Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (404)

Search Parameters:
Keywords = levelized cost of energy (LCoE)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1242 KiB  
Article
Integration of Renewable Energy Sources to Achieve Sustainability and Resilience of Mines in Remote Areas
by Josip Kronja and Ivo Galić
Mining 2025, 5(3), 51; https://doi.org/10.3390/mining5030051 (registering DOI) - 6 Aug 2025
Abstract
Mining (1) operations in remote areas (2) face significant challenges related to energy supply, high fuel costs, and limited infrastructure. This study investigates the potential for achieving energy independence (3) and resilience (4) in such environments through the integration of renewable energy sources [...] Read more.
Mining (1) operations in remote areas (2) face significant challenges related to energy supply, high fuel costs, and limited infrastructure. This study investigates the potential for achieving energy independence (3) and resilience (4) in such environments through the integration of renewable energy sources (5) and battery–electric mining equipment. Using the “Studena Vrila” underground bauxite mine as a case study, a comprehensive techno-economic and environmental analysis was conducted across three development models. These models explore incremental scenarios of solar and wind energy adoption combined with electrification of mobile machinery. The methodology includes calculating levelized cost of energy (LCOE), return on investment (ROI), and greenhouse gas (GHG) reductions under each scenario. Results demonstrate that a full transition to RES and electric machinery can reduce diesel consumption by 100%, achieve annual savings of EUR 149,814, and cut GHG emissions by over 1.7 million kg CO2-eq. While initial capital costs are high, all models yield a positive Net Present Value (NPV), confirming long-term economic viability. This research provides a replicable framework for decarbonizing mining operations in off-grid and infrastructure-limited regions. Full article
Show Figures

Figure 1

33 pages, 6551 KiB  
Article
Optimization Study of the Electrical Microgrid for a Hybrid PV–Wind–Diesel–Storage System in an Island Environment
by Fahad Maoulida, Kassim Mohamed Aboudou, Rabah Djedjig and Mohammed El Ganaoui
Solar 2025, 5(3), 39; https://doi.org/10.3390/solar5030039 - 4 Aug 2025
Abstract
The Union of the Comoros, located in the Indian Ocean, faces persistent energy challenges due to its geographic isolation, heavy dependence on imported fossil fuels, and underdeveloped electricity infrastructure. This study investigates the techno-economic optimization of a hybrid microgrid designed to supply electricity [...] Read more.
The Union of the Comoros, located in the Indian Ocean, faces persistent energy challenges due to its geographic isolation, heavy dependence on imported fossil fuels, and underdeveloped electricity infrastructure. This study investigates the techno-economic optimization of a hybrid microgrid designed to supply electricity to a rural village in Grande Comore. The proposed system integrates photovoltaic (PV) panels, wind turbines, a diesel generator, and battery storage. Detailed modeling and simulation were conducted using HOMER Energy, accompanied by a sensitivity analysis on solar irradiance, wind speed, and diesel price. The results indicate that the optimal configuration consists solely of PV and battery storage, meeting 100% of the annual electricity demand with a competitive levelized cost of energy (LCOE) of 0.563 USD/kWh and zero greenhouse gas emissions. Solar PV contributes over 99% of the total energy production, while wind and diesel components remain unused under optimal conditions. Furthermore, the system generates a substantial energy surplus of 63.7%, which could be leveraged for community applications such as water pumping, public lighting, or future system expansion. This study highlights the technical viability, economic competitiveness, and environmental sustainability of 100% solar microgrids for non-interconnected island territories. The approach provides a practical and replicable decision-support framework for decentralized energy planning in remote and vulnerable regions. Full article
Show Figures

