Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,662)

Search Parameters:
Keywords = line assay

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2759 KiB  
Article
A Novel Serum-Based Bioassay for Quantification of Cancer-Associated Transformation Activity: A Case–Control and Animal Study
by Aye Aye Khine, Hsuan-Shun Huang, Pao-Chu Chen, Chun-Shuo Hsu, Ying-Hsi Chen, Sung-Chao Chu and Tang-Yuan Chu
Diagnostics 2025, 15(15), 1975; https://doi.org/10.3390/diagnostics15151975 (registering DOI) - 6 Aug 2025
Abstract
Background/Objectives: The detection of ovarian cancer remains challenging due to the lack of reliable serum biomarkers that reflect malignant transformation rather than mere tumor presence. We developed a novel biotest using an immortalized human fallopian tube epithelial cell line (TY), which exhibits [...] Read more.
Background/Objectives: The detection of ovarian cancer remains challenging due to the lack of reliable serum biomarkers that reflect malignant transformation rather than mere tumor presence. We developed a novel biotest using an immortalized human fallopian tube epithelial cell line (TY), which exhibits anchorage-independent growth (AIG) in response to cancer-associated serum factors. Methods: Sera from ovarian and breast cancer patients, non-cancer controls, and ID8 ovarian cancer-bearing mice were tested for AIG-promoting activity in TY cells. Results: TY cells (passage 96) effectively distinguished cancer sera from controls (68.50 ± 2.12 vs. 17.50 ± 3.54 colonies, p < 0.01) and correlated with serum CA125 levels (r = 0.73, p = 0.03) in ovarian cancer patients. Receiver operating characteristic (ROC) analysis showed high diagnostic accuracy (AUC = 0.85, cutoff: 23.75 colonies). The AIG-promoting activity was mediated by HGF/c-MET and IGF/IGF-1R signaling, as inhibition of these pathways reduced phosphorylation and AIG. In an ID8 mouse ovarian cancer model, TY-AIG colonies strongly correlated with tumor burden (r = 0.95, p < 0.01). Conclusions: Our findings demonstrate that the TY cell-based AIG assay is a sensitive and specific biotest for detecting ovarian cancer and potentially other malignancies, leveraging the fundamental hallmark of malignant transformation. Full article
(This article belongs to the Special Issue New Insights into the Diagnosis of Gynecological Diseases)
Show Figures

Figure 1

16 pages, 1674 KiB  
Article
Enhanced Anticancer Activity of Atractylodin-Loaded Poly(lactic-co-glycolic Acid) Nanoparticles Against Cholangiocarcinoma
by Tullayakorn Plengsuriyakarn, Luxsana Panrit and Kesara Na-Bangchang
Polymers 2025, 17(15), 2151; https://doi.org/10.3390/polym17152151 (registering DOI) - 6 Aug 2025
Abstract
Cholangiocarcinoma (CCA) is highly prevalent in the Greater Mekong sub-region, especially northeastern Thailand, where infection with the liver fluke Opisthorchis viverrini is a major etiological factor. Limited therapeutic options and the absence of reliable early diagnosis tools impede effective disease control. Atractylodes lancea [...] Read more.
Cholangiocarcinoma (CCA) is highly prevalent in the Greater Mekong sub-region, especially northeastern Thailand, where infection with the liver fluke Opisthorchis viverrini is a major etiological factor. Limited therapeutic options and the absence of reliable early diagnosis tools impede effective disease control. Atractylodes lancea (Thunb.) DC.—long used in Thai and East Asian medicine, contains atractylodin (ATD), a potent bioactive compound with anticancer potential. Here, we developed ATD-loaded poly(lactic co-glycolic acid) nanoparticles (ATD PLGA NPs) and evaluated their antitumor efficacy against CCA. The formulated nanoparticles had a mean diameter of 229.8 nm, an encapsulation efficiency of 83%, and exhibited biphasic, sustained release, reaching a cumulative release of 92% within seven days. In vitro, ATD-PLGA NPs selectively reduced the viability of CL-6 and HuCCT-1 CCA cell lines, with selectivity indices (SI) of 3.53 and 2.61, respectively, outperforming free ATD and 5-fluorouracil (5-FU). They suppressed CL-6 cell migration and invasion by up to 90% within 12 h and induced apoptosis in 83% of cells through caspase-3/7 activation. Micronucleus assays showed lower mutagenic potential than the positive control. In vivo, ATD-PLGA NPs dose-dependently inhibited tumor growth and prolonged survival in CCA-xenografted nude mice; the high-dose regimen matched or exceeded the efficacy of 5-FU. Gene expression analysis revealed significant downregulation of pro-tumorigenic factors (VEGF, MMP-9, TGF-β, TNF-α, COX-2, PGE2, and IL-6) and upregulation of the anti-inflammatory cytokine IL-10. Collectively, these results indicate that ATD-PLGA NPs are a promising nanotherapeutic platform for targeted CCA treatment, offering improved anticancer potency, selectivity, and safety compared to conventional therapies. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

