Evaluation of a Rhenium(I) Complex and Its Pyridostatin-Containing Chelator as Radiosensitizers for Chemoradiotherapy
Abstract
1. Introduction
2. Results and Discussion
2.1. Cytotoxicity Studies: Selection of the Concentration of Radiosensitizers
2.2. Assessment of Radiosensitization Effects by the Clonogenic Survival Assay
2.3. DNA Damage: ɣ-H2AX Assay
2.4. ROS Production
3. Materials and Methods
3.1. G4 Ligands
3.2. Cell Culture and Cell Viability Assay
3.3. Cellular Irradiations
3.4. Radiobiological Effects
3.4.1. Cell Proliferation and Colony Formation Assay
3.4.2. ɣ-H2AX Assay and Foci Analysis
3.5. Production of ROS
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
D10 | Radiation dose at 10% survival |
DAPI | 4′,6-diamidino-2-phenylindole, |
DCF | 2′,7′-dichlorofluorescein |
DDR | DNA damage response |
DMSO | Dimethyl sulfoxide |
DSBs | Double-strand breaks |
EBRT | External beam radiation therapy |
EF | Enhancement factor |
G4 | G-quadruplex |
H2DCF-DA | 2′,7′-dichlorodihydrofluorescein diacetate |
HPLC | High Performance Liquid Chromatography |
IC50 | Half maximal inhibitory concentration |
IR | Ionizing radiation |
LQ | Linear-quadratic |
MTT | 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide |
PBS | Phosphate buffered saline |
NMR | Nuclear magnetic resonance |
PCa | Prostate cancer |
4-(2-aminoethoxy)-N2,N6-bis(4-(2-(dimethylamino)ethoxy)quinolin-2-yl)pyridine-2,6-dicarboxamide | |
PDF-Pz | 4-(2-(2-(1-(2-((2-aminoethyl)amino)ethyl)-3,5-dimethyl-1H-pyrazol-4-yl)acetamido)ethoxy)-N2,N6-bis(4-(2-(dimethylamino)ethoxy)quinolin-2-yl)pyridine-2,6-dicarboxamide |
PDS | 4-(2-aminoethoxy)-N2,N6-bis [4-(2-aminoethoxy)-2-quinolinyl]-2,6-pyridinedicarboxamide hydrochloride |
ROS | Reactive oxygen species |
SF | Survival fraction |
References
- Shirato, H.; Le, Q.-T.; Kobashi, K.; Prayongrat, A.; Takao, S.; Shimizu, S.; Giaccia, A.; Xing, L.; Umegaki, K. Selection of External Beam Radiotherapy Approaches for Precise and Accurate Cancer Treatment. J. Radiat. Res. 2018, 59, i2–i10. [Google Scholar] [CrossRef]
- Chen, H.H.W.; Kuo, M.T. Improving Radiotherapy in Cancer Treatment: Promises and Challenges. Oncotarget 2017, 8, 62742–62758. [Google Scholar] [CrossRef]
- Maier, P.; Hartmann, L.; Wenz, F.; Herskind, C. Cellular Pathways in Response to Ionizing Radiation and Their Targetability for Tumor Radiosensitization. Int. J. Mol. Sci. 2016, 17, 102. [Google Scholar] [CrossRef] [PubMed]
- Gill, M.R.; Vallis, K.A. Transition Metal Compounds as Cancer Radiosensitizers. Chem. Soc. Rev. 2019, 48, 540–557. [Google Scholar] [CrossRef] [PubMed]
- Buckley, A.M.; Lynam-Lennon, N.; O’Neill, H.; O’Sullivan, J. Targeting Hallmarks of Cancer to Enhance Radiosensitivity in Gastrointestinal Cancers. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 298–313. [Google Scholar] [CrossRef]