Figure 1

39 pages, 2898 KiB  
Review
Floating Solar Energy Systems: A Review of Economic Feasibility and Cross-Sector Integration with Marine Renewable Energy, Aquaculture and Hydrogen
by Marius Manolache, Alexandra Ionelia Manolache and Gabriel Andrei
J. Mar. Sci. Eng. 2025, 13(8), 1404; https://doi.org/10.3390/jmse13081404 - 23 Jul 2025
Viewed by 715
Abstract
Excessive reliance on traditional energy sources such as coal, petroleum, and gas leads to a decrease in natural resources and contributes to global warming. Consequently, the adoption of renewable energy sources in power systems is experiencing swift expansion worldwide, especially in offshore areas. [...] Read more.
Excessive reliance on traditional energy sources such as coal, petroleum, and gas leads to a decrease in natural resources and contributes to global warming. Consequently, the adoption of renewable energy sources in power systems is experiencing swift expansion worldwide, especially in offshore areas. Floating solar photovoltaic (FPV) technology is gaining recognition as an innovative renewable energy option, presenting benefits like minimized land requirements, improved cooling effects, and possible collaborations with hydropower. This study aims to assess the levelized cost of electricity (LCOE) associated with floating solar initiatives in offshore and onshore environments. Furthermore, the LCOE is assessed for initiatives that utilize floating solar PV modules within aquaculture farms, as well as for the integration of various renewable energy sources, including wind, wave, and hydropower. The LCOE for FPV technology exhibits considerable variation, ranging from 28.47 EUR/MWh to 1737 EUR/MWh, depending on the technologies utilized within the farm as well as its geographical setting. The implementation of FPV technology in aquaculture farms revealed a notable increase in the LCOE, ranging from 138.74 EUR/MWh to 2306 EUR/MWh. Implementation involving additional renewable energy sources results in a reduction in the LCOE, ranging from 3.6 EUR/MWh to 315.33 EUR/MWh. The integration of floating photovoltaic (FPV) systems into green hydrogen production represents an emerging direction that is relatively little explored but has high potential in reducing costs. The conversion of this energy into hydrogen involves high final costs, with the LCOH ranging from 1.06 EUR/kg to over 26.79 EUR/kg depending on the complexity of the system. Full article
(This article belongs to the Special Issue Development and Utilization of Offshore Renewable Energy)
Show Figures

Figure 1

21 pages, 5122 KiB  
Article
Comparative Life Cycle Assessment of Solar Thermal, Solar PV, and Biogas Energy Systems: Insights from Case Studies
by Somil Thakur, Deepak Singh, Umair Najeeb Mughal, Vishal Kumar and Rajnish Kaur Calay
Appl. Sci. 2025, 15(14), 8082; https://doi.org/10.3390/app15148082 - 21 Jul 2025
Viewed by 896
Abstract
The growing imperative to mitigate climate change and accelerate the shift toward energy sustainability has called for a critical evaluation of heat and electricity generation methods. This article presents a comparative life cycle assessment (LCA) of solar and biogas energy systems on a [...] Read more.
The growing imperative to mitigate climate change and accelerate the shift toward energy sustainability has called for a critical evaluation of heat and electricity generation methods. This article presents a comparative life cycle assessment (LCA) of solar and biogas energy systems on a common basis of 1 kWh of useful energy using SimaPro, the ReCiPe 2016 methodology (both midpoint and endpoint indicators), and cumulative energy demand (CED) analysis. This study is the first to evaluate co-located solar PV, solar thermal compound parabolic concentrator (CPC) and biogas combined heat and power (CHP) systems with in situ data collected under identical climatic and operational conditions. The project costs yield levelized costs of electricity (LCOE) of INR 2.4/kWh for PV, 3.3/kWh for the solar thermal dish and 4.1/kWh for biogas. However, the collaborated findings indicate that neither solar-based systems nor biogas technology uniformly outperform the others; rather, their effectiveness hinges on contextual factors, including resource availability and local policy incentives. These insights will prove critical for policymakers, industry stakeholders, and local communities seeking to develop effective, context-sensitive strategies for sustainable energy deployment, emissions reduction, and robust resource management. Full article
Show Figures

