Instance Segmentation Method for Insulators in Complex Backgrounds Based on Improved SOLOv2
Abstract
1. Introduction
- The insulator segmentation approach, enhanced by an improved SOLOv2 algorithm and applied to large-scale UAV imagery, demonstrates effectiveness in accurately segmenting insulators, thereby deriving their masks and contours.
- Incorporating an additional input channel dedicated to NSCT image contours enriches the input data, consequently enhancing the quality of the resultant masks when used in conjunction with CMBA.
- The virtual dataset generated through UE4 effectively diminishes the workload associated with annotation tasks, augments the dataset, and enhances the model’s generalization capabilities.
2. Proposed Framework
2.1. Improved SOLOv2
2.2. Preprocessing
2.3. HRNet as Backbone
2.4. Convolutional Attention Module CBAM
2.5. Select the Confidence Interval
3. Experimentation
3.1. Experimental Environment
3.2. Data Sources
3.3. Training Details
4. Experimental Results
4.1. Evaluation Metrics
4.2. Comparison of the Components of the Proposed Framework with the Original SOLOv2
- NSCT (Non-Subsampled Contourlet Transform) preprocessing: By adding NSCT to extract and strengthen the image contour and changing the image’s original three channels into four channels, noise and redundant information in the image are effectively removed. This makes it easier for the neural network to learn these features, improving the robustness and performance of the network.
- Replacement of the backbone network: The original SOLOv2 network has a complex structure. In this paper, the HRNet is used as the backbone network to replace the feature extraction layer of the original network’s ResNet50 combined with FPN. HRNet can perform feature extraction and information fusion with more fine-grained features, thereby improving the model’s performance in image segmentation tasks.
- Addition of CBAM: CBAM is a lightweight general attention module added to the head part of the network. The CBAM attention mechanism infuses the attention map along two independent dimensions of channel and space and then multiplies the attention map with the input feature map for adaptive feature optimization, obtaining refined feature information.
4.3. Comparison of Virtual Dataset Enhancements
4.4. Comparison of the Proposed Framework with Other Approaches
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- She, L.; Fan, Y.; Xu, M.; Wang, J.; Xue, J.; Ou, J. Insulator Breakage Detection Utilizing a Convolutional Neural Network Ensemble Implemented with Small Sample Data Augmentation and Transfer Learning. IEEE Trans. Power Deliv. 2022, 37, 2787–2796. [Google Scholar] [CrossRef]
- Lv, L.; Li, S.; Wang, H.; Jin, L. An approach for fault monitoring of insulators based on image tracking. In Proceedings of the 2017 24th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), Auckland, New Zealand, 21–23 November 2017; pp. 1–6. [Google Scholar]
- Reddy, M.J.B.; Chandra, B.K.; Mohanta, D.K. A DOST based approach for the condition monitoring of 11 kV distribution line insulators. IEEE Trans. Dielectr. Electr. Insul. 2011, 18, 588–595. [Google Scholar] [CrossRef]
- Zhai, Y.; Chen, R.; Yang, Q.; Li, X.; Zhao, Z. Insulator Fault Detection Based on Spatial Morphological Features of Aerial Images. IEEE Access 2018, 6, 35316–35326. [Google Scholar] [CrossRef]
- Potnuru, S.P.; Bhima, P.R. Image Processing and Machine Learning Applied for Condition Monitoring of 11-kV Power DistributionLine Insulators Using Curvelet and LTP Features. In Proceedings of the 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI), Chennai, India, 21–22 September 2017. [Google Scholar]