17 pages, 6254 KiB  
Article
Pro-Apoptotic Effects of Unsymmetrical Bisacridines in 3D Pancreatic Multicellular Tumor Spheroids
by Agnieszka Kurdyn, Ewa Paluszkiewicz and Ewa Augustin
Int. J. Mol. Sci. 2025, 26(15), 7557; https://doi.org/10.3390/ijms26157557 - 5 Aug 2025
Abstract
Pancreatic cancer (PC) is an aggressive malignancy with a poor prognosis, requiring innovative approaches to evaluate new therapies. Considering the high activity of unsymmetrical bisacridines (UAs) in PC monolayer cultures, we employed multicellular tumor spheroids (MCTS) to assess whether UAs retain pro-apoptotic activity [...] Read more.
Pancreatic cancer (PC) is an aggressive malignancy with a poor prognosis, requiring innovative approaches to evaluate new therapies. Considering the high activity of unsymmetrical bisacridines (UAs) in PC monolayer cultures, we employed multicellular tumor spheroids (MCTS) to assess whether UAs retain pro-apoptotic activity under more physiologically relevant conditions. Ultra-low attachment plates were used to form spheroids from three PC cell lines (Panc-1, MIA PaCa-2, and AsPC-1) with different genotypes and phenotypes. The effects of UA derivatives (C-2028, C-2045, and C-2053) were evaluated using microscopy and flow cytometry (7-AAD for viability and annexin V-FITC/PI for membrane integrity). UAs altered the morphology of the spheroids and reduced their growth. Notably, Panc-1 spheroids exhibited compromised integrity. The increase in 7-AAD+ cells confirmed diminished cell viability, and annexin V-FITC assays showed apoptosis as the dominant death pathway. Interestingly, the exact derivative was most active against a given cell line regardless of culture conditions. These results confirm that UAs maintain anticancer activity in 3D cultures and induce apoptosis, with varying efficacy across different cell lines. This underscores the value of diverse cellular models in compound evaluation and supports UAs as promising candidates for pancreatic cancer therapy. Full article
Show Figures

Graphical abstract

23 pages, 2663 KiB  
Article
Antimicrobial and Anticancer Activities of Lactiplantibacillus plantarum Probio87 Isolated from Human Breast Milk
by Pei Xu, Mageswaran Uma Mageswary, Azka Ainun Nisaa, Xiang Li, Yi-Jer Tan, Chern-Ein Oon, Cheng-Siang Tan, Wen Luo and Min-Tze Liong
Nutrients 2025, 17(15), 2554; https://doi.org/10.3390/nu17152554 - 5 Aug 2025
Abstract
Background/Objectives: This study evaluated the in vitro probiotic potential of Lactiplantibacillus plantarum Probio87 (Probio87), focusing on its physiological robustness, safety, antimicrobial properties, and anticancer activity, with relevance to vaginal and cervical health. Methods: Tests included acid and bile salt tolerance, mucin adhesion, and [...] Read more.
Background/Objectives: This study evaluated the in vitro probiotic potential of Lactiplantibacillus plantarum Probio87 (Probio87), focusing on its physiological robustness, safety, antimicrobial properties, and anticancer activity, with relevance to vaginal and cervical health. Methods: Tests included acid and bile salt tolerance, mucin adhesion, and carbohydrate utilization. Prebiotic preferences were assessed using FOS, GOS, and inulin. Antibiotic susceptibility was evaluated per EFSA standards. Antimicrobial activity of the cell-free supernatant (CFS) was tested against Staphylococcus aureus, Escherichia coli, and Candida species. Effects on Lactobacillus iners and L. crispatus were analyzed. Anticancer properties were assessed in HeLa, CaSki (HPV-positive), and C-33A (HPV-negative) cervical cancer cell lines through proliferation, apoptosis, angiogenesis, and cell cycle assays. Results: Probio87 showed strong acid and bile tolerance, efficient mucin adhesion, and broad carbohydrate utilization, favoring short-chain prebiotics like FOS and GOS over inulin. It met EFSA antibiotic safety standards. The CFS exhibited potent antimicrobial activity, including complete inhibition of Candida albicans. Probio87 selectively inhibited L. iners without affecting L. crispatus, indicating positive modulation of vaginal microbiota. In cervical cancer cells, the CFS significantly reduced proliferation and angiogenesis markers (p < 0.05), and induced apoptosis and cell cycle arrest in HPV-positive cells, with minimal effects on HPV-negative C-33A cells. Conclusions: Probio87 demonstrates strong probiotic potential, with safe, selective antimicrobial and anticancer effects. Its ability to modulate key microbial and cancer-related pathways supports its application in functional foods or therapeutic strategies for vaginal and cervical health. Full article
(This article belongs to the Section Prebiotics and Probiotics)
Show Figures

