Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = limited-angle torque motor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4849 KiB  
Article
Optimal Design for Torque Ripple Reduction in a Traction Motor for Electric Propulsion Vessels
by Gi-haeng Lee and Yong-min You
Actuators 2025, 14(7), 314; https://doi.org/10.3390/act14070314 - 24 Jun 2025
Viewed by 281
Abstract
Recently, as carbon emission regulations enforced by the International Maritime Organization (IMO) have become stricter and pressure from the World Trade Organization (WTO) to abolish tax-free fuel subsidies has increased, the demand for electric propulsion systems in the marine sector has grown. Most [...] Read more.
Recently, as carbon emission regulations enforced by the International Maritime Organization (IMO) have become stricter and pressure from the World Trade Organization (WTO) to abolish tax-free fuel subsidies has increased, the demand for electric propulsion systems in the marine sector has grown. Most small domestic fishing vessels rely on tax-free fuel and have limited cruising ranges and constant-speed operation, which makes them well-suited for electric propulsion. This paper proposes replacing the internal combustion engine system of such vessels with an electric propulsion system. Based on real operating conditions, an Interior Permanent Magnet Synchronous Motor (IPMSM) was designed and optimized. The Savitsky method was used to calculate total resistance at a typical cruising speed, from which the required torque and output were determined. To reduce torque ripple, an asymmetric dummy slot structure was proposed, with two dummy slots of different widths and depths placed in each stator slot. These dimensions, along with the magnet angle, were set as optimization parameters, and a metamodel-based optimal design was carried out. As a result, while meeting the design constraints, torque ripple decreased by 2.91% and the total harmonic distortion (THD) of the back-EMF was lowered by 1.32%. Full article
(This article belongs to the Special Issue Feature Papers in Actuators for Surface Vehicles)
Show Figures

Figure 1

23 pages, 9774 KiB  
Article
Predictive Torque Control of Permanent Magnet Motor for New-Energy Vehicles Under Low-Carrier-Ratio Conditions
by Zhiqiang Wang, Zhichen Lin, Xuefeng Jin and Yan Yan
World Electr. Veh. J. 2025, 16(3), 146; https://doi.org/10.3390/wevj16030146 - 4 Mar 2025
Viewed by 696
Abstract
The model predictive-torque-control strategy of a permanent magnet synchronous motor (PMSM) has many advantages such as a fast dynamic response and the ease of implementation. However, when the permanent magnet motor has a large number of pole pairs or operates at high-speed, due [...] Read more.
The model predictive-torque-control strategy of a permanent magnet synchronous motor (PMSM) has many advantages such as a fast dynamic response and the ease of implementation. However, when the permanent magnet motor has a large number of pole pairs or operates at high-speed, due to constraints such as the inverter switching frequency, sampling time, and algorithm execution time, the motor carrier ratio (the ratio of control frequency to operating frequency) becomes relatively low. The discrete model derived from and based on the forward Euler method has a large model error when the carrier ratio decreases, which leads to voltage vector misjudgment and inaccurate duty cycle calculation, thus leading to the decline of control performance. Meanwhile, the shortcomings of the traditional model predictive-torque-control strategy limit the steady-state performance. In response to the above issues, this paper proposes an improved model predictive-torque-control strategy suitable for low-carrier-ratio conditions. The strategy consists of an improved discrete model that considers rotor-angle-position variations and a model prediction algorithm. It also analyzes the sensitivity of model predictive control to parameter changes and designs an online parameter optimization algorithm. Compared with the traditional forward Euler method, the improved discrete model proposed in this paper has obvious advantages under low-carrier-ratio conditions; at the same time, the parameter optimization process enhances the parameter robustness of the model prediction algorithm. Moreover, the proposed model predictive-torque-control strategy has high torque tracking accuracy. The experimental results verify the feasibility and effectiveness of the proposed strategy. Full article
Show Figures

