Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (95)

Search Parameters:
Keywords = line segment feature analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3824 KB  
Article
Comprehensive Analysis of the PP2C Gene Family in Grape (Vitis vinifera L.) and Identification of VvPP2C26 and VvPP2C41 as Negative Regulators of Fruit Ripening
by Kaidi Li, Kai Liu, Keyi Wang, Yunning Pang, Xuzhe Zhang, Xiujie Li and Bo Li
Plants 2025, 14(24), 3827; https://doi.org/10.3390/plants14243827 - 16 Dec 2025
Viewed by 377
Abstract
Protein phosphatase 2Cs (PP2Cs) are members of the serine/threonine phosphatase family that play pivotal roles in regulating plant development and responses to environmental stresses. However, comprehensive genome-wide studies of the PP2C gene family in grape (Vitis vinifera L.) have not yet been [...] Read more.
Protein phosphatase 2Cs (PP2Cs) are members of the serine/threonine phosphatase family that play pivotal roles in regulating plant development and responses to environmental stresses. However, comprehensive genome-wide studies of the PP2C gene family in grape (Vitis vinifera L.) have not yet been conducted. In the present study, 78 VvPP2C genes were identified and classified into 12 clades based on their phylogenetic relationships. Analysis of physicochemical properties and gene/protein architectures revealed that the members within each clade shared conserved structural features. Synteny analysis demonstrated that both tandem and segmental duplications substantially contributed to the expansion of the VvPP2C gene family. Tissue-specific transcriptional profiles and cis-element analyses indicated the potential involvement of these genes in grape development and stress responses. Moreover, expression analysis identified VvPP2C26 and VvPP2C41 as the most abscisic acid (ABA)-responsive genes, with expression patterns highly correlated with grape berry development. Functional validation in transgenic tomato lines demonstrated that the overexpression of either gene markedly delayed fruit ripening. Collectively, this study provides new insights into the evolutionary diversification and regulatory functions of the PP2C gene family in grape and identifies VvPP2C26 and VvPP2C41 as key candidates for elucidating ABA-mediated ripening mechanisms in non-climacteric fruits. Full article
(This article belongs to the Special Issue Berry and Cherry Fruit Crops)
Show Figures

Figure 1

18 pages, 3228 KB  
Article
Quantitative Evaluation Methods and Applications for Gravel Characteristics Distribution in Conglomerate Reservoirs
by Zhenhu Lv, Jietao Xu, Tianbo Liang, Ping Li, Xiaolu Chen, Hao Cheng and Yupeng Zhang
Processes 2025, 13(12), 3911; https://doi.org/10.3390/pr13123911 - 3 Dec 2025
Viewed by 546
Abstract
Conglomerate reservoirs often exhibit chaotic internal structures and strong heterogeneity due to the influence of gravel, which seriously restricts the balanced initiation of multiple clusters and the balanced expansion of artificial fractures in the volume fracturing section of horizontal wells. Therefore, clarifying the [...] Read more.
Conglomerate reservoirs often exhibit chaotic internal structures and strong heterogeneity due to the influence of gravel, which seriously restricts the balanced initiation of multiple clusters and the balanced expansion of artificial fractures in the volume fracturing section of horizontal wells. Therefore, clarifying the distribution pattern of gravel in conglomerate reservoirs is of great significance for the design and parameter optimization of horizontal well segmentation and clustering. This work conducts research on the interpretation results of imaging logging, establishes a characterization model for the distribution characteristics of gravel around horizontal wells, develops gravel feature recognition and analysis software for conglomerate reservoirs using image processing technology, and effectively obtains the morphology of gravel in imaging logging. Based on this, a correlation model between conventional logging and imaging logging is constructed to predict the distribution of gravel in horizontal wells without imaging logging. Using the Kriging interpolation method, a “point line surface” gravel distribution prediction method is proposed. Through three methods of imaging logging, downhole eagle-eye camera, and on-site coring, the model accuracy is found to be greater than 80%, guiding segmented clustering to avoid high gravel areas. During the fracturing process, the wellhead pressure is lower than that of adjacent wells, enabling greater fluid savings per well. The production effect is better than that of adjacent wells in the same block, providing a reference for the study of gravel distribution characteristics in conglomerate oil reservoirs. Full article
Show Figures