Figure 1

13 pages, 1534 KiB  
Article
Analysis of Endoplasmic Reticulum Stress Proteins in Spermatogenic Cells After Paclitaxel Administration
by Suna Karadeniz Saygılı, Meryem Cansu Sahin, Fulya Yukcu and Senem Sanli
Curr. Issues Mol. Biol. 2025, 47(8), 620; https://doi.org/10.3390/cimb47080620 - 5 Aug 2025
Abstract
Background/Objectives: The aim of this research is to analyze the effect of paclitaxel on endoplasmic reticulum (ER) stress in spermatogenic cells. Methods: In the study, spermatogonium (GC1) and spermatocyte (GC2) cell lines were used. The IC50 dose of paclitaxel was calculated using an [...] Read more.
Background/Objectives: The aim of this research is to analyze the effect of paclitaxel on endoplasmic reticulum (ER) stress in spermatogenic cells. Methods: In the study, spermatogonium (GC1) and spermatocyte (GC2) cell lines were used. The IC50 dose of paclitaxel was calculated using an MTT assay. Each cell line was separated into two different groups: control (GC1-C, GC2-C) and paclitaxel-treated (GC1-P, GC2-P). The control cells were incubated under standard culture conditions. The paclitaxel group cells were incubated in culture medium containing the paclitaxel IC50 dose for 24 h. After the experiments, all groups were stained with GRP78, p-PERK, and p-eIF2α antibodies using semi-quantitative immunocytochemistry. Results: Paclitaxel showed cytotoxicity. In the experimental model of the paclitaxel-treated cells, all the markers showed elevated levels of immunoreactivity, indicating ER stress. Conclusions: Paclitaxel administration triggered ER stress in spermatogenic cells. Studies of ER-related stress mechanisms in spermatogenic cells with further advanced molecular analyses will be important for therapeutic strategies. Full article
Show Figures

Figure 1

24 pages, 6550 KiB  
Article
DNA Fingerprint Profile of Zizania spp. Plant, Monitoring Its Leaves with Screening of Their Biological Activity: Antimicrobial, Antioxidant and Cytotoxicity
by Latifah A. Al Shammari
Life 2025, 15(8), 1240; https://doi.org/10.3390/life15081240 - 5 Aug 2025
Abstract
This study presents an integrated approach combining molecular, phytochemical, and biological analyses to characterize a newly discovered Zizania specimen from the northern Nile Delta, Egypt. Genetic fingerprinting using RAPD and ISSR markers revealed 85% band-sharing similarity with Zizania texana (Z. texana), [...] Read more.
This study presents an integrated approach combining molecular, phytochemical, and biological analyses to characterize a newly discovered Zizania specimen from the northern Nile Delta, Egypt. Genetic fingerprinting using RAPD and ISSR markers revealed 85% band-sharing similarity with Zizania texana (Z. texana), though distinct morphological and genetic traits suggested potential intraspecific variation. Phytochemical profiling identified high concentrations of bioactive compounds, including quercetin (42.1 µg/mL), β-caryophyllene (11.21%), and gallic acid (23.4 µg/mL), which are pertinent and correlated with robust biological activities. The ethanolic leaf extract exhibited significant antioxidant capacity (IC50 = 38.6 µg/mL in DPPH assay), potent antimicrobial effects against Candida albicans (C. albicans) (IC50 = 4.9 ± 0.6 µg/mL), and dose-dependent cytotoxicity against cancer cell lines. MCF-7 has the lowest IC50 (28.3 ± 1.5 µg/mL), indicating the highest potency among the tested cell lines. In contrast, HepG2 demonstrates moderate sensitivity (IC50 = 31.4 ± 1.8 µg/mL), while A549 shows the highest IC50 value (36.9 ± 2.0 µg/mL), indicating greater resistance. These findings underscore the taxonomic novelty of the specimen and its potential as a source of natural antioxidants, antimicrobials, and anticancer agents. The study highlights the importance of interdisciplinary approaches in resolving taxonomic uncertainties and unlocking the medicinal value of understudied aquatic plants. Full article
(This article belongs to the Special Issue Therapeutic Innovations from Plants and Their Bioactive Extracts)
Show Figures