- Gong, L.; Zhang, Y.; Liu, C.; Zhang, M.; Han, S. Application of Radiosensitizers in Cancer Radiotherapy. Int. J. Nanomed. 2021, 16, 1083–1102. [Google Scholar] [CrossRef]
- Augustin, M.; Wilhelm, M.; Reichert, B.; Siegler, G.M.; Dreier, J.; Rottmann, M.; Blos, M.; Kalisch, A.; Dressler, S.; Stein, H.; et al. Radiochemotherapy with Gemcitabine as Radiosensitizer in Patients with Soft Tissue Sarcoma. J. Clin. Oncol. 2020, 38, e23559. [Google Scholar] [CrossRef]
- Kaina, B.; Beltzig, L.; Strik, H. Temozolomide—Just a Radiosensitizer? Front. Oncol. 2022, 12, 912821. [Google Scholar] [CrossRef] [PubMed]
- Fong, C.W. Platinum Based Radiochemotherapies: Free Radical Mechanisms and Radiotherapy Sensitizers. Free. Radic. Biol. Med. 2016, 99, 99–109. [Google Scholar] [CrossRef]
- de Haan, R.; van Werkhoven, E.; van den Heuvel, M.M.; Peulen, H.M.U.; Sonke, G.S.; Elkhuizen, P.; van den Brekel, M.W.M.; Tesselaar, M.E.T.; Vens, C.; Schellens, J.H.M.; et al. Study Protocols of Three Parallel Phase 1 Trials Combining Radical Radiotherapy with the PARP Inhibitor Olaparib. BMC Cancer 2019, 19, 901. [Google Scholar] [CrossRef]
- Wang, H.; Mu, X.; He, H.; Zhang, X.-D. Cancer Radiosensitizers. Trends Pharmacol. Sci. 2018, 39, 24–48. [Google Scholar] [CrossRef] [PubMed]
- Palma, E.; Carvalho, J.; Cruz, C.; Paulo, A. Metal-Based G-Quadruplex Binders for Cancer Theranostics. Pharmaceuticals 2021, 14, 605. [Google Scholar] [CrossRef]
- Merle, P.; Evrard, B.; Petitjean, A.; Lehn, J.-M.; Teulade-Fichou, M.-P.; Chautard, E.; De Cian, A.; Guittat, L.; Tran, P.L.T.; Mergny, J.-L.; et al. Telomere Targeting with a New G4 Ligand Enhances Radiation-Induced Killing of Human Glioblastoma Cells. Mol. Cancer Ther. 2011, 10, 1784–1795. [Google Scholar] [CrossRef]
- Merle, P.; Gueugneau, M.; Teulade-Fichou, M.-P.; Müller-Barthélémy, M.; Amiard, S.; Chautard, E.; Guetta, C.; Dedieu, V.; Communal, Y.; Mergny, J.-L.; et al. Highly Efficient Radiosensitization of Human Glioblastoma and Lung Cancer Cells by a G-Quadruplex DNA Binding Compound. Sci. Rep. 2015, 5, 16255. [Google Scholar] [CrossRef]
- Berardinelli, F.; Siteni, S.; Tanzarella, C.; Stevens, M.F.; Sgura, A.; Antoccia, A. The G-Quadruplex-Stabilising Agent RHPS4 Induces Telomeric Dysfunction and Enhances Radiosensitivity in Glioblastoma Cells. DNA Repair. 2015, 25, 104–115. [Google Scholar] [CrossRef]
- Berardinelli, F.; Sgura, A.; Facoetti, A.; Leone, S.; Vischioni, B.; Ciocca, M.; Antoccia, A. The G-Quadruplex-Stabilizing Ligand RHPS4 Enhances Sensitivity of U251MG Glioblastoma Cells to Clinical Carbon Ion Beams. FEBS J. 2018, 285, 1226–1236. [Google Scholar] [CrossRef]
- Palma, A.; Grande, S.; Luciani, A.M.; Ricci-Vitiani, L.; Buccarelli, M.; Pallini, R.; Triveri, A.; Pirota, V.; Doria, F.; D’Alessandris, Q.G.; et al. Effects of the Combined Treatment with a G-Quadruplex-Stabilizing Ligand and Photon Beams on Glioblastoma Stem-like Cells: A Magnetic Resonance Study. Int. J. Mol. Sci. 2021, 22, 12709. [Google Scholar] [CrossRef] [PubMed]