Figure 1

18 pages, 6296 KiB  
Article
Vehicle-Mounted SRM DITC Strategy Based on Optimal Switching Angle TSF
by Hongyao Wang, Jingbo Wu, Chengwei Xie and Zhijun Guo
World Electr. Veh. J. 2025, 16(1), 26; https://doi.org/10.3390/wevj16010026 - 6 Jan 2025
Cited by 3 | Viewed by 1121
Abstract
Switched reluctance motors (SRMs) offer several advantages, including a magnet- and winding-free rotor, high mechanical strength, and exceptional output efficiency. However, the doubly salient pole structure and high-frequency switching power supply result in significant torque ripple and electromagnetic noise, which limit the application [...] Read more.
Switched reluctance motors (SRMs) offer several advantages, including a magnet- and winding-free rotor, high mechanical strength, and exceptional output efficiency. However, the doubly salient pole structure and high-frequency switching power supply result in significant torque ripple and electromagnetic noise, which limit the application in the field of new energy vehicles. To address these issues, this paper proposes a direct instantaneous torque control (DITC) strategy based on an optimal switching angle torque sharing function (TSF). Firstly, an improved cosine TSF is designed to reasonably distribute the total reference torque among the phases, stabilizing the synthesized torque of SRM during the commutation interval. Subsequently, an improved artificial bee colony (ABC) algorithm is used to obtain the optimal switching angle data at various speeds, integrating these data into the torque distribution module to derive the optimal switching angle model. Finally, the effectiveness of the proposed control strategy is validated through simulations of an 8/6-pole SRM. Simulation results demonstrate that the proposed control strategy effectively suppresses torque ripple during commutation and reduces the peak current at the beginning of phase commutation. Full article
Show Figures

Figure 1

25 pages, 9774 KiB  
Article
Coordinated Control of Differential Drive-Assist Steering and Direct Yaw Moment Control for Distributed-Drive Electric Vehicles
by Shaopeng Zhu, Junfei Lu, Ling Zhu, Huipeng Chen, Jian Gao and Wei Xie
Electronics 2024, 13(18), 3711; https://doi.org/10.3390/electronics13183711 - 19 Sep 2024
Cited by 2 | Viewed by 2122
Abstract
Direct yaw moment control (DYC) and differential drive-assist steering (DDAS) for distributed-drive vehicles are both realized by allocating the in-wheel motor torque. To address the interference caused by overlapping control objectives, this paper proposes a multilayer control strategy that integrates DYC and DDAS, [...] Read more.
Direct yaw moment control (DYC) and differential drive-assist steering (DDAS) for distributed-drive vehicles are both realized by allocating the in-wheel motor torque. To address the interference caused by overlapping control objectives, this paper proposes a multilayer control strategy that integrates DYC and DDAS, consisting of an upper controller, a coordinated decision layer, and a torque distribution layer. The upper controller, designed based on the vehicle’s dynamic characteristics, incorporates an adaptive fuzzy control DYC system and a dual PID control DDAS system. The coordinated decision layer is developed utilizing a phase-plane dynamic weighting method, delineating region boundaries by applying the double-line and limit cycle methods. The torque distribution strategy is formulated considering motor peak torque and road adhesion conditions. Multi-condition joint simulation experiments indicate that the proposed multilayer control strategy, integrating the advantages of DYC and DDAS, reduces peak steering wheel torque by approximately 10%, peak yaw rate by around 25%, peak sideslip angle by roughly 29%, and peak sideslip angle rate by about 19%, significantly improving driving stability and maneuvering flexibility. Full article
Show Figures

Figure 1

17 pages, 6239 KiB  
Article
Position Servo Control of Electromotive Valve Driven by Centralized Winding LATM Using a Kalman Filter Based Load Observer
by Yi Yang, Xin Cheng and Rougang Zhou
Energies 2024, 17(17), 4515; https://doi.org/10.3390/en17174515 - 9 Sep 2024
Cited by 2 | Viewed by 1126
Abstract
The exhaust gas recirculation (EGR) valve plays an important role in improving engine fuel economy and reducing emissions. In order to improve the positioning accuracy and robustness of the EGR valve under uncertain dynamics and external disturbances, this paper proposes a positioning servo [...] Read more.
The exhaust gas recirculation (EGR) valve plays an important role in improving engine fuel economy and reducing emissions. In order to improve the positioning accuracy and robustness of the EGR valve under uncertain dynamics and external disturbances, this paper proposes a positioning servo system design for an electromotive (EM) EGR valve based on the Kalman filter. Taking a novel valve driven by a central winding limited angle torque motor (LATM) as the object, we have fully considered the influence of the motor rotor position and load current, as well as the magnetic field saturation and cogging effect, improved the existing LTAM model, and derived accurate torque expression. The parameter uncertainty of the above internal model and the external stochastic disturbance were unified as “total disturbance”, and a Kalman filter-based observer was designed for disturbance estimations and real-time feed-forward compensation. Furthermore, using non-contact magnetic angle measurements to obtain accurate valve position information, a position control model with real-time response and high accuracy was established. Numerous simulated and experimental data show that in the presence of ± 25% plant model parameter fluctuations and random shock-type disturbances, the servo system scheme proposed in this paper achieves a maximum position deviation of 0.3 mm, a repeatability of positioning accuracy after disturbances of 0.01 mm, and a disturbance recovery time of not more than 250 ms. In addition, the above performance is insensitive to the duration of the disturbance, which demonstrates the strong robustness, high accuracy, and excellent dynamic response capability of the proposed design. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