Figure 1

16 pages, 695 KB  
Review
Combining Proteomics and Organoid Research to Unravel the Multifunctional Complexity of Kidney Physiology Enhances the Need for Controlled Organoid Maturation
by Kathrin Groeneveld and Ralf Mrowka
Organoids 2025, 4(4), 28; https://doi.org/10.3390/organoids4040028 - 14 Nov 2025
Cited by 1 | Viewed by 962
Abstract
This review aims to highlight how the study of kidney organoids combined with proteomic analysis can deepen our understanding of renal physiology and disease. Proteomics quantifies proteins in a sample, allowing us to determine which proteins are present, how abundant they are, and [...] Read more.
This review aims to highlight how the study of kidney organoids combined with proteomic analysis can deepen our understanding of renal physiology and disease. Proteomics quantifies proteins in a sample, allowing us to determine which proteins are present, how abundant they are, and how they are modified. These data may reveal the pathways that are active in the kidney organoids and how they change in disease, helping to pinpoint candidate biomarkers. Kidney organoids are three-dimensional structures derived from induced pluripotent stem cells (iPS) that recapitulate many architectural and functional features of the adult organ. Because they can be generated in large numbers under defined conditions, organoids provide a promising platform for testing how genetic mutations, environmental stresses, or drugs affect kidney development and pathology. When proteomic profiles are obtained from mature organoids, researchers can directly link protein-level changes to phenotypic outcomes observed in the model. This integration makes it possible to map disease-related networks at the molecular level and to assess the impact of therapeutic interventions in a system that more closely resembles human kidney tissue than traditional cell lines. A current limitation is that many kidney organoids do not reach the full maturation seen in vivo; they often lack complete segmental differentiation and the functional robustness of adult nephrons. Improving the maturation state of organoids will be essential for accurately modeling chronic kidney diseases and for translating findings into clinically relevant therapies. Full article
Show Figures

Figure 1

23 pages, 8095 KB  
Article
Three-Dimensional Measurement of Transmission Line Icing Based on a Rule-Based Stereo Vision Framework
by Nalini Rizkyta Nusantika, Jin Xiao and Xiaoguang Hu
Electronics 2025, 14(21), 4184; https://doi.org/10.3390/electronics14214184 - 27 Oct 2025
Viewed by 644
Abstract
The safety and reliability of modern power systems are increasingly challenged by adverse environmental conditions. (1) Background: Ice accumulation on power transmission lines is recognized as a severe threat to grid stability, as tower collapse, conductor breakage, and large-scale outages may be caused, [...] Read more.
The safety and reliability of modern power systems are increasingly challenged by adverse environmental conditions. (1) Background: Ice accumulation on power transmission lines is recognized as a severe threat to grid stability, as tower collapse, conductor breakage, and large-scale outages may be caused, thereby making accurate monitoring essential. (2) Methods: A rule-driven and interpretable stereo vision framework is proposed for three-dimensional (3D) detection and quantitative measurement of transmission line icing. The framework consists of three stages. First, adaptive preprocessing and segmentation are applied using multiscale Retinex with nonlinear color restoration, graph-based segmentation with structural constraints, and hybrid edge detection. Second, stereo feature extraction and matching are performed through entropy-based adaptive cropping, self-adaptive keypoint thresholding with circular descriptor analysis, and multi-level geometric validation. Third, 3D reconstruction is realized by fusing segmentation and stereo correspondences through triangulation with shape-constrained refinement, reaching millimeter-level accuracy. (3) Result: An accuracy of 98.35%, sensitivity of 91.63%, specificity of 99.42%, and precision of 96.03% were achieved in contour extraction, while a precision of 90%, recall of 82%, and an F1-score of 0.8594 with real-time efficiency (0.014–0.037 s) were obtained in stereo matching. Millimeter-level accuracy (Mean Absolute Error: 1.26 mm, Root Mean Square Error: 1.53 mm, Coefficient of Determination = 0.99) was further achieved in 3D reconstruction. (4) Conclusions: Superior accuracy, efficiency, and interpretability are demonstrated compared with two existing rule-based stereo vision methods (Method A: ROI Tracking and Geometric Validation Method and Method B: Rule-Based Segmentation with Adaptive Thresholding) that perform line icing identification and 3D reconstruction, highlighting the framework’s advantages under limited data conditions. The interpretability of the framework is ensured through rule-based operations and stepwise visual outputs, allowing each processing result, from segmentation to three-dimensional reconstruction, to be directly understood and verified by operators and engineers. This transparency facilitates practical deployment and informed decision making in real world grid monitoring systems. Full article
Show Figures