- Tricot, S.; Siberchicot, C.; Bontemps, I.; Desmaze, C.; Kratassiouk, G.; Vandamme, M.; Pinna, G.; Radicella, J.P.; Lenaers, G.; Lebeau, J.; et al. G-Quadruplex Ligand RHPS4 Compromises Cellular Radio-Resistance by Blocking the Increase in Mitochondrial Mass and Activity Induced by Ionising Irradiation. bioRxiv 2024. [Google Scholar] [CrossRef]
- Berardinelli, F.; Tanori, M.; Muoio, D.; Buccarelli, M.; di Masi, A.; Leone, S.; Ricci-Vitiani, L.; Pallini, R.; Mancuso, M.; Antoccia, A. G-Quadruplex Ligand RHPS4 Radiosensitizes Glioblastoma Xenograft in Vivo through a Differential Targeting of Bulky Differentiated- and Stem-Cancer Cells. J. Exp. Clin. Cancer Res. 2019, 38, 311. [Google Scholar] [CrossRef]
- Berardinelli, F.; Coluzzi, E.; Sgura, A.; Antoccia, A. Targeting Telomerase and Telomeres to Enhance Ionizing Radiation Effects in in Vitro and in Vivo Cancer Models. Mutat. Res./Rev. Mutat. Res. 2017, 773, 204–219. [Google Scholar] [CrossRef] [PubMed]
- Palma, E.; Içhedef, C.; Fernandes, C.; Belchior, A.; Raposinho, P.; Gano, L.; Miranda, A.; Moreira, D.; Lourenço, P.; Cruz, C.; et al. Targeting of G-Quadruplex DNA with 99mTc(I)/Re(I) Tricarbonyl Complexes Carrying Pyridostatin Derivatives. Chem. Eur. J. 2024, 30, e202400285. [Google Scholar] [CrossRef]
- Palma, E.; Santos, J.F.; Fernandes, C.; Paulo, A. DNA-Targeted Complexes of Tc and Re for Biomedical Applications. Chem. Eur. J. 2024, 30, e202303591. [Google Scholar] [CrossRef] [PubMed]
- Hegemann, N.-S.; Guckenberger, M.; Belka, C.; Ganswindt, U.; Manapov, F.; Li, M. Hypofractionated Radiotherapy for Prostate Cancer. Radiat. Oncol. 2014, 9, 275. [Google Scholar] [CrossRef]
- Sideri, S.; Petragnano, F.; Maggio, R.; Petrungaro, S.; Catizone, A.; Gesualdi, L.; De Martino, V.; Battafarano, G.; Del Fattore, A.; Liguoro, D.; et al. Radioresistance Mechanisms in Prostate Cancer Cell Lines Surviving Ultra-Hypo-Fractionated EBRT: Implications and Possible Clinical Applications. Cancers 2022, 14, 5504. [Google Scholar] [CrossRef] [PubMed]
- Leitao, R.C.F.; Silva, F.; Ribeiro, G.H.; Santos, I.C.; Guerreiro, J.F.; Mendes, F.; Batista, A.A.; Pavan, F.R.; da S. Maia, P.I.; Paulo, A.; et al. Gallium and Indium Complexes with Isoniazid-Derived Ligands: Interaction with Biomolecules and Biological Activity against Cancer Cells and Mycobacterium Tuberculosis. J. Inorg. Biochem. 2023, 240, 112091. [Google Scholar] [CrossRef]
- Dearnaley, D.; Syndikus, I.; Mossop, H.; Khoo, V.; Birtle, A.; Bloomfield, D.; Graham, J.; Kirkbride, P.; Logue, J.; Malik, Z.; et al. Conventional versus Hypofractionated High-Dose Intensity-Modulated Radiotherapy for Prostate Cancer: 5-Year Outcomes of the Randomised, Non-Inferiority, Phase 3 CHHiP Trial. Lancet Oncol. 2016, 17, 1047–1060. [Google Scholar] [CrossRef] [PubMed]