18 pages, 4891 KiB  
Article
Integrated Path Following and Lateral Stability Control of Distributed Drive Autonomous Unmanned Vehicle
by Feng Zhao, Jiexin An, Qiang Chen and Yong Li
World Electr. Veh. J. 2024, 15(3), 122; https://doi.org/10.3390/wevj15030122 - 21 Mar 2024
Cited by 11 | Viewed by 2774
Abstract
Intelligentization is the development trend of the future automobile industry. Intelligentization requires that the dynamic control of the vehicle can complete the trajectory tracking according to the trajectory output of the decision planning the driving state of the vehicle and ensure the driving [...] Read more.
Intelligentization is the development trend of the future automobile industry. Intelligentization requires that the dynamic control of the vehicle can complete the trajectory tracking according to the trajectory output of the decision planning the driving state of the vehicle and ensure the driving safety and stability of the vehicle. However, trajectory limit planning and harsh road conditions caused by emergencies will increase the difficulty of trajectory tracking and stability control of unmanned vehicles. In view of the above problems, this paper studies the trajectory tracking and stability control of distributed drive unmanned vehicles. This paper applies a hierarchical control framework. Firstly, in the upper controller, an adaptive prediction time linear quadratic regulator (APT LQR) path following algorithm is proposed to acquire the desired front-wheel-steering angle considering the dynamic stability performance of the tires. The lateral stability of the DDAUV is determined based on the phase plane, and the sliding surface, in the improved sliding mode control (SMC), is further dynamically adjusted to obtain the desired additional yaw moment for coordinating the path following and lateral stability. Then, in the lower controller, considering the slip and the working load of four tires, a comprehensive cost function is established to reasonably distribute the driving torque of four in-wheel motors (IWMs) for producing the desired additional yaw moment. Finally, the proposed control algorithm is verified by the hardware-in-the-loop (HIL) experiment platform. The results show the path following and lateral stability can be coordinated effectively under different driving conditions. Full article
(This article belongs to the Special Issue Intelligent Electric Vehicle Control, Testing and Evaluation)
Show Figures

Figure 1

17 pages, 6252 KiB  
Article
Design and Implementation of a Linear Active Disturbance Rejection Control-Based Position Servo Control System of an Electromotive Valve for Exhaust Gas Recirculation
by Xin Cheng, Jianzhong Yin, Xiaokang Li, Rougang Zhou and Chong Fu
Sensors 2024, 24(5), 1393; https://doi.org/10.3390/s24051393 - 21 Feb 2024
Cited by 3 | Viewed by 1457
Abstract
An exhaust gas recirculation (EGR) valve is used to quickly and dynamically adjust the amount of recirculated exhaust gas, which is critical for improving engine fuel economy and reducing emissions. To address problems relating to the precise positioning of an electromotive (EM) valve [...] Read more.
An exhaust gas recirculation (EGR) valve is used to quickly and dynamically adjust the amount of recirculated exhaust gas, which is critical for improving engine fuel economy and reducing emissions. To address problems relating to the precise positioning of an electromotive (EM) valve under slowly varying plant dynamics and uncertain disturbances, we propose a servo control system design based on linear active disturbance rejection control (LADRC) for the EGR EM valve driven by a limited angle torque motor (LATM). By analyzing the structure of the LATM and the transmission, the dynamic model of the system is derived. In addition, to solve the problems caused by slowly varying plant dynamics and uncertain disturbances, we combine the effects of uncertain model parameters and external disturbances as the total disturbance, which is estimated in real time by an extended state observer (ESO) and then compensated. In addition, accurate angular information is obtained using a non-contact magnetic angle measurement method, and a high-speed digital communication channel is established to help implement a closed-loop position control system with improved responsiveness and accuracy. Simulation and experimental results show that the proposed servo system design can effectively ensure the precision and real-time performance of the EM valve under slowly changing plant dynamics and uncertain disturbances. The proposed servo system design achieves a full-stroke valve control accuracy of better than 0.05 mm and a full-stroke response time of less than 100 ms. The controlled valve also has good robustness under shock-type external disturbances and excellent airflow control capability. The repeatability of the airflow control is generally within 5%, and the standard deviation is less than 0.2 m3/h. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