Figure 1

27 pages, 2005 KiB  
Article
Glyoxalase 1 Inducer, trans-Resveratrol and Hesperetin–Dietary Supplement with Multi-Modal Health Benefits
by Mingzhan Xue, Naila Rabbani and Paul J. Thornalley
Antioxidants 2025, 14(8), 956; https://doi.org/10.3390/antiox14080956 (registering DOI) - 4 Aug 2025
Viewed by 14
Abstract
A dietary supplement, trans-resveratrol and hesperetin (tRES+HESP)—also known as GlucoRegulate—induces increased expression of glyoxalase 1 (Glo1) by activation of transcription factor Nrf2, countering accumulation of the reactive dicarbonyl glycating agent, methylglyoxal. tRES+HESP corrected insulin resistance and decreased fasting and postprandial plasma glucose [...] Read more.
A dietary supplement, trans-resveratrol and hesperetin (tRES+HESP)—also known as GlucoRegulate—induces increased expression of glyoxalase 1 (Glo1) by activation of transcription factor Nrf2, countering accumulation of the reactive dicarbonyl glycating agent, methylglyoxal. tRES+HESP corrected insulin resistance and decreased fasting and postprandial plasma glucose and low-grade inflammation in overweight and obese subjects in a clinical trial. The aim of this study was to explore, for the first time, health-beneficial gene expression other than Glo1 induced by tRES+HESP in human endothelial cells and fibroblasts in primary culture and HepG2 hepatoma cell line and activity of cis-resveratrol (cRES) as a Glo1 inducer. We measured antioxidant response element-linked gene expression in these cells in response to 5 µM tRES+HESP by the NanoString method. tRES+HESP increases gene expression linked to the prevention of dicarbonyl stress, lipid peroxidation, oxidative stress, proteotoxicity and hyperglycemia-linked glycolytic overload. Downstream benefits were improved regulation of glucose and lipid metabolism and decreased inflammation, extracellular matrix remodeling and senescence markers. The median effective concentration of tRES was ninefold lower than cRES in the Glo1 inducer luciferase reporter assay. The GlucoRegulate supplement provides a new treatment option for the prevention of type 2 diabetes and metabolic dysfunction–associated steatotic liver disease and supports healthy aging. Full article
Show Figures

Figure 1

14 pages, 1575 KiB  
Article
Cytotoxic Effects of Bifora testiculata (L.) Spreng. Essential Oil and Its Main Component on Cancer Cell Lines
by Alessandro Vaglica, Antonella Porrello, Natale Badalamenti, Vincenzo Ilardi, Maurizio Bruno, Filippo Maggi, Massimo Bramucci and Luana Quassinti
Plants 2025, 14(15), 2408; https://doi.org/10.3390/plants14152408 - 4 Aug 2025
Viewed by 132
Abstract
Bifora testiculata (L.) Spreng. (Apiaceae), an understudied species endemic to the Mediterranean and the only representative species of the genus Bifora in Sicily, was investigated for the first time for its essential oil (EO) chemical composition and cytotoxic properties. The EO was obtained [...] Read more.
Bifora testiculata (L.) Spreng. (Apiaceae), an understudied species endemic to the Mediterranean and the only representative species of the genus Bifora in Sicily, was investigated for the first time for its essential oil (EO) chemical composition and cytotoxic properties. The EO was obtained via hydrodistillation and analyzed using GC-MS, revealing an aldehyde-rich profile (86.10%), dominated by trans-2-dodecenal (67.49%). Comparative analysis with previous studies on B. testiculata from Greece confirmed a similar aldehyde-rich profile, although minor compositional differences suggest potential chemotype variation. Given the biological relevance of trans-2-dodecenal and related aldehydes, further investigations into the cytotoxic properties of the EO of B. testiculata (Bt) and its main constituent against cancer cell lines were undertaken. Three human tumor cell lines (MDA-MB 231, A375, and CaCo2) and a human non-tumor cell line (HEK293) were subjected to viability tests using the MTT assay. The EO and trans-2-dodecenal exhibited remarkable cytotoxic activity against all cell lines, with IC50 values ranging between 7.93 and 14.41 µg/mL for Bt and between 1.88 and 5.29 µg/mL for trans-2-dodecenal. AO/BE fluorescent staining and Hoechst nuclear staining showed the presence of apoptotic bodies in the treated cells. N-acetyl-L-cysteine was able to invert the effects of Bt and trans-2-dodecenal on cell lines, suggesting ROS involvement in cytotoxic activity. The results demonstrated that the Bt cytotoxic activity was mainly due to the presence of trans-2-dodecenal. Full article
(This article belongs to the Special Issue Plant Essential Oil with Biological Activity: 3nd Edition)
Show Figures

