster mechanisms in building structures; multi-hazard analysis and resilience assessment of structures

E-Mail Website
Guest Editor
State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China
Interests: high-performance structural nonlinear analysis; seismic resilience assessment of structures

E-Mail Website
Guest Editor
School of Civil Engineering, Southeast University, Nanjing 211189, China
Interests: structural health monitoring; wind engineering; vibration control
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The safety and resilience of civil engineering structures are continuously challenged by dynamic loading from blasts, vibrations, earthquakes, wind, etc. To protect buildings, infrastructure, and urban communities, it is crucial to deepen our understanding of the dynamic behavior of structures, develop effective vibration control strategies, and mitigate the adverse effects of vibrations. While predictive systems for ground vibrations contribute significantly to disaster prevention, more comprehensive research is needed to analyze structural responses and improve the performance and longevity of civil engineering structures under dynamic loading.

This Special Issue, titled “Structural Vibration Analysis and Control in Civil Engineering”, aims to gather and disseminate innovative scientific research in structural vibration analysis and control. The goal is to advance the understanding of structural dynamics, propose effective vibration mitigation measures, and improve the resilience of critical infrastructure, such as bridges, high-rise buildings, and other civil engineering structures. We welcome original research articles and review studies addressing the following topics:

  • Dynamic response prediction of structures under various loading conditions;
  • Seismic design and wind-induced vibrations in civil engineering structures;
  • Measurement, spectral analysis, and energy distribution of ground vibrations;
  • Attenuation laws for blast-induced and seismic vibrations;
  • Active and passive vibration control systems for structural protection;
  • Artificial intelligence methods for vibration prediction and control;
  • Multidisciplinary approaches including experimental studies, numerical simulations, and theoretical analyses;
  • Seismic vulnerability analysis and structural damage assessments.

We encourage submissions that explore cross-cutting techniques and multidisciplinary approaches to address challenges in vibration analysis and control, advancing both the scientific frontiers and practical applications in this field. Your valuable contributions will help pave the way for more resilient and durable civil engineering structures.

Dr. Jinyang Li
Dr. Zhiqian Dong
Dr. Dinghao Yu
Dr. Jianxiao Mao
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Buildings is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • vibration analysis
  • structural control systems
  • seismic response control
  • dynamic load mitigation
  • active and passive damping modal analysis
  • wind-induced vibration control
  • structural health monitoring
  • numerical simulation in vibration

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 4910 KiB  
Article
Experiment and Numerical Study on the Flexural Behavior of a 30 m Pre-Tensioned Concrete T-Beam with Polygonal Tendons
by Bo Yang, Chunlei Zhang, Hai Yan, Ding-Hao Yu, Yaohui Xue, Gang Li, Mingguang Wei, Jinglin Tao and Huiteng Pei
Buildings 2025, 15(15), 2595; https://doi.org/10.3390/buildings15152595 - 22 Jul 2025
Viewed by 338
Abstract
As a novel prefabricated structural element, the pre-tensioned, prestressed concrete T-beam with polygonal tendons layout demonstrates advantages including reduced prestress loss, streamlined construction procedures, and stable manufacturing quality, showing promising applications in medium-span bridge engineering. This paper conducted a full-scale experiment and numerical [...] Read more.
As a novel prefabricated structural element, the pre-tensioned, prestressed concrete T-beam with polygonal tendons layout demonstrates advantages including reduced prestress loss, streamlined construction procedures, and stable manufacturing quality, showing promising applications in medium-span bridge engineering. This paper conducted a full-scale experiment and numerical simulation research on a 30 m pre-tensioned, prestressed concrete T-beam with polygonal tendons practically used in engineering. The full-scale experiment applied symmetrical four-point bending to create a pure bending region and used embedded strain gauges, surface sensors, and optical 3D motion capture systems to monitor the beam’s internal strain, surface strain distribution, and three-dimensional displacement patterns during loading. The experiment observed that the test beam underwent elastic, crack development, and failure phases. The design’s service-load bending moment induced a deflection of 18.67 mm (below the 47.13 mm limit). Visible cracking initiated under a bending moment of 7916.85 kN·m, which exceeded the theoretical cracking moment of 5928.81 kN·m calculated from the design parameters. Upon yielding of the bottom steel reinforcement, the maximum of the crack width reached 1.00 mm, the deflection in mid-span measured 148.61 mm, and the residual deflection after unloading was 10.68 mm. These results confirmed that the beam satisfied design code requirements for serviceability stiffness and crack control, exhibiting favorable elastic recovery characteristics. Numerical simulations using ABAQUS further verified the structural performance of the T-beam. The finite element model accurately captured the beam’s mechanical response and verified its satisfactory ductility, highlighting the applicability of this beam type in bridge engineering. Full article
(This article belongs to the Special Issue Structural Vibration Analysis and Control in Civil Engineering)
Show Figures