19 pages, 5100 KiB  
Article
An Accurate Torque Control Strategy for Permanent Magnet Synchronous Motors Based on a Multi-Closed-Loop Regulation Design
by Feifan Ji, Qingyu Song, Yanjun Li and Ran Cao
Energies 2024, 17(1), 156; https://doi.org/10.3390/en17010156 - 27 Dec 2023
Cited by 2 | Viewed by 2604
Abstract
Torque control accuracy is a significant index of permanent magnet synchronous motors (PMSMs) and affects the safety of many applications greatly. Due to the strong nonlinearity of the motor as well as the disturbance of non-ideal factors such as temperature fluctuation and the [...] Read more.
Torque control accuracy is a significant index of permanent magnet synchronous motors (PMSMs) and affects the safety of many applications greatly. Due to the strong nonlinearity of the motor as well as the disturbance of non-ideal factors such as temperature fluctuation and the parameter error in field-oriented control (FOC), it is undoubtedly difficult to accurately control the actual output torque. Meanwhile, the parameter differences between motors and sensors during mass production and the assembly process affect the consistency of output torque and even increase the factory failure rate of the motor. No torque sensor is implemented due to the cost and limited space. Accurate estimation of the motor torque becomes essential to realize the closed-loop feedback for torque and improve the accuracy at a lower cost. In this paper, a look-up table (LUT) model that can reflect the nonlinear mapping relationship between power and torque is established based on numerous offline experiments, which avoids the calculation of complex losses. A multi-closed-loop control strategy is proposed to dynamically adjust the amplitude and angle of the preset current command, respectively, to improve the torque accuracy. The effectiveness of the strategy has been validated by experimental results. Full article
Show Figures

Figure 1

23 pages, 7165 KiB  
Article
Intelligent Backstepping Control of Permanent Magnet-Assisted Synchronous Reluctance Motor Position Servo Drive with Recurrent Wavelet Fuzzy Neural Network
by Faa-Jeng Lin, Ming-Shi Huang, Yu-Chen Chien and Shih-Gang Chen
Energies 2023, 16(14), 5389; https://doi.org/10.3390/en16145389 - 14 Jul 2023
Cited by 6 | Viewed by 1505
Abstract
An intelligent servo drive system for a permanent magnet-assisted synchronous reluctance motor (PMASynRM) that can adapt to the control requirements considering the motor’s nonlinear and time-varying natures is developed in this study. A recurrent wavelet fuzzy neural network (RWFNN) with intelligent backstepping control [...] Read more.
An intelligent servo drive system for a permanent magnet-assisted synchronous reluctance motor (PMASynRM) that can adapt to the control requirements considering the motor’s nonlinear and time-varying natures is developed in this study. A recurrent wavelet fuzzy neural network (RWFNN) with intelligent backstepping control is proposed to achieve this. In this study, first, a maximum torque per ampere (MTPA) controlled PMASynRM servo drive is introduced. A lookup table (LUT) is created, which is based on finite element analysis (FEA) results by using ANSYS Maxwell-2D dynamic model to determine the current angle command of the MTPA. Next, a backstepping control (BSC) system is created to accurately follow the desired position in the PMASynRM servo drive system while maintaining robust control characteristics. However, designing an efficient BSC for practical applications becomes challenging due to the lack of prior uncertainty information. To overcome this challenge, this study introduces an RWFNN as an approximation for the BSC, aiming to alleviate the limitations of the traditional BSC approach. An enhanced adaptive compensator is also incorporated into the RWFNN to handle potential approximation errors effectively. In addition, to ensure the stability of the RWFNN, the Lyapunov stability method is employed to develop online learning algorithms for the RWFNN and to guarantee its asymptotic stability. The proposed intelligent backstepping control with recurrent wavelet fuzzy neural network (IBSCRWFNN) demonstrates remarkable effectiveness and robustness in controlling the PMASynRM servo drive, as evidenced by the experimental results. Full article
(This article belongs to the Topic Advanced Electrical Machines and Drives Technologies)
Show Figures