Figure 1

27 pages, 5697 KB  
Article
Diagnosis of Mesothelioma Using Image Segmentation and Class-Based Deep Feature Transformations
by Siyami Aydın, Mehmet Ağar, Muharrem Çakmak and Mesut Toğaçar
Diagnostics 2025, 15(18), 2381; https://doi.org/10.3390/diagnostics15182381 - 18 Sep 2025
Cited by 1 | Viewed by 593
Abstract
Background/Objectives: Mesothelioma is a rare and aggressive form of cancer that primarily affects the lining of the lungs, abdomen, or heart. It typically arises from exposure to asbestos and is often diagnosed at advanced stages. Limited datasets and complex tissue structures contribute [...] Read more.
Background/Objectives: Mesothelioma is a rare and aggressive form of cancer that primarily affects the lining of the lungs, abdomen, or heart. It typically arises from exposure to asbestos and is often diagnosed at advanced stages. Limited datasets and complex tissue structures contribute to delays in diagnosis. This study aims to develop a novel hybrid model to improve the accuracy and timeliness of mesothelioma diagnosis. Methods: The proposed approach integrates automatic image segmentation, transformer-based model training, class-based feature extraction, and image transformation techniques. Initially, CT images were processed using the segment anything model (SAM) for region-focused segmentation. These segmented images were then used to train transformer models (CaiT and PVT) to extract class/type-specific features. Each class-based feature set was transformed into an image using Decoder, GAN, and NeRV techniques. Discriminative score and class centroid analysis were then applied to select the most informative image representation for each input. Finally, classification was performed using a residual-based support vector machine (SVM). Results: The proposed hybrid method achieved a classification accuracy of 99.80% in diagnosing mesothelioma, demonstrating its effectiveness in handling limited data and complex tissue characteristics. Conclusions: The results indicate that the proposed model offers a highly accurate and efficient approach to mesothelioma diagnosis. By leveraging advanced segmentation, feature extraction, and representation techniques, it effectively addresses the major challenges associated with early and precise detection of mesothelioma. Full article
(This article belongs to the Special Issue Machine-Learning-Based Disease Diagnosis and Prediction)
Show Figures

Figure 1

23 pages, 5510 KB  
Article
Research on Intelligent Generation of Line Drawings from Point Clouds for Ancient Architectural Heritage
by Shuzhuang Dong, Dan Wu, Weiliang Kong, Wenhu Liu and Na Xia
Buildings 2025, 15(18), 3341; https://doi.org/10.3390/buildings15183341 - 15 Sep 2025
Viewed by 1131
Abstract
Addressing the inefficiency, subjective errors, and limited adaptability of existing methods for surveying complex ancient structures, this study presents an intelligent hierarchical algorithm for generating line drawings guided by structured architectural features. Leveraging point cloud data, our approach integrates prior semantic and structural [...] Read more.
Addressing the inefficiency, subjective errors, and limited adaptability of existing methods for surveying complex ancient structures, this study presents an intelligent hierarchical algorithm for generating line drawings guided by structured architectural features. Leveraging point cloud data, our approach integrates prior semantic and structural knowledge of ancient buildings to establish a multi-granularity feature extraction framework encompassing local geometric features (normal vectors, curvature, Simplified Point Feature Histograms-SPFH), component-level semantic features (utilizing enhanced PointNet++ segmentation and geometric graph matching for specialized elements), and structural relationships (adjacency analysis, hierarchical support inference). This framework autonomously achieves intelligent layer assignment, line type/width selection based on component semantics, vectorization optimization via orthogonal and hierarchical topological constraints, and the intelligent generation of sectional views and symbolic annotations. We implemented an algorithmic toolchain using the AutoCAD Python API (pyautocad version 0.5.0) within the AutoCAD 2023 environment. Validation on point cloud datasets from two representative ancient structures—Guanchang No. 11 (Luoyuan County, Fujian) and Li Tianda’s Residence (Langxi County, Anhui)—demonstrates the method’s effectiveness in accurately identifying key components (e.g., columns, beams, Dougong brackets), generating engineering-standard line drawings with significantly enhanced efficiency over traditional approaches, and robustly handling complex architectural geometries. This research delivers an efficient, reliable, and intelligent solution for digital preservation, restoration design, and information archiving of ancient architectural heritage. Full article
Show Figures