Figure 1

22 pages, 1718 KiB  
Review
A Review on Risk and Reliability Analysis in Photovoltaic Power Generation
by Ahmad Zaki Abdul Karim, Mohamad Shaiful Osman and Mohd. Khairil Rahmat
Energies 2025, 18(14), 3790; https://doi.org/10.3390/en18143790 - 17 Jul 2025
Viewed by 292
Abstract
Precise evaluation of risk and reliability is crucial for decision making and predicting the outcome of investment in a photovoltaic power system (PVPS) due to its intermittent source. This paper explores different methodologies for risk evaluation and reliability assessment, which can be categorized [...] Read more.
Precise evaluation of risk and reliability is crucial for decision making and predicting the outcome of investment in a photovoltaic power system (PVPS) due to its intermittent source. This paper explores different methodologies for risk evaluation and reliability assessment, which can be categorized into qualitative, quantitative, and hybrid qualitative and quantitative (HQQ) approaches. Qualitative methods include failure mode analysis, graphical analysis, and hazard analysis, while quantitative methods include analytical methods, stochastic methods, Bayes’ theorem, reliability optimization, multi-criteria analysis, and data utilization. HQQ methodology combines table-based and visual analysis methods. Currently, reliability assessment techniques such as mean time between failures (MTBF), system average interruption frequency index (SAIFI), and system average interruption duration index (SAIDI) are commonly used to predict PVPS performance. However, alternative methods such as economical metrics like the levelized cost of energy (LCOE) and net present value (NPV) can also be used. Therefore, a risk and reliability approach should be applied together to improve the accuracy of predicting significant aspects in the photovoltaic industry. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

25 pages, 5958 KiB  
Article
Comparative Designs for Standalone Critical Loads Between PV/Battery and PV/Hydrogen Systems
by Ahmed Lotfy, Wagdy Refaat Anis, Fatma Newagy and Sameh Mostafa Mohamed
Hydrogen 2025, 6(3), 46; https://doi.org/10.3390/hydrogen6030046 - 5 Jul 2025
Viewed by 350
Abstract
This study presents the design and techno-economic comparison of two standalone photovoltaic (PV) systems, each supplying a 1 kW critical load with 100% reliability under Cairo’s climatic conditions. These systems are modeled for both the constant and the night load scenarios, accounting for [...] Read more.
This study presents the design and techno-economic comparison of two standalone photovoltaic (PV) systems, each supplying a 1 kW critical load with 100% reliability under Cairo’s climatic conditions. These systems are modeled for both the constant and the night load scenarios, accounting for the worst-case weather conditions involving 3.5 consecutive cloudy days. The primary comparison focuses on traditional lead-acid battery storage versus green hydrogen storage via electrolysis, compression, and fuel cell reconversion. Both the configurations are simulated using a Python-based tool that calculates hourly energy balance, component sizing, and economic performance over a 21-year project lifetime. The results show that the PV/H2 system significantly outperforms the PV/lead-acid battery system in both the cost and the reliability. For the constant load, the Levelized Cost of Electricity (LCOE) drops from 0.52 USD/kWh to 0.23 USD/kWh (a 56% reduction), and the payback period is shortened from 16 to 7 years. For the night load, the LCOE improves from 0.67 to 0.36 USD/kWh (a 46% reduction). A supplementary cost analysis using lithium-ion batteries was also conducted. While Li-ion improves the economics compared to lead-acid (LCOE of 0.41 USD/kWh for the constant load and 0.49 USD/kWh for the night load), this represents a 21% and a 27% reduction, respectively. However, the green hydrogen system remains the most cost-effective and scalable storage solution for achieving 100% reliability in critical off-grid applications. These findings highlight the potential of green hydrogen as a sustainable and economically viable energy storage pathway, capable of reducing energy costs while ensuring long-term resilience. Full article
(This article belongs to the Special Issue Advances in Hydrogen Production, Storage, and Utilization)
Show Figures

Figure 1

39 pages, 5325 KiB  
Article
Optimal Sizing and Techno-Economic Evaluation of a Utility-Scale Wind–Solar–Battery Hybrid Plant Considering Weather Uncertainties, as Well as Policy and Economic Incentives, Using Multi-Objective Optimization
by Shree Om Bade, Olusegun Stanley Tomomewo, Michael Maan, Johannes Van der Watt and Hossein Salehfar
Energies 2025, 18(13), 3528; https://doi.org/10.3390/en18133528 - 3 Jul 2025
Viewed by 440
Abstract
This study presents an optimization framework for a utility-scale hybrid power plant (HPP) that integrates wind power plants (WPPs), solar power plants (SPPs), and battery energy storage systems (BESS) using historical and probabilistic weather modeling, regulatory incentives, and multi-objective trade-offs. By employing multi-objective [...] Read more.
This study presents an optimization framework for a utility-scale hybrid power plant (HPP) that integrates wind power plants (WPPs), solar power plants (SPPs), and battery energy storage systems (BESS) using historical and probabilistic weather modeling, regulatory incentives, and multi-objective trade-offs. By employing multi-objective particle swarm optimization (MOPSO), the study simultaneously optimizes three key objectives: economic performance (maximizing net present value, NPV), system reliability (minimizing loss of power supply probability, LPSP), and operational efficiency (reducing curtailment). The optimized HPP (283 MW wind, 20 MW solar, and 500 MWh BESS) yields an NPV of $165.2 million, a levelized cost of energy (LCOE) of $0.065/kWh, an internal rate of return (IRR) of 10.24%, and a 9.24-year payback, demonstrating financial viability. Operational efficiency is maintained with <4% curtailment and 8.26% LPSP. Key findings show that grid imports improve reliability (LPSP drops to 1.89%) but reduce economic returns; higher wind speeds (11.6 m/s) allow 27% smaller designs with 54.6% capacity factors; and tax credits (30%) are crucial for viability at low PPA rates (≤$0.07/kWh). Validation via Multi-Objective Genetic Algorithm (MOGA) confirms robustness. The study improves hybrid power plant design by combining weather predictions, policy changes, and optimizing three goals, providing a flexible renewable energy option for reducing carbon emissions. Full article
Show Figures