Figure 1

16 pages, 5044 KiB  
Article
Optimized Synchronous SPWM Modulation Strategy for Traction Inverters Based on Non-Equally Spaced Carriers
by Xuefeng Jin, Shiwei Li, Wenbo Sun, Wei Chen, Xin Gu and Guozheng Zhang
World Electr. Veh. J. 2023, 14(6), 157; https://doi.org/10.3390/wevj14060157 - 13 Jun 2023
Viewed by 2837
Abstract
The switching frequency of high-power inverters, such as those used in rail transit traction systems, is low, due to switching loss and heat dissipation limitations. This can result in considerable output voltage harmonics. This paper proposes an optimal SPWM strategy for traction inverters [...] Read more.
The switching frequency of high-power inverters, such as those used in rail transit traction systems, is low, due to switching loss and heat dissipation limitations. This can result in considerable output voltage harmonics. This paper proposes an optimal SPWM strategy for traction inverters based on non-equally spaced carriers to address this issue. By dividing the fundamental wave cycle into regions according to the principle of three-phase, half-wave, and quarter-wave symmetry, the carrier width is symmetrically changed in each region, and a switching angle sequence is generated by comparing the fundamental wave with the non-isometric carrier. The proposed optimal modulation strategy has lower harmonic content than traditional strategies within a specific modulation range. Enhancing the inverter output waveform leads to increased torque accuracy, lowering additional losses in the motor and avoiding overheating. This results in improved performance, enhanced efficiency, and extended service life of the motor system. To further reduce voltage harmonics across the full-speed range, a multi-mode segmented synchronous modulation strategy is designed based on the optimal modulation strategy for different modulation ranges. Appropriate switching points are selected to improve the stability of the traction drive system across the full-speed range. The effectiveness of the proposed method is verified through simulation and experimental results. Full article
(This article belongs to the Special Issue Electrical Machines Design and Control in Electric Vehicles)
Show Figures

Figure 1

17 pages, 4664 KiB  
Article
Adaptive Stability Control Based on Sliding Model Control for BEVs Driven by In-Wheel Motors
by Pingshu Ge, Lie Guo, Jindun Feng and Xiaoyue Zhou
Sustainability 2023, 15(11), 8660; https://doi.org/10.3390/su15118660 - 26 May 2023
Cited by 9 | Viewed by 2357
Abstract
High-speed and complex road conditions make it easy for vehicles to reach limit conditions, increasing the risk of instability. Consequently, there is an urgent need to solve the problem of vehicle stability and safety. In this paper, adaptive stability control is studied in [...] Read more.
High-speed and complex road conditions make it easy for vehicles to reach limit conditions, increasing the risk of instability. Consequently, there is an urgent need to solve the problem of vehicle stability and safety. In this paper, adaptive stability control is studied in BEVs driven by in-wheel motors. Based on the sliding model algorithm, a joint weighting control of the yaw rate and sideslip angle is carried out, and a weight coefficient is designed using a fuzzy algorithm to realize adaptive direct yaw moment control. Next, optimal torque distribution is designed with the minimum sum of four tire load rates as the optimization objective. Then, combined with the road adhesion coefficient and the maximum motor torque constraint, the torque distribution problem is transformed into a functionally optimal solution problem with constraints. The simulation results show that the direct yaw moment controller based on the adaptive sliding mode algorithm has a good control effect on the yaw rate and sideslip angle, and it can effectively improve vehicle adaptive stability control. In the optimal torque distributor based on road surface recognition, the estimated error of road adhesion is within 10%, and has a greater margin to deal with vehicle instability, which can effectively improve vehicle adaptive stability control. Full article
Show Figures