- Franken, N.A.P.; Oei, A.L.; Kok, H.P.; Rodermond, H.M.; Sminia, P.; Crezee, J.; Stalpers, L.J.A.; Barendsen, G.W. Cell Survival and Radiosensitisation: Modulation of the Linear and Quadratic Parameters of the LQ Model (Review). Int. J. Oncol. 2013, 42, 1501–1515. [Google Scholar] [CrossRef] [PubMed]
- Cui, M.; Li, Y.; Liu, J.; Sun, D. Elevated α/β Ratio after Hypofractionated Radiotherapy Correlated with DNA Damage Repairment in an Experimental Model of Prostate Cancer. J. Radiat. Res. 2024, 65, 776–786. [Google Scholar] [CrossRef]
- McMahon, S.J. The Linear Quadratic Model: Usage, Interpretation and Challenges. Phys. Med. Biol. 2018, 64, 01TR01. [Google Scholar] [CrossRef]
- Triantopoulou, S.; Roupa, I.; Shegani, A.; Pirmettis, N.N.; Terzoudi, G.I.; Chiotellis, A.; Tolia, M.; Damilakis, J.; Pirmettis, I.; Paravatou-Petsota, M. Synthesis and Biological Evaluation of Novel Cationic Rhenium and Technetium-99m Complexes Bearing Quinazoline Derivative for Epidermal Growth Factor Receptor Targeting. Pharmaceutics 2024, 16, 1213. [Google Scholar] [CrossRef]
- Mishra, K.N.; Moftah, B.A.; Alsbeih, G.A. Appraisal of Mechanisms of Radioprotection and Therapeutic Approaches of Radiation Countermeasures. Biomed. Pharmacother. 2018, 106, 610–617. [Google Scholar] [CrossRef]
- Zhou, C.; Li, Z.; Diao, H.; Yu, Y.; Zhu, W.; Dai, Y.; Chen, F.F.; Yang, J. DNA Damage Evaluated by γH2AX Foci Formation by a Selective Group of Chemical/Physical Stressors. Mutat. Res. 2006, 604, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Jiang, H.; Van De Gucht, M.; De Ridder, M. Hypoxic Radioresistance: Can ROS Be the Key to Overcome It? Cancers 2019, 11, 112. [Google Scholar] [CrossRef] [PubMed]
- Herb, M.; Schramm, M. Functions of ROS in Macrophages and Antimicrobial Immunity. Antioxidants 2021, 10, 313. [Google Scholar] [CrossRef]
- Pan, Z.-Y.; Cai, D.-H.; He, L. Dinuclear Phosphorescent Rhenium(I) Complexes as Potential Anticancer and Photodynamic Therapy Agents. Dalton Trans. 2020, 49, 11583–11590. [Google Scholar] [CrossRef]
- Marco, A.; Ashoo, P.; Hernández-García, S.; Martínez-Rodríguez, P.; Cutillas, N.; Vollrath, A.; Jordan, D.; Janiak, C.; Gandía-Herrero, F.; Ruiz, J. Novel Re(I) Complexes as Potential Selective Theranostic Agents in Cancer Cells and In Vivo in Caenorhabditis Elegans Tumoral Strains. J. Med. Chem. 2024, 67, 7891–7910. [Google Scholar] [CrossRef] [PubMed]
- Kuang, K.; Li, C.; Maksut, F.; Ghosh, D.; Vinck, R.; Wang, M.; Poupon, J.; Xiang, R.; Li, W.; Li, F.; et al. A G-Quadruplex-Binding Platinum Complex Induces Cancer Mitochondrial Dysfunction through Dual-Targeting Mitochondrial and Nuclear G4 Enriched Genome. J. Biomed. Sci. 2024, 31, 50. [Google Scholar] [CrossRef]