Figure 1

17 pages, 1747 KiB  
Article
Rasagiline Inhibits Human Melanoma Cell Viability and Interacts Synergistically with Mitoxantrone and Antagonistically with Cisplatin—In Vitro Isobolographic Studies
by Danuta Krasowska, Paula Wróblewska-Łuczka, Michał Chojnacki, Katarzyna Załuska-Ogryzek, Jacek Kurzepa and Jarogniew J. Łuszczki
Cancers 2025, 17(15), 2563; https://doi.org/10.3390/cancers17152563 - 3 Aug 2025
Viewed by 271
Abstract
Background: The increased incidence of malignant melanoma is observed in patients with Parkinson’s disease. Methods: The anti-proliferative effects of carbidopa and rasagiline on four human malignant melanoma cell lines (A375, SK-MEL28, FM55P and FM55M2) were determined in MTT assay. The interaction profiles of [...] Read more.
Background: The increased incidence of malignant melanoma is observed in patients with Parkinson’s disease. Methods: The anti-proliferative effects of carbidopa and rasagiline on four human malignant melanoma cell lines (A375, SK-MEL28, FM55P and FM55M2) were determined in MTT assay. The interaction profiles of rasagiline in combinations with cisplatin (CDDP) and mitoxantrone (MTX) in four human melanoma cell lines (A375, SK-MEL28, FM55P and FM55M2) were assessed by means of the isobolographic analysis in the MTT test; Results: Rasagiline, but not carbidopa, produced clear-cut anti-proliferative effects on various melanoma cell lines. The median inhibitory concentrations (IC50 values) of rasagiline in the MTT were 280.69 µM for A375, 402.89 µM for SK-MEL28, 349.44 µM for FM55P, and 117.45 µM for FM55M2, respectively. The experimentally-derived selectivity index for rasagiline ranged from 8.22 to 28.18. Flow cytometry assay revealed, in two melanoma cell lines (FM55P and A375), a significant increase in the number of cells in the G0/G1 (up to 76.48% and 75.46% for cell lines, respectively), accompanied by a decrease in the percentage of cells in the S phase (decrease to 9.91% and 10.83% for cell lines, respectively), which may indicate potential cytostatic properties of rasagiline. The combinations of rasagiline with CDDP (at the fixed-ratio of 1:1) exerted either antagonistic interactions (p < 0.05) in the A375 and SK-MEL28, or additive interactions, with a tendency toward antagonism in the FM55P and FM55M2 cell lines in the MTT test. In contrast, the combinations of rasagiline with MTX (ratio of 1:1) produced either synergistic interaction (p < 0.05) in the FM55P cell line or additive interactions with a tendency toward synergy in the FM55M2, SK-MEL28, and A375 cell lines in the MTT test. Conclusions: Rasagiline combined with MTX exerted the most desirable synergistic interactions in relation to the anti-proliferative effects in four malignant melanoma cell lines, as assessed isobolographically. In contrast, rasagiline should not be combined with CDDP during the treatment of malignant melanoma due to the antagonistic interactions in the MTT assay. Full article
(This article belongs to the Special Issue Research on New Drugs and Drug Targets in Melanoma)
Show Figures