Graphical abstract

25 pages, 3103 KiB  
Article
Artificial Intelligence-Based Optimization of Renewable-Powered RO Desalination for Reduced Grid Dependence
by Mohammadreza Najaftomaraei, Mahdis Osouli, Hasan Erbay, Mohammad Hassan Shahverdian, Ali Sohani, Kasra Mazarei Saadabadi and Hoseyn Sayyaadi
Water 2025, 17(13), 1981; https://doi.org/10.3390/w17131981 - 1 Jul 2025
Viewed by 446
Abstract
Water scarcity and the growing demand for sustainable energy solutions have driven the need for renewable-powered desalination. This study evaluates three scenarios for reverse osmosis (RO) desalination powered by photovoltaic (PV), wind turbine (WT), and hybrid PV–WT systems, aiming to minimize the levelized [...] Read more.
Water scarcity and the growing demand for sustainable energy solutions have driven the need for renewable-powered desalination. This study evaluates three scenarios for reverse osmosis (RO) desalination powered by photovoltaic (PV), wind turbine (WT), and hybrid PV–WT systems, aiming to minimize the levelized costs of electricity (LCOE) and water (LCOW) while reducing grid dependence. The city studied is Zahedan, Iran, which has high potential in renewable energy. A multi-objective optimization approach using the Non-dominated Sorting Genetic Algorithm II (NSGA-II), a popular evolutionary algorithm, is employed to determine the optimal number of PV panels and wind turbines. The results show that the hybrid system outperforms single-source configurations, supplying 34.79 MWh of electricity and 34.19 m3 of desalinated water, while achieving the lowest LCOE (2.73 cent/kWh−1) and LCOW (35.33 cent/m−3). The hybrid scenario covers 65.49% of the electricity demand and 58.54% of the water demand, significantly reducing reliance on the grid compared to the PV and WT scenarios. Additionally, it ensures greater energy stability by leveraging the complementary nature of PV and WT. These findings highlight the techno-economic feasibility of hybrid renewable-powered desalination as a cost-effective and sustainable solution. Future research should focus on integrating energy storage to further enhance efficiency and minimize grid dependency. Full article
Show Figures

Figure 1

46 pages, 7883 KiB  
Article
Energy Transition Framework for Nearly Zero-Energy Ports: HRES Planning, Storage Integration, and Implementation Roadmap
by Dimitrios Cholidis, Nikolaos Sifakis, Alexandros Chachalis, Nikolaos Savvakis and George Arampatzis
Sustainability 2025, 17(13), 5971; https://doi.org/10.3390/su17135971 - 29 Jun 2025
Viewed by 418
Abstract
Ports are vital nodes in global trade networks but are also significant contributors to greenhouse gas emissions. Their transition toward sustainable, nearly zero-energy operations require comprehensive and structured strategies. This study proposes a practical and scalable framework to support the energy decarbonization of [...] Read more.
Ports are vital nodes in global trade networks but are also significant contributors to greenhouse gas emissions. Their transition toward sustainable, nearly zero-energy operations require comprehensive and structured strategies. This study proposes a practical and scalable framework to support the energy decarbonization of ports through the phased integration of hybrid renewable energy systems (HRES) and energy storage systems (ESS). Emphasizing a systems-level approach, the framework addresses key aspects such as energy demand assessment, resource potential evaluation, HRES configuration, and ESS sizing, while incorporating load characterization protocols and decision-making thresholds for technology deployment. Special consideration is given to economic performance, particularly the minimization of the Levelized Cost of Energy (LCOE), alongside efforts to meet energy autonomy and operational resilience targets. In parallel, the framework integrates digital tools, including smart grid infrastructure and digital shadow technologies, to enable real-time system monitoring, simulation, and long-term optimization. It also embeds mechanisms for regulatory compliance and continuous adaptation to evolving standards. To validate its applicability, the framework is demonstrated using a representative case study based on a generic port profile. The example illustrates the transition process from conventional energy models to a sustainable port ecosystem, confirming the framework’s potential as a decision-making tool for port authorities, engineers, and policymakers aiming to achieve effective, compliant, and future-proof energy transitions in maritime infrastructure. Full article
Show Figures