Figure 1

19 pages, 17084 KB  
Article
SPADE: Superpixel Adjacency Driven Embedding for Three-Class Melanoma Segmentation
by Pablo Ordóñez, Ying Xie, Xinyue Zhang, Chloe Yixin Xie, Santiago Acosta and Issac Guitierrez
Algorithms 2025, 18(9), 551; https://doi.org/10.3390/a18090551 - 2 Sep 2025
Viewed by 968
Abstract
The accurate segmentation of pigmented skin lesions is a critical prerequisite for reliable melanoma detection, yet approximately 30% of lesions exhibit fuzzy or poorly defined borders. This ambiguity makes the definition of a single contour unreliable and limits the effectiveness of computer-assisted diagnosis [...] Read more.
The accurate segmentation of pigmented skin lesions is a critical prerequisite for reliable melanoma detection, yet approximately 30% of lesions exhibit fuzzy or poorly defined borders. This ambiguity makes the definition of a single contour unreliable and limits the effectiveness of computer-assisted diagnosis (CAD) systems. While clinical assessment based on the ABCDE criteria (asymmetry, border, color, diameter, and evolution), dermoscopic imaging, and scoring systems remains the standard, these methods are inherently subjective and vary with clinician experience. We address this challenge by reframing segmentation into three distinct regions: background, border, and lesion core. These regions are delineated using superpixels generated via the Simple Linear Iterative Clustering (SLIC) algorithm, which provides meaningful structural units for analysis. Our contributions are fourfold: (1) redefining lesion borders as regions, rather than sharp lines; (2) generating superpixel-level embeddings with a transformer-based autoencoder; (3) incorporating these embeddings as features for superpixel classification; and (4) integrating neighborhood information to construct enhanced feature vectors. Unlike pixel-level algorithms that often overlook boundary context, our pipeline fuses global class information with local spatial relationships, significantly improving precision and recall in challenging border regions. An evaluation on the HAM10000 melanoma dataset demonstrates that our superpixel–RAG–transformer (region adjacency graph) pipeline achieves exceptional performance (100% F1 score, accuracy, and precision) in classifying background, border, and lesion core superpixels. By transforming raw dermoscopic images into region-based structured representations, the proposed method generates more informative inputs for downstream deep learning models. This strategy not only advances melanoma analysis but also provides a generalizable framework for other medical image segmentation and classification tasks. Full article
Show Figures

Figure 1

12 pages, 2172 KB  
Article
Instance Segmentation Method for Insulators in Complex Backgrounds Based on Improved SOLOv2
by Ze Chen, Yangpeng Ji, Xiaodong Du, Shaokang Zhao, Zhenfei Huo and Xia Fang
Sensors 2025, 25(17), 5318; https://doi.org/10.3390/s25175318 - 27 Aug 2025
Viewed by 1003
Abstract
To precisely delineate the contours of insulators in complex transmission line images obtained from Unmanned Aerial Vehicle (UAV) inspections and thereby facilitate subsequent defect analysis, this study proposes an instance segmentation framework predicated upon an enhanced SOLOv2 model. The proposed framework integrates a [...] Read more.
To precisely delineate the contours of insulators in complex transmission line images obtained from Unmanned Aerial Vehicle (UAV) inspections and thereby facilitate subsequent defect analysis, this study proposes an instance segmentation framework predicated upon an enhanced SOLOv2 model. The proposed framework integrates a preprocessed edge channel, generated through the Non-Subsampled Contourlet Transform (NSCT), which augments the model’s capability to accurately capture the edges of insulators. Moreover, the input image resolution to the network is heightened to 1200 × 1600, permitting more detailed extraction of edges. Rather than the original ResNet + FPN architecture, the improved HRNet is utilized as the backbone to effectively harness multi-scale feature information, thereby enhancing the model’s overall efficacy. In response to the increased input size, there is a reduction in the network’s channel count, concurrent with an increase in the number of layers, ensuring an adequate receptive field without substantially escalating network parameters. Additionally, a Convolutional Block Attention Module (CBAM) is incorporated to refine mask quality and augment object detection precision. Furthermore, to bolster the model’s robustness and minimize annotation demands, a virtual dataset is crafted utilizing the fourth-generation Unreal Engine (UE4). Empirical results reveal that the proposed framework exhibits superior performance, with AP0.50 (90.21%), AP0.75 (83.34%), and AP[0.50:0.95] (67.26%) on a test set consisting of images supplied by the power grid. This framework surpasses existing methodologies and contributes significantly to the advancement of intelligent transmission line inspection. Full article
(This article belongs to the Special Issue Recent Trends and Advances in Intelligent Fault Diagnostics)
Show Figures