Figure 1

24 pages, 1244 KiB  
Article
HPLC-ESI-HRMS/MS-Based Metabolite Profiling and Bioactivity Assessment of Catharanthus roseus
by Soniya Joshi, Chen Huo, Rabin Budhathoki, Anita Gurung, Salyan Bhattarai, Khaga Raj Sharma, Ki Hyun Kim and Niranjan Parajuli
Plants 2025, 14(15), 2395; https://doi.org/10.3390/plants14152395 - 2 Aug 2025
Viewed by 834
Abstract
A comprehensive metabolic profiling of Catharanthus roseus (L.) G. Don was performed using tandem mass spectrometry, along with an evaluation of the biological activities of its various solvent extracts. Among these, the methanolic leaf extract exhibited mild radical scavenging activity, low to moderate [...] Read more.
A comprehensive metabolic profiling of Catharanthus roseus (L.) G. Don was performed using tandem mass spectrometry, along with an evaluation of the biological activities of its various solvent extracts. Among these, the methanolic leaf extract exhibited mild radical scavenging activity, low to moderate antimicrobial activity, and limited cytotoxicity in both the brine shrimp lethality assay and MTT assay against HeLa and A549 cell lines. High-performance liquid chromatography–electrospray ionization–high-resolution tandem mass spectrometry (HPLC-ESI-HRMS/MS) analysis led to the annotation of 34 metabolites, primarily alkaloids. These included 23 indole alkaloids, two fatty acids, two pentacyclic triterpenoids, one amino acid, four porphyrin derivatives, one glyceride, and one chlorin derivative. Notably, two metabolites—2,3-dihydroxypropyl 9,12,15-octadecatrienoate and (10S)-hydroxypheophorbide A—were identified for the first time in C. roseus. Furthermore, Global Natural Products Social Molecular Networking (GNPS) analysis revealed 18 additional metabolites, including epoxypheophorbide A, 11,12-dehydroursolic acid lactone, and 20-isocatharanthine. These findings highlight the diverse secondary metabolite profile of C. roseus and support its potential as a source of bioactive compounds for therapeutic development. Full article
Show Figures

Graphical abstract

15 pages, 2791 KiB  
Article
In Vitro and In Vivo Efficacy of the Essential Oil from the Leaves of Annona amazonica R.E. Fries (Annonaceae) Against Liver Cancer
by Maria V. L. de Castro, Milena C. F. de Lima, Gabriela A. da C. Barbosa, Sabrine G. Carvalho, Amanda M. R. M. Coelho, Luciano de S. Santos, Valdenizia R. Silva, Rosane B. Dias, Milena B. P. Soares, Emmanoel V. Costa and Daniel P. Bezerra
Molecules 2025, 30(15), 3248; https://doi.org/10.3390/molecules30153248 - 2 Aug 2025
Viewed by 162
Abstract
Annona amazonica R.E. Fries (synonyms Annona amazonica var. lancifolia R.E. Fries), popularly known in Brazil as “envireira”, is a tropical tree belonging to the Annonaceae family and is traditionally used as a food source. In this work, the in vitro and in vivo [...] Read more.
Annona amazonica R.E. Fries (synonyms Annona amazonica var. lancifolia R.E. Fries), popularly known in Brazil as “envireira”, is a tropical tree belonging to the Annonaceae family and is traditionally used as a food source. In this work, the in vitro and in vivo anti-liver cancer effects of essential oil (EO) from A. amazonica leaves were investigated for the first time. The chemical composition of the EO was evaluated via GC–MS and GC–FID. The alamar blue assay was used to evaluate the cytotoxicity of EOs against different cancerous and noncancerous cell lines. Cell cycle analyses, YO-PRO-1/PI staining, and rhodamine 123 staining were performed via flow cytometry in HepG2 cells treated with EO. The in vivo antitumor activity of EO was evaluated in NSG mice that were xenografted with HepG2 cells and treated with EO at a dose of 60 mg/kg. The major constituents (>5%) of the EO were (E)-caryophyllene (32.01%), 1,8-cineole (13.93%), α-copaene (7.77%), α-humulene (7.15%), and α-pinene (5.13%). EO increased apoptosis and proportionally decreased the number of viable HepG2 cells. The induction of DNA fragmentation and cell shrinkage together with a significant reduction in the ΔΨm in EO-treated HepG2 cells confirmed that EO can induce apoptosis. A significant 39.2% inhibition of tumor growth in vivo was detected in EO-treated animals. These data indicate the anti-liver cancer potential of EO from A. amazonica leaves. Full article
(This article belongs to the Special Issue Advances and Opportunities of Natural Products in Drug Discovery)
Show Figures