Figure 1

15 pages, 9175 KiB  
Article
Soft Robotic Glove with Sensing and Force Feedback for Rehabilitation in Virtual Reality
by Fengguan Li, Jiahong Chen, Guanpeng Ye, Siwei Dong, Zishu Gao and Yitong Zhou
Biomimetics 2023, 8(1), 83; https://doi.org/10.3390/biomimetics8010083 - 15 Feb 2023
Cited by 18 | Viewed by 7921
Abstract
Many diseases, such as stroke, arthritis, and spinal cord injury, can cause severe hand impairment. Treatment options for these patients are limited by expensive hand rehabilitation devices and dull treatment procedures. In this study, we present an inexpensive soft robotic glove for hand [...] Read more.
Many diseases, such as stroke, arthritis, and spinal cord injury, can cause severe hand impairment. Treatment options for these patients are limited by expensive hand rehabilitation devices and dull treatment procedures. In this study, we present an inexpensive soft robotic glove for hand rehabilitation in virtual reality (VR). Fifteen inertial measurement units are placed on the glove for finger motion tracking, and a motor—tendon actuation system is mounted onto the arm and exerts forces on fingertips via finger-anchoring points, providing force feedback to fingers so that the users can feel the force of a virtual object. A static threshold correction and complementary filter are used to calculate the finger attitude angles, hence computing the postures of five fingers simultaneously. Both static and dynamic tests are performed to validate the accuracy of the finger-motion-tracking algorithm. A field-oriented-control-based angular closed-loop torque control algorithm is adopted to control the force applied to the fingers. It is found that each motor can provide a maximum force of 3.14 N within the tested current limit. Finally, we present an application of the haptic glove in a Unity-based VR interface to provide the operator with haptic feedback while squeezing a soft virtual ball. Full article
(This article belongs to the Special Issue Biomimetic Soft Robotics)
Show Figures

Figure 1

25 pages, 3152 KiB  
Article
Research on Direct Yaw Moment Control of Electric Vehicles Based on Electrohydraulic Joint Action
by Lixia Zhang, Taofeng Yan, Fuquan Pan, Wuyi Ge and Wenjian Kong
Sustainability 2022, 14(17), 11072; https://doi.org/10.3390/su141711072 - 5 Sep 2022
Cited by 9 | Viewed by 2295
Abstract
To solve the problem of lateral instability of the vehicle caused by insufficient lateral force of the tires due to the insufficient torque provided by the motor to the tire when the vehicle turns sharply or avoids obstacles in an emergency, a layered [...] Read more.
To solve the problem of lateral instability of the vehicle caused by insufficient lateral force of the tires due to the insufficient torque provided by the motor to the tire when the vehicle turns sharply or avoids obstacles in an emergency, a layered control method is used to design a lateral stability control system. The upper decision layer selects the yaw rate and the sideslip angle of the center of mass as the control variables and uses the joint state deviation of the yaw rate and the sideslip angle of the center of mass and the rate of change of the deviation as the input of the sliding mode variable structure controller to calculate the additional yaw moment required to maintain vehicle stability. The lower torque distribution layer realizes the distribution of torque through the electro-hydraulic coordinated control method: the torque distribution rule based on real-time load transfer calculates the torque corresponding to the control wheel and generates the torque through the hub motor and transmits it to the wheel. When the torque output from the motor cannot provide sufficient torque for the vehicle, hydraulic braking is used as a compensating control, and the difference between the required yaw torque and the motor-generated yaw torque is used as the required torque for hydraulic control to calculate the wheel cylinder pressure required to brake the wheels. Based on the joint simulation model of MATLAB/Simulink and Carsim, the sine and double shift line working condition are selected for stability simulation experiments. From the simulation results, it can be seen that the yaw rate and sideslip angle of the center of mass of the vehicle with sliding mode control and electro-hydraulic coordinated control almost coincide with the ideal value curve, which are both smaller than the output parameters of the uncontrolled vehicle. From the perspective of the motor output torque, compared with pure motor control, the effect of electro-hydraulic coordinated control is better, and the hydraulic system can compensate for the braking torque in time and enhance the lateral stability of the vehicle. The designed control strategy can make the yaw rate and the sideslip angle of the center of mass of the vehicle follow the reference value better, which can effectively avoid the vehicle sideslip and instability and improve the vehicle yaw stability and driving safety. However, due to the limitations of experimental equipment, the proposed method could not be applied to the real vehicle test. The real vehicle test can better test the control effect of the proposed method. Full article
Show Figures