Figure 1

27 pages, 7285 KB  
Article
Towards Biologically-Inspired Visual SLAM in Dynamic Environments: IPL-SLAM with Instance Segmentation and Point-Line Feature Fusion
by Jian Liu, Donghao Yao, Na Liu and Ye Yuan
Biomimetics 2025, 10(9), 558; https://doi.org/10.3390/biomimetics10090558 - 22 Aug 2025
Cited by 1 | Viewed by 1128
Abstract
Simultaneous Localization and Mapping (SLAM) is a fundamental technique in mobile robotics, enabling autonomous navigation and environmental reconstruction. However, dynamic elements in real-world scenes—such as walking pedestrians, moving vehicles, and swinging doors—often degrade SLAM performance by introducing unreliable features that cause localization errors. [...] Read more.
Simultaneous Localization and Mapping (SLAM) is a fundamental technique in mobile robotics, enabling autonomous navigation and environmental reconstruction. However, dynamic elements in real-world scenes—such as walking pedestrians, moving vehicles, and swinging doors—often degrade SLAM performance by introducing unreliable features that cause localization errors. In this paper, we define dynamic regions as areas in the scene containing moving objects, and dynamic features as the visual features extracted from these regions that may adversely affect localization accuracy. Inspired by biological perception strategies that integrate semantic awareness and geometric cues, we propose Instance-level Point-Line SLAM (IPL-SLAM), a robust visual SLAM framework for dynamic environments. The system employs YOLOv8-based instance segmentation to detect potential dynamic regions and construct semantic priors, while simultaneously extracting point and line features using Oriented FAST (Features from Accelerated Segment Test) and Rotated BRIEF (Binary Robust Independent Elementary Features), collectively known as ORB, and Line Segment Detector (LSD) algorithms. Motion consistency checks and angular deviation analysis are applied to filter dynamic features, and pose optimization is conducted using an adaptive-weight error function. A static semantic point cloud map is further constructed to enhance scene understanding. Experimental results on the TUM RGB-D dataset demonstrate that IPL-SLAM significantly outperforms existing dynamic SLAM systems—including DS-SLAM and ORB-SLAM2—in terms of trajectory accuracy and robustness in complex indoor environments. Full article
(This article belongs to the Section Biomimetic Design, Constructions and Devices)
Show Figures