Figure 1

30 pages, 4875 KiB  
Article
Stochastic Demand-Side Management for Residential Off-Grid PV Systems Considering Battery, Fuel Cell, and PEM Electrolyzer Degradation
by Mohamed A. Hendy, Mohamed A. Nayel and Mohamed Abdelrahem
Energies 2025, 18(13), 3395; https://doi.org/10.3390/en18133395 - 27 Jun 2025
Viewed by 377
Abstract
The proposed study incorporates a stochastic demand side management (SDSM) strategy for a self-sufficient residential system powered from a PV source with a hybrid battery–hydrogen storage system to minimize the total degradation costs associated with key components, including Li-io batteries, fuel cells, and [...] Read more.
The proposed study incorporates a stochastic demand side management (SDSM) strategy for a self-sufficient residential system powered from a PV source with a hybrid battery–hydrogen storage system to minimize the total degradation costs associated with key components, including Li-io batteries, fuel cells, and PEM electrolyzers. The uncertainty in demand forecasting is addressed through a scenario-based generation to enhance the robustness and accuracy of the proposed method. Then, stochastic optimization was employed to determine the optimal operating schedules for deferable appliances and optimal water heater (WH) settings. The optimization problem was solved using a genetic algorithm (GA), which efficiently explores the solution space to determine the optimal operating schedules and reduce degradation costs. The proposed SDSM technique is validated through MATLAB 2020 simulations, demonstrating its effectiveness in reducing component degradation costs, minimizing load shedding, and reducing excess energy generation while maintaining user comfort. The simulation results indicate that the proposed method achieved total degradation cost reductions of 16.66% and 42.6% for typical summer and winter days, respectively, in addition to a reduction of the levelized cost of energy (LCOE) by about 22.5% compared to the average performance of 10,000 random operation scenarios. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

33 pages, 3769 KiB  
Article
Hybrid Wind–Redox Flow Battery System for Decarbonizing Off-Grid Mining Operations
by Armel Robert, Baby-Jean Robert Mungyeko Bisulandu, Adrian Ilinca and Daniel R. Rousse
Appl. Sci. 2025, 15(13), 7147; https://doi.org/10.3390/app15137147 - 25 Jun 2025
Viewed by 346
Abstract
Transitioning to sustainable energy systems is crucial for reducing greenhouse gas (GHG) emissions, especially in remote industrial operations where diesel generators remain the dominant power source. This study examines the feasibility of integrating a redox flow battery (RFB) storage system to optimize wind [...] Read more.
Transitioning to sustainable energy systems is crucial for reducing greenhouse gas (GHG) emissions, especially in remote industrial operations where diesel generators remain the dominant power source. This study examines the feasibility of integrating a redox flow battery (RFB) storage system to optimize wind energy utilization at the Raglan mining site in northern Canada, with the goal of reducing diesel dependency, enhancing grid stability, and improving energy security. To evaluate the effectiveness of this hybrid system, a MATLAB R2024b-based simulation model was developed, incorporating wind energy forecasting, load demand analysis, and economic feasibility assessments across multiple storage and wind penetration scenarios. Results indicate that deploying 12 additional E-115 wind turbines combined with a 20 MW/160 MWh redox flow battery system could lead to diesel savings of up to 63.98%, reducing CO2 emissions by 68,000 tonnes annually. However, the study also highlights a key economic challenge: the high Levelized Cost of Storage (LCOS) of CAD (Canadian dollars) 7831/MWh, which remains a barrier to large-scale implementation. For the scenario with high diesel economy, the LCOS was found to be CAD 6110/MWh, and the corresponding LCOE was CAD 590/MWh. While RFB integration improves system reliability, its economic viability depends on key factors, including reductions in electrolyte costs, advancements in operational efficiency, and supportive policy frameworks. This study presents a comprehensive methodology for evaluating energy storage in off-grid industrial sites and identifies key challenges in scaling up renewable energy adoption for remote mining operations. Full article
Show Figures