Figure 1

24 pages, 6999 KiB  
Article
Plasmid DNA Delivery to Cancer Cells with Poly(L-lysine)-Based Copolymers Bearing Thermally Sensitive Segments: Balancing Polyplex Tightness, Transfection Efficiency, and Biocompatibility
by Mustafa Kotmakci, Natalia Toncheva-Moncheva, Sahar Tarkavannezhad, Bilge Debelec Butuner, Ivaylo Dimitrov and Stanislav Rangelov
Pharmaceutics 2025, 17(8), 1012; https://doi.org/10.3390/pharmaceutics17081012 - 2 Aug 2025
Viewed by 274
Abstract
Background/Objectives. Efficient nucleic acid delivery into target cells remains a critical challenge in gene therapy. Due to its advantages in biocompatibility and safety, recent research has increasingly focused on non-viral gene delivery. Methods. A series of copolymers—synthesized by integrating thermally sensitive poly(N-isopropylacrylamide) [...] Read more.
Background/Objectives. Efficient nucleic acid delivery into target cells remains a critical challenge in gene therapy. Due to its advantages in biocompatibility and safety, recent research has increasingly focused on non-viral gene delivery. Methods. A series of copolymers—synthesized by integrating thermally sensitive poly(N-isopropylacrylamide) (PNIPAm), hydrophilic poly(ethylene glycol) (PEG) grafts, and a polycationic poly(L-lysine) (PLL) block of varying lengths ((PNIPAm)77-graft-(PEG)9-block-(PLL)z, z = 10–65)—were investigated. Plasmid DNA complexation with the copolymers was achieved through temperature-modulated methods. The resulting polyplexes were characterized by evaluating complex strength, particle size, zeta potential, plasmid DNA loading capacity, resistance to anionic stress, stability in serum, and lysosomal membrane destabilization assay. The copolymers’ potential for plasmid DNA delivery was assessed through cytotoxicity and transfection studies in cancer cell lines. Results. Across all complexation methods, the copolymers effectively condensed plasmid DNA into stable polyplexes. Particle sizes (60–90 nm) ranged with no apparent correlation to copolymer type, complexation method, or N/P ratio, whereas zeta potentials (+10–+20 mV) and resistance to polyanionic stress were dependent on the PLL length and N/P ratio. Cytotoxicity analysis revealed a direct correlation between PLL chain length and cell viability, with all copolymers demonstrating minimal cytotoxicity at concentrations required for efficient transfection. PNL-20 ((PNIPAm)77-graft-(PEG)9-block-(PLL)20) exhibited the highest transfection efficiency among the tested formulations while maintaining low cytotoxicity. Conclusions. The study highlights the promising potential of (PNIPAm)77-graft-(PEG)9-block-(PLL)z copolymers for effective plasmid DNA delivery to cancer cells. It reveals the importance of attaining the right balance between polyplex tightness and plasmid release to achieve improved biocompatibility and transfection efficiency. Full article
Show Figures

Figure 1

17 pages, 1872 KiB  
Article
Bioactive Chalcones from Aizoon africanum: Isolation and Cytotoxicity Against Liver and Neural Cancer Cells
by Ali O. E. Eltahir, Naeem Sheik Abdul, Taskeen F. Docrat, Paolo Bristow, Elias Chipofya, Robert C. Luckay, Monde A. Nyila, Jeanine L. Marnewick, Kadidiatou O. Ndjoubi and Ahmed A. Hussein
Plants 2025, 14(15), 2389; https://doi.org/10.3390/plants14152389 - 2 Aug 2025
Viewed by 202
Abstract
Aizoon africanum (L.) Klak (Synonym Galenia africana L.) is traditionally used for a variety of medicinal purposes; however, it has been reported to cause liver damage and severe ascites, particularly in sheep and Angora goats in the arid regions of the Western Cape. [...] Read more.
Aizoon africanum (L.) Klak (Synonym Galenia africana L.) is traditionally used for a variety of medicinal purposes; however, it has been reported to cause liver damage and severe ascites, particularly in sheep and Angora goats in the arid regions of the Western Cape. This study explores its cytotoxic properties to identify potential cytotoxic compound(s) in the plant. The methanolic extract of A. africanum was re-investigated and subjected to various chromatographic techniques, including preparative HPLC, resulting in the isolation of eight compounds (18). Structural elucidation was primarily based on NMR data. Among the isolated compounds, four were flavanones, one was a flavonone, and three were chalcones. Notably, compound 8 was identified as a new chalcone, while compounds 2 and 3 were reported for the first time from this plant. The toxicity of these isolated compounds was evaluated against the HepG2 and SH-SY5Y cancer cell lines using the MTT assay. We further investigated markers of cell death using spectrophotometric and luminometric methods. Among the isolated compounds, 7 and 8 exhibited cytotoxic activities within the range of 3.0–20.0 µg/mL. Notably, the compounds demonstrated greater cytotoxicity towards liver-derived HepG2 cells compared to the neuronal SH-SY5Y cell line. Compound 7 (2′,4′-dihydroxychalcone) was identified as inducing apoptosis through the intrinsic pathway without causing overt necrosis. The findings indicate that the phytochemicals derived from A. africanum exhibit differential cytotoxic effects based on cell type, suggesting potential for developing novel anticancer agents, particularly compound 7. Additionally, the identification of compound 8 provides insight into the liver toxicity of this plant observed in sheep in South Africa. Full article
Show Figures

