Artificial Intelligence-Based Optimization of Renewable-Powered RO Desalination for Reduced Grid Dependence
Abstract
1. Introduction
- In the studies conducted, each system has been examined separately and the comparison of these systems with each other has not been examined.
- The optimal combined system used from energy and economic perspectives to reduce the need for the grid has not been examined.
- Three systems with renewable sources of photovoltaics, wind turbines, and a hybrid system are compared from an energy and economic perspective to select the best scenario.
- In a multi-objective optimization study, the optimal systems in each scenario are selected from energy and economic perspectives to create the greatest reduction in the electricity grid.
2. Materials and Methods
2.1. System Description
2.2. Case Study
2.3. Energy Modeling
2.3.1. PV Panel
2.3.2. Wind Turbine
2.3.3. RO Desalination
2.4. Economic Modeling
2.5. Optimization Procedure
3. Results and Discussion
3.1. Validation
3.2. Optimization Result
3.2.1. PV System
3.2.2. WT System
3.2.3. Hybrid System
3.3. Compare Result
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Nomenclature | |
(m2) | |
Discount rate () | |
Radiation () | |
Height (m) | |
Lifetime (year) or Number | |
Power () | |
Mass flow rate (kg·s−1) | |
Temperature () | |
) | |
Greek symbols | |
) | |
Efficiency () | |
Scripts | |
Ambient | |
Cut-in | |
Cut-out | |
db | Dry bulb |
Hub | |
nom | Nominal |
Reference | |
w | Water |
wb | Wet bulb |
Abbreviation | |
Bat Algorithm | |
Generated Electricity | |
Desalinated water | |
Humidification–Dehumidification | |
Initial Cost | |
Levelized Cost of Electricity | |
Levelized Cost of Water | |
Nominal Operating Cell Temperature | |
Operating and Maintenance | |
Present Cost | |
Photovoltaic | |
Renewable Energy System | |
Reverse Osmosis | |
Recovery Rate | |
Seawater Reverse Osmosis | |
Total Annual Cost | |
Total Dissolved Solid | |
Vertical Axis Wind Turbine | |
Wind Turbine |
References
- Shahverdian, M.H.; Delfani, F.; Pedram, M.Z.; Hosseini, M.; Sohani, A.; Fazeli, H.; Sayyaadi, H. Fundamentals and mechanism of biological purification and classification. In Sustainable Remediation Technologies for Emerging Pollutants in Aqueous Environment; Elsevier: Amsterdam, The Netherlands, 2024; pp. 13–28. [Google Scholar]
- Kassem, Y.; Gokcekus, H.; Ab Albakoush, I.A.; Abdullah, K.S.B. Solar-powered solutions for the water and energy shortage problem: The case study of Nahr El Bared, Lebanon. Eng. Technol. Appl. Sci. Res. 2023, 13, 10861–10869. [Google Scholar] [CrossRef]
- Kim, Y.; Byun, J.; Park, K.; Park, Y.-G. Comprehensive analysis of energy saving and high-quality permeate production strategies for a large-scale seawater reverse osmosis desalination plant with diverse process configurations and external resource utilization. Desalination 2025, 596, 118292. [Google Scholar] [CrossRef]
- Danoune, M.B.; Ayodele, T.R. Techno-economic design of a renewable energy-based reverse osmosis desalination system for an industrial area in Algeria: The case of Adrar’s oil refinery. Desalination 2025, 601, 118569. [Google Scholar] [CrossRef]
- Kensara, M.; Dayem, A.M.A.; Nasr, A. Reverse Osmosis Desalination Plant Driven by Solar Photovoltaic System-Case Study. Int. J. Heat Technol. 2021, 39, 1153–1163. [Google Scholar] [CrossRef]
- Tourab, A.E.; Blanco-Marigorta, A.M.; Elharidi, A.M.; Suárez-López, M.J. A novel configuration of hybrid reverse osmosis, humidification–dehumidification, and solar photovoltaic systems: Modeling and exergy analysis. J. Mar. Sci. Eng. 2023, 12, 19. [Google Scholar] [CrossRef]
- Ayou, D.S.; Ega, H.M.; Coronas, A. A feasibility study of a small-scale photovoltaic-powered reverse osmosis desalination plant for potable water and salt production in Madura Island: A techno-economic evaluation. Therm. Sci. Eng. Prog. 2022, 35, 101450. [Google Scholar] [CrossRef]
- Hekmatmehr, H.; Esmaeili, A.; Bidi, M. Practical design of a small-scale PVRO desalination unit using longtime measured water quality reports: A case study for Khuzestan, Iran. Sol. Energy 2024, 267, 112255. [Google Scholar] [CrossRef]
- Abdelrahman, M.; Sallam, G.R.; Dawoud, M.A.; Sakr, R.; Emam, M. Improving the performance of a PV-RO brackish water desalination plant in Egypt using solar thermal feed preheating technology. J. Energy Storage 2024, 98, 113115. [Google Scholar] [CrossRef]
- Ravajiri, E.S.; Jalali, A.; Houshfar, E. Multi-objective optimization and 4E analysis of an integrated system based on waste-to-energy, solar PV, power-to-gas, and HDH-RO desalination. Energy Convers. Manag. 2023, 277, 116677. [Google Scholar] [CrossRef]