Figure 1

24 pages, 2477 KiB  
Article
Techno-Economic Optimization of an Isolated Solar Microgrid: A Case Study in a Brazilian Amazon Community
by Nikole Teran Uruchi, Valentin Silvera Diaz, Norah Nadia Sánchez Torres, Joylan Nunes Maciel, Jorge Javier Gimenez Ledesma, Marco Roberto Cavallari, Mario Gazziro, Taynara Geysa Silva do Lago and Oswaldo Hideo Ando Junior
Eng 2025, 6(7), 133; https://doi.org/10.3390/eng6070133 - 21 Jun 2025
Viewed by 517
Abstract
Many communities in the Brazilian Amazon region remain without reliable access to electricity due to geographical barriers and the high cost of connecting to the national grid. This study aims to evaluate the techno-economic feasibility of implementing battery storage systems in an existing [...] Read more.
Many communities in the Brazilian Amazon region remain without reliable access to electricity due to geographical barriers and the high cost of connecting to the national grid. This study aims to evaluate the techno-economic feasibility of implementing battery storage systems in an existing isolated solar–diesel microgrid located in Tunui-Cachoeira, in the district of São Gabriel da Cachoeira (AM). The analysis uses an energy balance methodology, implemented through the HOMER Pro simulation platform, to assess three scenarios: (i) without batteries, (ii) with lithium-ion batteries, and (iii) with lead–acid batteries. Technical and economic indicators such as net present cost (NPC), levelized cost of energy (LCOE), diesel consumption, and renewable fraction were compared. The results indicate that incorporating lead–acid batteries yields the lowest LCOE (1.99 R$/kWh) and the highest renewable fraction (96.8%). This demonstrates that adding energy storage systems significantly enhances the performance and cost-effectiveness of microgrids, offering a viable path to electrify remote and hard-to-reach communities in the Amazon. Full article
(This article belongs to the Section Electrical and Electronic Engineering)
Show Figures

Figure 1

26 pages, 19260 KiB  
Article
Barrio-Level Assessment of Solar Rooftop Energy and Initial Insights into Energy Inequalities in Puerto Rico
by Carlos A. Peña-Becerra, Willian A. Pacheco-Cano, Daniel F. Aragones-Vargas, Agustín Irizarry-Rivera and Marcel Castro-Sitiriche
Solar 2025, 5(2), 28; https://doi.org/10.3390/solar5020028 - 19 Jun 2025
Viewed by 725
Abstract
The transition to renewable energy is critical to enhance Puerto Rico’s energy resilience and reduce dependence on imported fossil fuels. Rooftop photovoltaic (PV) systems provide a scalable opportunity to meet these objectives. This study evaluates the potential of rooftop PV systems across Puerto [...] Read more.
The transition to renewable energy is critical to enhance Puerto Rico’s energy resilience and reduce dependence on imported fossil fuels. Rooftop photovoltaic (PV) systems provide a scalable opportunity to meet these objectives. This study evaluates the potential of rooftop PV systems across Puerto Rico using the National Renewable Energy Laboratory’s (NREL) PV Rooftop Database, processing detailed roof surface data to estimate installed capacity, energy generation, Levelized Cost of Electricity (LCOE), and solar resource potential at municipal and barrio levels. Findings reveal high solar rooftop capacity in urban neighborhoods, with areas like Sabana Abajo and Hato Tejas each exceeding 450 GWh/year in potential generation. Solar rooftop resource values peak at 3.67 kWh/kW in coastal areas, with LCOE values (0.071–0.215 USD/kWh) below current electricity rates. All municipalities demonstrate technical potential to meet their electricity demand with rooftop PV system alone. This research contributes through (1) developing Puerto Rico’s first comprehensive solar rooftop potential map; (2) providing unprecedented barrio-level analysis; (3) introducing a methodology for estimating missing post-disaster consumption data; and (4) integrating technical, economic, and equity indicators to inform energy policy. These findings demonstrate the importance of rooftop solar in achieving renewable energy goals and provide an understanding of spatial energy inequalities. Full article
Show Figures