Figure 1

25 pages, 9913 KB  
Article
Video-Based CSwin Transformer Using Selective Filtering Technique for Interstitial Syndrome Detection
by Khalid Moafa, Maria Antico, Christopher Edwards, Marian Steffens, Jason Dowling, David Canty and Davide Fontanarosa
Appl. Sci. 2025, 15(16), 9126; https://doi.org/10.3390/app15169126 - 19 Aug 2025
Viewed by 706
Abstract
Interstitial lung diseases (ILD) significantly impact health and mortality, affecting millions of individuals worldwide. During the COVID-19 pandemic, lung ultrasonography (LUS) became an indispensable diagnostic and management tool for lung disorders. However, utilising LUS to diagnose ILD requires significant expertise. This research aims [...] Read more.
Interstitial lung diseases (ILD) significantly impact health and mortality, affecting millions of individuals worldwide. During the COVID-19 pandemic, lung ultrasonography (LUS) became an indispensable diagnostic and management tool for lung disorders. However, utilising LUS to diagnose ILD requires significant expertise. This research aims to develop an automated and efficient approach for diagnosing ILD from LUS videos using AI to support clinicians in their diagnostic procedures. We developed a binary classifier based on a state-of-the-art CSwin Transformer to discriminate between LUS videos from healthy and non-healthy patients. We used a multi-centric dataset from the Royal Melbourne Hospital (Australia) and the ULTRa Lab at the University of Trento (Italy), comprising 60 LUS videos. Each video corresponds to a single patient, comprising 30 healthy individuals and 30 patients with ILD, with frame counts ranging from 96 to 300 per video. Each video is annotated using the corresponding medical report as ground truth. The datasets used for training the model underwent selective frame filtering, including reduction in frame numbers to eliminate potentially misleading frames in non-healthy videos. This step was crucial because some ILD videos included segments of normal frames, which could be mixed with the pathological features and mislead the model. To address this, we eliminated frames with a healthy appearance, such as frames without B-lines, thereby ensuring that training focused on diagnostically relevant features. The trained model was assessed on an unseen, separate dataset of 12 videos (3 healthy and 9 ILD) with frame counts ranging from 96 to 300 per video. The model achieved an average classification accuracy of 91%, calculated as the mean of three testing methods: Random Sampling (92%), Key Featuring (92%), and Chunk Averaging (89%). In RS, 32 frames were randomly selected from each of the 12 videos, resulting in a classification with 92% accuracy, with specificity, precision, recall, and F1-score of 100%, 100%, 90%, and 95%, respectively. Similarly, KF, which involved manually selecting 32 key frames based on representative frames from each of the 12 videos, achieved 92% accuracy with a specificity, precision, recall, and F1-score of 100%, 100%, 90%, and 95%, respectively. In contrast, the CA method, where the 12 videos were divided into video segments (chunks) of 32 consecutive frames, with 82 video segments, achieved an 89% classification accuracy (73 out of 82 video segments). Among the 9 misclassified segments in the CA method, 6 were false positives and 3 were false negatives, corresponding to an 11% misclassification rate. The accuracy differences observed between the three training scenarios were confirmed to be statistically significant via inferential analysis. A one-way ANOVA conducted on the 10-fold cross-validation accuracies yielded a large F-statistic of 2135.67 and a small p-value of 6.7 × 10−26, indicating highly significant differences in model performance. The proposed approach is a valid solution for fully automating LUS disease detection, aligning with clinical diagnostic practices that integrate dynamic LUS videos. In conclusion, introducing the selective frame filtering technique to refine the dataset training reduced the effort required for labelling. Full article
Show Figures

Figure 1

20 pages, 5236 KB  
Article
Leakage Detection in Subway Tunnels Using 3D Point Cloud Data: Integrating Intensity and Geometric Features with XGBoost Classifier
by Anyin Zhang, Junjun Huang, Zexin Sun, Juju Duan, Yuanai Zhang and Yueqian Shen
Sensors 2025, 25(14), 4475; https://doi.org/10.3390/s25144475 - 18 Jul 2025
Cited by 3 | Viewed by 1272
Abstract
Detecting leakage using a point cloud acquired by mobile laser scanning (MLS) presents significant challenges, particularly from within three-dimensional space. These challenges primarily arise from the prevalence of noise in tunnel point clouds and the difficulty in accurately capturing the three-dimensional morphological characteristics [...] Read more.
Detecting leakage using a point cloud acquired by mobile laser scanning (MLS) presents significant challenges, particularly from within three-dimensional space. These challenges primarily arise from the prevalence of noise in tunnel point clouds and the difficulty in accurately capturing the three-dimensional morphological characteristics of leakage patterns. To address these limitations, this study proposes a classification method based on XGBoost classifier, integrating both intensity and geometric features. The proposed methodology comprises the following steps: First, a RANSAC algorithm is employed to filter out noise from tunnel objects, such as facilities, tracks, and bolt holes, which exhibit intensity values similar to leakage. Next, intensity features are extracted to facilitate the initial separation of leakage regions from the tunnel lining. Subsequently, geometric features derived from the k neighborhood are incorporated to complement the intensity features, enabling more effective segmentation of leakage from the lining structures. The optimal neighborhood scale is determined by selecting the scale that yields the highest F1-score for leakage across various multiple evaluated scales. Finally, the XGBoost classifier is applied to the binary classification to distinguish leakage from tunnel lining. Experimental results demonstrate that the integration of geometric features significantly enhances leakage detection accuracy, achieving an F1-score of 91.18% and 97.84% on two evaluated datasets, respectively. The consistent performance across four heterogeneous datasets indicates the robust generalization capability of the proposed methodology. Comparative analysis further shows that XGBoost outperforms other classifiers, such as Random Forest, AdaBoost, LightGBM, and CatBoost, in terms of balance of accuracy and computational efficiency. Moreover, compared to deep learning models, including PointNet, PointNet++, and DGCNN, the proposed method demonstrates superior performance in both detection accuracy and computational efficiency. Full article
(This article belongs to the Special Issue Application of LiDAR Remote Sensing and Mapping)
Show Figures