- Gao, F.; Wang, J.; Kong, Z.; Wu, J.; Feng, N.; Wang, S.; Hu, P.; Li, Z.; Huang, H.; Li, J. Recognition of insulator explosion based on deep learning. In Proceedings of the 14th IEEE International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), Chengdu, China, 15–17 December 2017; pp. 79–82. [Google Scholar]
- Cui, Z.; Yang, C.; Wang, S. Insulator Semantic Segmentation in Aerial Images Based on Multiscale Feature Fusion. Complexity 2022, 2022, 2468431. [Google Scholar] [CrossRef]
- Wei, B.; Xie, Z.; Liu, Y.; Wen, K.; Deng, F.; Zhang, P. Online monitoring method for insulator self-explosion based on edge computing and deep learning. CSEE J. Power Energy Syst. 2021, 2021, 23–34. [Google Scholar]
- Li, S.; Zhou, H.; Wang, G.; Zhu, X.; Kong, L.; Hu, Z. Cracked Insulator Detection Based on R-FCN. J. Phys. Conf. Ser. 2018, 1069, 12147. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, R.; Kong, T.; Li, L.; Shen, C. Solov2: Dynamic and fast instance segmentation. Adv. Neural Inf. Process. Syst. 2020, 33, 17721–17732. [Google Scholar]
- Wang, J.; Sun, K.; Cheng, T.; Jiang, B.; Deng, C.; Zhao, Y.; Liu, D.; Mu, Y.; Tan, M.; Wang, X.; et al. Deep High-Resolution Representation Learning for Visual Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 3349–3364. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Shen, C.; Kong, T.; Jiang, Y.; Li, L. SOLO: Segmenting Objects by Locations. In Proceedings of the 16th European Conference on Computer Vision—ECCV 2020, Glasgow, UK, 23–28 August 2020; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Lu, Y.; Wei, W.; Li, P.; Zhong, T.; Nong, Y.; Shi, X. A deep learning method for building façade parsing utilizing improved SOLOv2 instance segmentation. Energy Build. 2023, 295, 113275. [Google Scholar] [CrossRef]
- Zhao, P.; Wang, W.; Cai, Z.; Zhang, G.; Lu, Y. Accurate Fine-Grained Layout Analysis for the Historical Tibetan Document Based on the Instance Segmentation. IEEE Access 2021, 9, 154435–154447. [Google Scholar] [CrossRef]
- Cui, G.; Qiao, L.; Li, Y.; Chen, Z.; Liang, Z.; Xin, C.; Xiao, M.; Zou, X. Division of Cow Production Groups Based on SOLOv2 and Improved CNN-LSTM. Agriculture 2023, 13, 1562. [Google Scholar] [CrossRef]
- Yang, Q.; Peng, J.; Chen, D.; Zhang, H. Road Scene Instance Segmentation Based on Improved SOLOv2. Electronics 2023, 12, 4169. [Google Scholar] [CrossRef]
- Kaiming, H.; Xiangyu, Z.; Shaoqing, R.; Jian, S. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Singh, P.; Diwakar, M.; Singh, V.; Kadry, S.; Kim, J. A new local structural similarity fusion-based thresholding method for homomorphic ultrasound image despeckling in NSCT domain. J. King Saud Univ. Comput. Inf. Sci. 2023, 35, 101607. [Google Scholar] [CrossRef]
- Liu, H.; Jia, R.; Wen, Z.; Pan, J.; Zhang, L.; Shi, S.; Zhou, C. Working condition perception for froth flotation based on NSCT multiscale features. Miner. Eng. 2023, 204, 108410. [Google Scholar] [CrossRef]
- Zhu, Z.; Zheng, M.; Qi, G.; Wang, D.; Xiang, Y. A Phase Congruency and Local Laplacian Energy Based Multi-Modality Medical Image Fusion Method in NSCT Domain. IEEE Access 2019, 7, 20811–20824. [Google Scholar] [CrossRef]
- Bolya, D.; Zhou, C.; Xiao, F.; Lee, Y.J. YOLACT++ Better Real-Time Instance Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 1108–1121. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 386–397. [Google Scholar] [CrossRef] [PubMed]
- Xie, E.; Wang, W.; Ding, M.; Zhang, R.; Luo, P. PolarMask++: Enhanced Polar Representation for Single-Shot Instance Segmentation and Beyond. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 5385–5400. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Chen, W.; Wang, Y.; Su, Z.; Wang, Y.A.; Li, C.; Wang, Y. LSNet: Large-scale direct SLAM for tightly-coupled inertial-visual fusion. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 13861–13867. [Google Scholar]