Figure 1

19 pages, 7187 KiB  
Article
Integrated Physical Modeling and Optimal Control Method of Limited-Angle Torque Motor in Fuel Metering Apparatus
by Qian Chen, Hanlin Sheng and Shengbin Jiang
Micromachines 2022, 13(6), 949; https://doi.org/10.3390/mi13060949 - 15 Jun 2022
Cited by 6 | Viewed by 2386
Abstract
Limited-angle torque motor (LATM) is a critical component to precisely drive the valve angle of an engine’s fuel metering apparatus and accurately measure the fuel flow, and research on it is of great significance. Thus, the LATM of a certain kind is regarded [...] Read more.
Limited-angle torque motor (LATM) is a critical component to precisely drive the valve angle of an engine’s fuel metering apparatus and accurately measure the fuel flow, and research on it is of great significance. Thus, the LATM of a certain kind is regarded as the research object in this paper. Firstly, a Simscape-based LATM integrated physical modeling method is proposed, which can better demonstrate the real operational characteristics of a motor, compared with the current mathematical model. Secondly, a Proportional-Integral-Derivative (PID) parameter self-tuning method based on a constriction factor particle swarm optimization (CPSO) algorithm is broached since it is difficult to tune due to a large number of multi-loop cascade PID control parameters. Simulation and experimental results showed that the control performance increases by 40% in the triple closed-loop PID control system with a stronger disturbance rejection, simpler design, and quickly responds when compared with the previous empirical tuning method. The triple closed-loop PID control system comprises an angle loop + angle velocity loop + current loop and technically supports the engineering application design of motors. Full article
(This article belongs to the Special Issue Recent Advance in Piezoelectric Actuators and Motors)
Show Figures

Figure 1

8 pages, 883 KiB  
Article
Role of the Crystallographic Phase of NiTi Rotary Instruments in Determining Their Torsional Resistance during Different Bending Conditions
by Alessio Zanza, Marco Seracchiani, Rodolfo Reda, Dario Di Nardo, Gianluca Gambarini and Luca Testarelli
Materials 2021, 14(21), 6324; https://doi.org/10.3390/ma14216324 - 23 Oct 2021
Cited by 25 | Viewed by 2189
Abstract
The aim of this study was to assess the role of the crystallographic phase of Nickel-titanium (NiTi) rotary instruments in determining their torsional resistance during different bending conditions, such as different degrees and angles of curvature. 200 F-One 20.04 instruments (Fanta Dental, Shanghai, [...] Read more.
The aim of this study was to assess the role of the crystallographic phase of Nickel-titanium (NiTi) rotary instruments in determining their torsional resistance during different bending conditions, such as different degrees and angles of curvature. 200 F-One 20.04 instruments (Fanta Dental, Shanghai, China) were used, 100 austenitic instruments and 100 martensitic instruments. Each group was divided in 5 subgroups according to the different bending conditions (straight canal, 90° or 60° of curvature degrees and 3 mm or 5 mm of radius of curvature). The static torsional test was performed by using a device composed of an electric motor capable of recording torque values (N·cm); a vice used to secure the instruments at 3 mm from the tip; and artificial canals, which allow instruments to remain flexed during test. Each instrument was rotated at 500 rpm with a torque limit set to 5.5 Ncm until its fracture. Torque at Fracture (TtF) was registered. A scanning electron microscopy (SEM) observation was conducted. The collected data confirm that an increase in the angle of curvature and a decrease in the radius of curvature of the artificial canals lead to an increase of TtF values with a statistically significant difference (p < 0.05), both in the austenitic and martensitic groups. Regarding the comparison between austenitic and martensitic groups in the same bending condition, a statistically significant difference was found only when the torsional test was performed in the canals with the degrees of curvature of 90° and the radius of curvature of 3 mm and 5 mm, with the austenitic instruments showing a higher TtF than the martensitic ones. In conclusion, it can be stated that the crystallographic phase influences the maximum torque at fracture when the instruments are subjected to severe bending and that the radius of curvature significantly influences their torsional resistance. Full article
Show Figures

Figure 1

Back to TopTop