Figure 1

33 pages, 13448 KB  
Article
Analysis of Congestion-Propagation Time-Lag Characteristics in Air Route Networks Based on Multi-Channel Attention DSNG-BiLSTM
by Yue Lv, Yong Tian, Xiao Huang, Haifeng Huang, Bo Zhi and Jiangchen Li
Aerospace 2025, 12(6), 529; https://doi.org/10.3390/aerospace12060529 - 11 Jun 2025
Cited by 1 | Viewed by 1069
Abstract
As air transportation demand continues to rise, congestion in air route networks has seriously compromised the safe and efficient operation of air traffic. Few studies have examined the spatiotemporal characteristics of congestion propagation under different time lag conditions. To address this gap, this [...] Read more.
As air transportation demand continues to rise, congestion in air route networks has seriously compromised the safe and efficient operation of air traffic. Few studies have examined the spatiotemporal characteristics of congestion propagation under different time lag conditions. To address this gap, this study proposes a cross-segment congestion-propagation causal time-lag analysis framework. First, to account for the interdependency across segments in air route networks, we construct a point–line congestion state assessment model and introduce the FCM-WBO algorithm for precise congestion state identification. Next, the Multi-Channel Attention DSNG-BiLSTM model is designed to estimate the causal weights of congestion propagation between segments. Finally, based on these causal weights, two indicators—CPP and CPF—are derived to analyze the spatiotemporal characteristics of congestion propagation under various time lag levels. The results indicate that our method achieves over 90% accuracy in estimating causal weights. Moreover, the propagation features differ significantly in their spatiotemporal distributions under different time lags. Spatially, congestion sources tend to spread as time lag increases. We also identify segments that are likely to become overloaded, which serve as the primary receivers of congestion. Temporally, analysis of time-lag features reveals that because of higher traffic flow during peak periods, congestion propagates 36.92% more slowly than during the early-morning hours. By analyzing congestion propagation at multiple time lags, controllers can identify potential congestion sources in advance. They can then implement targeted interventions during critical periods, thereby alleviating congestion in real time and improving route-network efficiency and safety. Full article
(This article belongs to the Section Air Traffic and Transportation)
Show Figures

Figure 1

22 pages, 7559 KB  
Article
Automated Tunnel Point Cloud Segmentation and Extraction Method
by Zhe Wang, Zhenyi Zhu, Yong Wu, Qihao Hong, Donglai Jiang, Jinbo Fu and Sifa Xu
Appl. Sci. 2025, 15(6), 2926; https://doi.org/10.3390/app15062926 - 7 Mar 2025
Cited by 1 | Viewed by 2664
Abstract
To address the issue of inaccurate tunnel segmentation caused by solely relying on point cloud coordinates, this paper proposes two algorithms, GuSAC and TMatch, along with a ring-based cross-section extraction method to achieve high-precision tunnel lining segmentation and cross-section extraction. GuSAC, based on [...] Read more.
To address the issue of inaccurate tunnel segmentation caused by solely relying on point cloud coordinates, this paper proposes two algorithms, GuSAC and TMatch, along with a ring-based cross-section extraction method to achieve high-precision tunnel lining segmentation and cross-section extraction. GuSAC, based on the RANSAC algorithm, introduces a minimum spanning tree to reconstruct the topological structure of the tunnel design axis. By using a sliding window, it effectively distinguishes between curved and straight sections of long tunnels while removing non-tunnel structural point clouds with normal vectors, thereby enhancing the lining boundary features and significantly improving the automation level of tunnel processing. At the same time, the TMatch algorithm, which combines cluster analysis and Gaussian Mixture Models (GMMs), achieves accurate segmentation of tunnel rings and inner ring areas and further determines the tunnel cross-section position based on this segmentation result to complete the cross-section extraction. Experimental results show that the proposed method achieves a segmentation accuracy of up to 95% on a standard tunnel point cloud dataset. Compared with traditional centerline extraction methods, the proposed cross-section extraction method does not require complex parameter settings, provides more stable positioning, and demonstrates high practicality and robustness. Full article
Show Figures