Figure 1

24 pages, 3039 KiB  
Article
Cold Ironing Impact on Voyage Carbon Intensity in Container Shipping: Economic and Regulatory Insights
by Coşkan Sevgili, Murat Bayraktar, Alper Seyhan and Onur Yuksel
Sustainability 2025, 17(12), 5556; https://doi.org/10.3390/su17125556 - 17 Jun 2025
Viewed by 466
Abstract
The Carbon Intensity Indicator (CII) plays a critical role in assessing vessel efficiency. This study examines the impact of cold ironing (CI) on CII performance by analyzing 183 voyages of container ships. The research evaluates the attained CII values, CII ratings, and a [...] Read more.
The Carbon Intensity Indicator (CII) plays a critical role in assessing vessel efficiency. This study examines the impact of cold ironing (CI) on CII performance by analyzing 183 voyages of container ships. The research evaluates the attained CII values, CII ratings, and a Levelized Cost of Energy (LCOE) under different voyage data of container ships between 2023 and 2030. Results show that while 90.7% of voyages met the CII reference value in 2023, this rate decreased to 68.9% and 19.7% by 2026 and 2030, underscoring the increasing challenge of regulatory compliance, if no energy efficiency measures can be taken. Seasonal variations significantly influenced the CII, especially in March and May. With the implementation of CI on container ships, 6441.95 tons of heavy fuel oil and 6101.77 tons of marine gas oil consumption have been eliminated during port stays based on voyage data. Economic analysis indicates that CI increases the LCOE by 13.76%–19.65%, with a discounted payback period ranging from 4.69 to 24 years. This study highlights CI as a viable short-term measure for reducing maritime emissions and enhancing CII compliance, emphasizing the need for optimized economic models. Full article
(This article belongs to the Special Issue Sustainable Energy Systems and Renewable Generation—Second Edition)
Show Figures

Figure 1

16 pages, 2357 KiB  
Article
Levelized Cost of Energy (LCOE) of Different Photovoltaic Technologies
by Maria Cristea, Ciprian Cristea, Radu-Adrian Tîrnovan and Florica Mioara Șerban
Appl. Sci. 2025, 15(12), 6710; https://doi.org/10.3390/app15126710 - 15 Jun 2025
Viewed by 861
Abstract
Renewable energy sources are critical to the global effort to achieve carbon neutrality. Alongside hydropower, wind and nuclear plants, the photovoltaic (PV) systems developed greatly, with new PV technologies emerging in recent years. Although the conversion efficiencies are improving and the materials used [...] Read more.
Renewable energy sources are critical to the global effort to achieve carbon neutrality. Alongside hydropower, wind and nuclear plants, the photovoltaic (PV) systems developed greatly, with new PV technologies emerging in recent years. Although the conversion efficiencies are improving and the materials used have a lower impact on the environment, the feasibility of these technologies is required to be assessed. This paper proposes a levelized cost of energy (LCOE) model to assess the feasibility of five PV technologies: high-efficiency silicon heterojunction cells (HJT), N-type monocrystalline silicon cells (N-type), P-type passivated emitter and rear contact cells (PERC), N-type tunnel oxide passivated contact cells (TOPCon) and bifacial TOPCon. The LCOE considers capital investment, government incentives, operation and maintenance costs, residual value of PV modules and total energy output during the PV system’s life span. To determine the influence of PV system’s capacity over the LCOE values, three systems are analyzed for each technology: 3 kW, 5 kW and 7 kW. The results show that the largest PV systems have the lowest LCOE values, ranging from 2.39 c€/kWh (TOPCon) to 2.92 c€/kWh (HJT) when incentives are accessed, and ranging from 6.05 c€/kWh (TOPCon) to 6.51 c€/kWh (HJT) without subsidies. The 3 kW and 5 kW PV systems have higher LCOE values due to lower energy output during lifetime. Full article
(This article belongs to the Topic Clean Energy Technologies and Assessment, 2nd Edition)
Show Figures

Figure 1

Back to TopTop