Figure 1

20 pages, 1461 KiB  
Article
Vulnerability-Based Economic Loss Rate Assessment of a Frame Structure Under Stochastic Sequence Ground Motions
by Zheng Zhang, Yunmu Jiang and Zixin Liu
Buildings 2025, 15(15), 2584; https://doi.org/10.3390/buildings15152584 - 22 Jul 2025
Viewed by 246
Abstract
Modeling mainshock–aftershock ground motions is essential for seismic risk assessment, especially in regions experiencing frequent earthquakes. Recent studies have often employed Copula-based joint distributions or machine learning techniques to simulate the statistical dependency between mainshock and aftershock parameters. While effective at capturing nonlinear [...] Read more.
Modeling mainshock–aftershock ground motions is essential for seismic risk assessment, especially in regions experiencing frequent earthquakes. Recent studies have often employed Copula-based joint distributions or machine learning techniques to simulate the statistical dependency between mainshock and aftershock parameters. While effective at capturing nonlinear correlations, these methods are typically black box in nature, data-dependent, and difficult to generalize across tectonic settings. More importantly, they tend to focus solely on marginal or joint parameter correlations, which implicitly treat mainshocks and aftershocks as independent stochastic processes, thereby overlooking their inherent spectral interaction. To address these limitations, this study proposes an explicit and parameterized modeling framework based on the evolutionary power spectral density (EPSD) of random ground motions. Using the magnitude difference between a mainshock and an aftershock as the control variable, we derive attenuation relationships for the amplitude, frequency content, and duration. A coherence function model is further developed from real seismic records, treating the mainshock–aftershock pair as a vector-valued stochastic process and thus enabling a more accurate representation of their spectral dependence. Coherence analysis shows that the function remains relatively stable between 0.3 and 0.6 across the 0–30 Rad/s frequency range. Validation results indicate that the simulated response spectra align closely with recorded spectra, achieving R2 values exceeding 0.90 and 0.91. To demonstrate the model’s applicability, a case study is conducted on a representative frame structure to evaluate seismic vulnerability and economic loss. As the mainshock PGA increases from 0.2 g to 1.2 g, the structure progresses from slight damage to complete collapse, with loss rates saturating near 1.0 g. These findings underscore the engineering importance of incorporating mainshock–aftershock spectral interaction in seismic damage and risk modeling, offering a transparent and transferable tool for future seismic resilience assessments. Full article
(This article belongs to the Special Issue Structural Vibration Analysis and Control in Civil Engineering)
Show Figures