Figure 1

13 pages, 11404 KB  
Essay
The Tectonic Significance of the Mw7.1 Earthquake Source Model in Tibet in 2025 Constrained by InSAR Data
by Shuyuan Yu, Shubi Zhang, Jiaji Luo, Zhejun Li and Juan Ding
Remote Sens. 2025, 17(5), 936; https://doi.org/10.3390/rs17050936 - 6 Mar 2025
Cited by 6 | Viewed by 3081
Abstract
On 7 January 2025, at Beijing time, an Mw7.1 earthquake occurred in Dingri County, Shigatse, Tibet. To accurately determine the fault that caused this earthquake and understand the source mechanism, this study utilized Differential Interferometric Synthetic Aperture Radar (DInSAR) technology to [...] Read more.
On 7 January 2025, at Beijing time, an Mw7.1 earthquake occurred in Dingri County, Shigatse, Tibet. To accurately determine the fault that caused this earthquake and understand the source mechanism, this study utilized Differential Interferometric Synthetic Aperture Radar (DInSAR) technology to process Sentinel-A data, obtaining the line-of-sight (LOS) co-seismic deformation field for this earthquake. This deformation field was used as constraint data to invert the geometric parameters and slip distribution of the fault. The co-seismic deformation field indicates that the main characteristics of the earthquake-affected area are vertical deformation and east-west extension, with maximum deformation amounts of 1.6 m and 1.0 m for the ascending and descending tracks, respectively. A Bayesian method based on sequential Monte Carlo sampling was employed to invert the position and geometric parameters of the fault, and on this basis, the slip distribution was inverted using the steepest descent method. The inversion results show that the fault has a strike of 189.2°, a dip angle of 40.6°, and is classified as a westward-dipping normal fault, with a rupture length of 20 km, a maximum slip of approximately 4.6 m, and an average slip angle of about −82.81°. This indicates that the earthquake predominantly involved normal faulting with a small amount of left–lateral strike–slip, corresponding to a moment magnitude of Mw7.1, suggesting that the fault responsible for the earthquake was the northern segment of the DMCF (Deng Me Cuo Fault). The slip distribution results obtained from the finite fault model inversion show that this earthquake led to a significant increase in Coulomb stress at both ends of the fault and in the northeastern–southwestern region, with stress loading far exceeding the earthquake triggering threshold of 0.03 MPa. Through analysis, we believe that this Dingri earthquake occurred at the intersection of a “Y”-shaped structural feature where stress concentration is likely, which may be a primary reason for the frequent occurrence of moderate to strong earthquakes in this area. Full article
Show Figures

Graphical abstract

19 pages, 9490 KB  
Article
Research on the Randomness of Low-Voltage AC Series Arc Faults Based on the Improved Cassie Model
by Yao Wang, Yuying Liu, Xin Ning, Dejie Sheng and Tianle Lan
Energies 2025, 18(3), 538; https://doi.org/10.3390/en18030538 - 24 Jan 2025
Cited by 2 | Viewed by 1374
Abstract
Low-voltage AC power lines are prone to arc faults, and an arc current presents as a random and complicated signal. The amplitude of the line current remains relatively unchanged during the occurrence of series arcs, hence complicating the detection of series arc faults. [...] Read more.
Low-voltage AC power lines are prone to arc faults, and an arc current presents as a random and complicated signal. The amplitude of the line current remains relatively unchanged during the occurrence of series arcs, hence complicating the detection of series arc faults. In this work, we developed a low-voltage series arc fault test platform to analyze the digital features of low-voltage series arc currents and the morphology of arc combustion, as the current model fails to capture the high-frequency and randomness of arc currents. An analysis of the physical causes and influencing factors of the random distribution of AC arc zero-crossing times was conducted. A time-domain simulation model for arc fault currents was developed by enhancing the time constant of the Cassie arc model, while the high-frequency features of arc currents were simulated using a segmented noise model. The measured arc current data were utilized to validate the model through the analysis of the zero-crossing time distribution of arc current, the correlation coefficient of the arc current frequency-domain signal, and the similarity of the time-domain waveforms. When comparing the similarity of the simulated waveforms of the arc model presented in this research and those of other traditional arc models, it was found that the suggested model effectively characterizes the time-/frequency-domain features of low-voltage AC series arc fault currents. The suggested model enhances the features of randomness in low-voltage AC series arc faults and is important in extracting essential aspects and reliably recognizing low-voltage series arc faults. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

Back to TopTop