Figure 1

12 pages, 1435 KiB  
Article
Amino Acid Analysis and Cytotoxicity Study of Iraqi Ocimum basilicum Plant
by Omar Hussein Ahmed
Molecules 2025, 30(15), 3232; https://doi.org/10.3390/molecules30153232 - 1 Aug 2025
Viewed by 394
Abstract
Background: This paper deals with the detection of amino acid composition of Iraqi Ocimum basilicum (basil) leaves and evaluation of the cytotoxic effects of the plant leaf extract on human colorectal cancer cells. Methods: Leaves of Ocimum basilicum were collected from Iraq in [...] Read more.
Background: This paper deals with the detection of amino acid composition of Iraqi Ocimum basilicum (basil) leaves and evaluation of the cytotoxic effects of the plant leaf extract on human colorectal cancer cells. Methods: Leaves of Ocimum basilicum were collected from Iraq in November 2024. After drying and powdering, the plant material went through cold methanol extraction. Initial phytochemical screening was conducted to identify the presence of alkaloids, flavonoids, coumarins, and terpenoids. Amino acid analysis was completed by an amino acid analyzer with fluorescence detection. The cytotoxic effect was evaluated via the MTT assay on HRT-18 cell lines. Morphological changes were further tested using dual Propidium Iodide/Acridine Orange assay fluorescent staining. Results: Seventeen amino acids were detected in the plant extract. The extract showed dose-dependent cytotoxic effects on HRT-18 cells, with significant reduction in cell viability at concentrations of more than 25 µg/mL. Morphological alterations of membrane blebbing and cell shrinkage were observed, suggesting apoptotic activity. The IC50 value confirmed strong cytotoxic potential. Conclusions: The extract of Ocimum basilicum leaf cultivated in Iraq shows a rich amino acid profile and significant cytotoxic activity against colorectal cancer cells that highlights its potential effect as a natural source of anticancer compounds. Full article
Show Figures

Figure 1

15 pages, 1363 KiB  
Article
Evaluation of a Rhenium(I) Complex and Its Pyridostatin-Containing Chelator as Radiosensitizers for Chemoradiotherapy
by António Paulo, Sofia Cardoso, Edgar Mendes, Elisa Palma, Paula Raposinho and Ana Belchior
Molecules 2025, 30(15), 3240; https://doi.org/10.3390/molecules30153240 - 1 Aug 2025
Viewed by 159
Abstract
The use of radiosensitizers is a beneficial approach in cancer radiotherapy treatment. However, the enhancement of radiation effects on cancer cells by radiosensitizers involves several different mechanisms, reflecting the chemical nature of the radiosensitizer. G-quadruplex (G4) DNA ligands have emerged in recent years [...] Read more.
The use of radiosensitizers is a beneficial approach in cancer radiotherapy treatment. However, the enhancement of radiation effects on cancer cells by radiosensitizers involves several different mechanisms, reflecting the chemical nature of the radiosensitizer. G-quadruplex (G4) DNA ligands have emerged in recent years as a potential new class of radiosensitizers binding to specific DNA sequences. Recently, we have shown that the Re(I) tricarbonyl complex PDF-Pz-Re and its pyrazolyl-diamine chelator PDF-Pz, carrying a N-methylated pyridostatin (PDF) derivative, act as G4 binders of various G4-forming DNA and RNA sequences. As described in this contribution, these features prompted us to evaluate PDF-Pz-Re and PDF-Pz as radiosensitizers of prostate cancer PC3 cells submitted to concomitant treatment with Co-60 radiation. The compound RHPS4 was also tested, as this G4 ligand was previously shown to exhibit strong radiosensitizing properties in other cancer cell lines. The assessment of the resulting radiobiological effects, namely through clonogenic cell survival, DNA damage, and ROS production assays, showed that PDF-Pz-Re and PDF-Pz were able to radiosensitize PC3 cells despite being less active than RHPS4. Our results corroborate that G4 DNA ligands are a class of compounds with potential interest as radiosensitizers, deserving further studies to optimize their radiosensitization activity and elucidate the mechanisms of action. Full article
(This article belongs to the Special Issue Metal-Based Drugs: Past, Present and Future, 3rd Edition)
Show Figures

Figure 1

Back to TopTop