Figure 1

14 pages, 2136 KiB  
Article
Experimental Study on Shear Failure of 30 m Pre-Tensioned Concrete T-Beams Under Small Shear Span Ratio
by Qianyi Zhang, Hai Yan, Chunlei Zhang, Ding-Hao Yu, Jiaolei Zhang, Gang Li, Mingguang Wei, Jinglin Tao and Huiteng Pei
Buildings 2025, 15(11), 1946; https://doi.org/10.3390/buildings15111946 - 4 Jun 2025
Viewed by 367
Abstract
Pre-tensioned concrete T-beams with draped strands have been gradually promoted and used in bridge construction in recent years due to their advantages such as simple structure, efficient force distribution, and few defects. However, the current design codes exhibit conservative provisions for the calculation [...] Read more.
Pre-tensioned concrete T-beams with draped strands have been gradually promoted and used in bridge construction in recent years due to their advantages such as simple structure, efficient force distribution, and few defects. However, the current design codes exhibit conservative provisions for the calculation of the shear capacity of such beams under a small shear span ratio, which may lead to a large design value of beam web thickness. This is primarily due to insufficient experimental data. This paper details a full-scale experimental investigation on the shear failure mechanisms of two 30 m pre-tensioned concrete T-beams with draped strands, under a shear span ratio of 1, at which the shear capacity of the beams represents their upper limit. The specimens were tested to analyze their mechanical behavior, including load-deflection response, crack distribution, stirrup strain, and strand slip. The ultimate shear capacities of the test beams were 7107 kN and 6742 kN. To evaluate the applicability of current design codes, the experimental results were compared with theoretical predictions from five international design codes. The analysis revealed that the AASHTO code provided the highest upper limit of shear capacity for pre-tensioned concrete T-beams with draped strands, whereas the Chinese code (JTG 3362-2018) exhibited a significantly high safety factor of 4.09. These findings provide a basis for the optimized design of pre-tensioned concrete T-beams with draped strands and the determination of the upper limit of shear capacity. Full article
(This article belongs to the Special Issue Structural Vibration Analysis and Control in Civil Engineering)
Show Figures

Figure 1

14 pages, 10765 KiB  
Article
Experimental Study of Pre-Tensioned Polygonal Prestressed T-Beam Under Combined Loading Condition
by Zengbo Yao, Mingguang Wei, Hai Yan, Dinghao Yu, Gang Li, Chunlei Zhang, Jinglin Tao and Huiteng Pei
Buildings 2025, 15(8), 1379; https://doi.org/10.3390/buildings15081379 - 21 Apr 2025
Cited by 1 | Viewed by 481
Abstract
In order to investigate the mechanical behavior of a novel pre-tensioned polygonal prestressed T-beam subject to combined bending, shear, and torsion, this study meticulously designed and fabricated a full-scale specimen with a calculated span of 28.28 m, a beam height of 1.8 m, [...] Read more.
In order to investigate the mechanical behavior of a novel pre-tensioned polygonal prestressed T-beam subject to combined bending, shear, and torsion, this study meticulously designed and fabricated a full-scale specimen with a calculated span of 28.28 m, a beam height of 1.8 m, and a top flange width of 1.75 m. A systematic static loading test was conducted. A multi-source data acquisition methodology was employed throughout the experiment. A variety of embedded and external sensors were strategically arranged, in conjunction with non-contact digital image correlation (VIC-3D) technology, to thoroughly monitor and analyze key mechanical performance indicators, including deformation capacity, strain distribution characteristics, cracking resistance, and crack propagation behavior. This study provides valuable insights into the damage evolution process of novel polygonal pre-tensioned T-beams under complex loading conditions. The experimental results indicate that the loading process of the specimen when subjected to combined bending, shear, and torsion, can be divided into two distinct stages: the elastic stage and the crack development stage. Cracks initially manifested at the junction of the upper flange and web at the extremities of the beam and at the bottom flange of the loaded segment. Subsequently, numerous diagonal and flexural–shear cracks developed within the web, while diagonal cracks also commenced to form on the top surface, exhibiting a propensity to propagate toward the support section. Following the appearance of diagonal cracks in the web concrete, both stirrup strain and concrete strain demonstrated abrupt changes. The peak strain observed within the upper stirrups was markedly greater than that measured in the middle and lower regions. On the front elevation of the web, the principal strain peak was concentrated near the connection line between the loading bottom and the upper support. In contrast, on the back elevation of the web, the principal tensile strain was more pronounced near the connection line between the loading top and the lower support. Full article
(This article belongs to the Special Issue Structural Vibration Analysis and Control in Civil Engineering)
Show Figures

Figure 1

Back to TopTop