- Belchior, A.; Botelho, M.L.; Peralta, L.; Vaz, P. Dose Mapping of a 60Co Irradiation Facility Using PENELOPE and MCNPX and Its Validation by Chemical Dosimetry. Appl. Radiat. Isot. 2008, 66, 435–440. [Google Scholar] [CrossRef]
- McQuin, C.; Goodman, A.; Chernyshev, V.; Kamentsky, L.; Cimini, B.A.; Karhohs, K.W.; Doan, M.; Ding, L.; Rafelski, S.M.; Thirstrup, D.; et al. CellProfiler 3.0: Next-generation image processing for biology. PLoS Biol. 2018, 16, e2005970. [Google Scholar] [CrossRef]
- Palma, E.; Botelho, H.M.; Morais, G.R.; Rodrigues, I.; Santos, I.C.; Campello, M.P.C.; Raposinho, P.; Belchior, A.; Gomes, S.S.; Araújo, M.F.; et al. Unravelling the Antitumoral Potential of Novel Bis(Thiosemicarbazonato) Zn(II) Complexes: Structural and Cellular Studies. J. Biol. Inorg. Chem. 2019, 24, 71–89. [Google Scholar] [CrossRef]
G4-Binder | IC50 (µM) | [G4-Binder] (µM) Used in the Irradiation Experiments |
---|---|---|
PDS | 43.8 ± 25.5 | 20 |
10.7 ± 2.2 | 5 | |
PDF-Pz | 64.6 ± 24.9 | 30 |
PDF-Pz-Re | 41.6 ± 8.8 | 30 |
RHPS4 | 8.7 ± 1.9 | 2.5 |
Control | PDS | PDF-Pz | PDF-Pz-Re | RHPS4 | ||
---|---|---|---|---|---|---|
α [Gy−1] | 0.197 ± 0.061 | 0.271 ± 0.100 | 0.275 ± 0.025 | 0.325 ± 0.045 | 0.270 ± 0.063 | 0.375 ± 0.035 |
β [Gy−2] | 0.007 ± 0.015 | 0.003 ± 0.026 | 0.004 ± 0.015 | 0.005 ± 0.015 | 0.003 ± 0.016 | 0.001 ± 0.010 |
D10 (Gy) | 8.9 ± 3.0 | 7.8 ± 4.6 | 7.5 ± 1.7 | 6.4 ± 1.5 | 7.8 ± 2.5 | 6.1 ± 1.1 |
EF (D10) | - | 1.1 ± 0.8 | 1.2 ± 0.5 | 1.4 ± 0.6 | 1.1 ± 0.5 | 1.5 ± 0.6 |
EF (⍺) | - | 1.4 ± 0.7 | 1.4 ± 0.5 | 1.7 ± 0.6 | 1.4 ± 0.5 | 1.9 ± 0.6 |
EF (β) | - | 0.4 ± 3.8 | 0.5 ± 2.4 | 0.7 ± 2.6 | 0.4 ± 2.4 | 0.1 ± 1.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paulo, A.; Cardoso, S.; Mendes, E.; Palma, E.; Raposinho, P.; Belchior, A. Evaluation of a Rhenium(I) Complex and Its Pyridostatin-Containing Chelator as Radiosensitizers for Chemoradiotherapy. Molecules 2025, 30, 3240. https://doi.org/10.3390/molecules30153240
Paulo A, Cardoso S, Mendes E, Palma E, Raposinho P, Belchior A. Evaluation of a Rhenium(I) Complex and Its Pyridostatin-Containing Chelator as Radiosensitizers for Chemoradiotherapy. Molecules. 2025; 30(15):3240. https://doi.org/10.3390/molecules30153240
Chicago/Turabian StylePaulo, António, Sofia Cardoso, Edgar Mendes, Elisa Palma, Paula Raposinho, and Ana Belchior. 2025. "Evaluation of a Rhenium(I) Complex and Its Pyridostatin-Containing Chelator as Radiosensitizers for Chemoradiotherapy" Molecules 30, no. 15: 3240. https://doi.org/10.3390/molecules30153240
APA StylePaulo, A., Cardoso, S., Mendes, E., Palma, E., Raposinho, P., & Belchior, A. (2025). Evaluation of a Rhenium(I) Complex and Its Pyridostatin-Containing Chelator as Radiosensitizers for Chemoradiotherapy. Molecules, 30(15), 3240. https://doi.org/10.3390/molecules30153240