- van den Oord, A.; Dieleman, S.; Zen, H.; Simonyan, K.; Vinyals, O.; Graves, A.; Kalchbrenner, N.; Senior, A.; Kavukcuoglu, K. WaveNet: A Generative Model for Raw Audio. arXiv 2016, arXiv:1609.03499. [Google Scholar] [CrossRef]
- Cheng, B.; Schuurmans, D.G.; Yuille, A. Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 1290–1299. [Google Scholar]
- Tian, Z.; Chen, B.; Wang, G. CondInst: Conditional Convolutions for Instance Segmentation. In Proceedings of the 16th European Conference on Computer Vision—ECCV 2020, Glasgow, UK, 23–28 August 2020; Springer: Cham, Switzerland, 2020; pp. 280–296. [Google Scholar]
Method | AP0.50 | AP0.75 | AP[0.50:0.95] |
---|---|---|---|
SOLOv2 | 0.8791 | 0.8148 | 0.6490 |
SOLOv2 + HRNet | 0.8848 | 0.8200 | 0.6552 |
SOLOv2 + CBAM | 0.8832 | 0.8178 | 0.6531 |
SOLOv2 + NSCT | 0.8817 | 0.8172 | 0.6521 |
SOLOv2 + HRNet + CBAM | 0.8877 | 0.8224 | 0.6583 |
SOLOv2 + HRNet + NSCT | 0.8887 | 0.8231 | 0.6592 |
SOLOv2 + CBAM + NSCT | 0.8863 | 0.8201 | 0.6560 |
SOLOv2 + HRNet + CBAM + NSCT | 0.8918 | 0.8254 | 0.6623 |
AP0.50 | AP0.75 | AP[0.50:0.95] | |
---|---|---|---|
Improved SOLOv2 | 0.8918 | 0.8254 | 0.6623 |
Improved SOLOv2 + 500 virtual dataset enhance training | 0.8933 | 0.8257 | 0.6635 |
Improved SOLOv2 + 1000 virtual dataset enhance training | 0.8942 | 0.8270 | 0.6643 |
Improved SOLOv2 + 2000 virtual dataset enhance training | 0.8959 | 0.8283 | 0.6664 |
Improved SOLOv2 + 3000 virtual dataset enhance training | 0.8983 | 0.8298 | 0.6685 |
Improved SOLOv2 + 5000 virtual dataset enhance training | 0.9018 | 0.8333 | 0.6724 |
Improved SOLOv2 + 7500 virtual dataset enhance training | 0.9020 | 0.8334 | 0.6721 |
Improved SOLOv2 + 10,000 virtual dataset enhance training | 0.9012 | 0.8332 | 0.6718 |
(a) Comparison of Backbones | ||||
---|---|---|---|---|
Backbone | AP0.50 | AP0.75 | AP[0.50:0.95] | FPS |
ResNet50 | 0.7908 | 0.7118 | 0.5589 | 20 |
ConvNeXt | 0.8710 | 0.8007 | 0.6397 | 25 |
EfficientNet | 0.8501 | 0.7866 | 0.6067 | 40 |
Vision Mamba | 0.9426 | 0.8842 | 0.7848 | 8 |
EfficientNet-FPN | 0.8791 | 0.8148 | 0.6490 | 30 |
HRNet-FPN | 0.8991 | 0.8491 | 0.6691 | 28 |
(b) Performances of Different Methods | ||||
Model | AP0.50 | AP0.75 | AP[0.50:0.95] | FPS |
Yolact | 0.7908 | 0.7118 | 0.5589 | 40 |
Mask RCNN | 0.8710 | 0.8007 | 0.6397 | 12 |
PolarMask | 0.8501 | 0.7866 | 0.6067 | 18 |
LSNet | 0.8426 | 0.7542 | 0.5848 | 42 |
WaveNet | 0.8791 | 0.8148 | 0.6490 | 46 |
Mask2Former | 0.9213 | 0.8541 | 0.6932 | 20 |
CondInst | 0.8911 | 0.8421 | 0.6656 | 21 |
Ours | 0.9021 | 0.8334 | 0.6726 | 38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Ji, Y.; Du, X.; Zhao, S.; Huo, Z.; Fang, X. Instance Segmentation Method for Insulators in Complex Backgrounds Based on Improved SOLOv2. Sensors 2025, 25, 5318. https://doi.org/10.3390/s25175318
Chen Z, Ji Y, Du X, Zhao S, Huo Z, Fang X. Instance Segmentation Method for Insulators in Complex Backgrounds Based on Improved SOLOv2. Sensors. 2025; 25(17):5318. https://doi.org/10.3390/s25175318
Chicago/Turabian StyleChen, Ze, Yangpeng Ji, Xiaodong Du, Shaokang Zhao, Zhenfei Huo, and Xia Fang. 2025. "Instance Segmentation Method for Insulators in Complex Backgrounds Based on Improved SOLOv2" Sensors 25, no. 17: 5318. https://doi.org/10.3390/s25175318
APA StyleChen, Z., Ji, Y., Du, X., Zhao, S., Huo, Z., & Fang, X. (2025). Instance Segmentation Method for Insulators in Complex Backgrounds Based on Improved SOLOv2. Sensors, 25(17), 5318. https://doi.org/10.3390/s25175318