- Abdelgaied, M.; Abdullah, A.; Kabeel, A.; Abosheiasha, H. Assessment of an innovative hybrid system of PVT-driven RO desalination unit integrated with solar dish concentrator as preheating unit. Energy Convers. Manag. 2022, 258, 115558. [Google Scholar] [CrossRef]
- Dehmas, D.A.; Kherba, N.; Hacene, F.B.; Merzouk, N.K.; Merzouk, M.; Mahmoudi, H.; Goosen, M.F.A. On the use of wind energy to power reverse osmosis desalination plant: A case study from Ténès (Algeria). Renew. Sustain. Energy Rev. 2011, 15, 956–963. [Google Scholar] [CrossRef]
- Alzahrani, K.M.; Hee, J.L.; Elsakka, M.; Ingham, D.; Ma, L.; Pourkashanian, M. Techno-economic assessment of vertical axis wind turbine driven RO desalination with compressed air energy storage for remote communities. Desalination 2024, 592, 118094. [Google Scholar] [CrossRef]
- Ali, E.; Bumazza, M.; Eltamaly, A.; Mulyono, S.; Yasin, M. Optimization of Wind Driven RO Plant for Brackish Water Desalination during Wind Speed Fluctuation with and without Battery. Membranes 2021, 11, 77. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.K.; Rezk, H.; Youssef, H.; Shehata, A.S.; El-Bary, A.A.; Al-Quraan, A. Optimal Sizing and Management of Hybrid Wind Turbine-Diesel-Battery System for Reverse Osmosis Seawater Desalination in NEOM City. Int. J. Energy Res. 2024, 2024, 2941404. [Google Scholar] [CrossRef]
- Esquivel-Puentes, H.A.; Vacca, A.; Chamorro, L.P.; Garcia-Bravo, J.; Warsinger, D.M.; Castillo, L. Simultaneous electricity generation and low-energy-intensive water desalination using a hydraulic wind turbine. Desalination 2025, 601, 118526. [Google Scholar] [CrossRef]
- Li, F.-F.; Wang, H.-R.; Wu, Z.-G.; Qiu, J. Maximizing both the firm power and power generation of hydropower station considering the ecological requirement in fish spawning season. Energy Strategy Rev. 2020, 30, 100496. [Google Scholar] [CrossRef]
- Li, F.-F.; Wu, Z.-G.; Wei, J.-H.; Qiu, J. Long-term equilibrium operational plan for hydro-PV hybrid power system considering benefits, stability, and tolerance. J. Water Resour. Plan. Manag. 2020, 146, 05020012. [Google Scholar] [CrossRef]
- Ghaithan, A.M.; Mohammed, A.; Al-Hanbali, A.; Attia, A.M.; Saleh, H. Multi-objective optimization of a photovoltaic-wind-grid connected system to power reverse osmosis desalination plant. Energy 2022, 251, 123888. [Google Scholar] [CrossRef]
- Ghanbari, K.; Maleki, A.; Ochbelagh, D.R. Optimal design of solar/wind/energy storage system-powered RO desalination unit: Single and multi-objective optimization. Energy Convers. Manag. 2024, 315, 118768. [Google Scholar] [CrossRef]
- Qudah, A.; Almerbati, A.; Mokheimer, E.M. Techno-economic analysis and optimization of standalone Hybrid Photovoltaic (PV)/Wind Turbine (WT) with water tank storage driven Reverse Osmosis (RO) desalination system. Desalination 2025, 600, 118522. [Google Scholar] [CrossRef]
- Eltamaly, A.M.; Ali, E.; Bumazza, M.; Mulyono, S.; Yasin, M. Optimal design of hybrid renewable energy system for a reverse osmosis desalination system in Arar, Saudi Arabia. Arab. J. Sci. Eng. 2021, 46, 9879–9897. [Google Scholar] [CrossRef]
- Sohani, A.; Pierro, M.; Moser, D.; Cornaro, C. Comparison of physical models for bifacial PV power estimation. Energy Convers. Manag. 2025, 327, 119515. [Google Scholar] [CrossRef]
- Iran Meteorological Organization (IMO). The Sistan and Balochestan Weather. Available online: https://www.irimo.ir/ (accessed on 29 April 2025).
- Javadijam, R.; Shahverdian, M.H.; Sohani, A.; Sayyaadi, H. A 4E Comparative Study between BIPV and BIPVT Systems in Order to Achieve Zero-Energy Building in Cold Climate. Buildings 2023, 13, 28. [Google Scholar] [CrossRef]
- Sohani, A.; Shahverdian, M.H.; Sayyaadi, H.; Nižetić, S.; Doranehgard, M.H. An optimum energy, economic, and environmental design based on DEVAP concept to reach maximum heat recovery in a PV-wind turbine system with hydrogen storage. Energy Convers. Manag. 2023, 288, 117147. [Google Scholar] [CrossRef]
- Notton, G.; Cristofari, C.; Mattei, M.; Poggi, P. Modelling of a double-glass photovoltaic module using finite differences. Appl. Therm. Eng. 2005, 25, 2854–2877. [Google Scholar] [CrossRef]
- Manwell, J.F.; McGowan, J.G.; Rogers, A.L. Wind Energy Explained: Theory, Design and Application; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Chang, T.-P.; Liu, F.-J.; Ko, H.-H.; Cheng, S.-P.; Sun, L.-C.; Kuo, S.-C. Comparative analysis on power curve models of wind turbine generator in estimating capacity factor. Energy 2014, 73, 88–95. [Google Scholar] [CrossRef]
- Bourouni, K.; M’Barek, T.B.; Al Taee, A. Design and optimization of desalination reverse osmosis plants driven by renewable energies using genetic algorithms. Renew. Energy 2011, 36, 936–950. [Google Scholar] [CrossRef]
- Sanaye, S.; Sarrafi, A. Cleaner production of combined cooling, heating, power and water for isolated buildings with an innovative hybrid (solar, wind and LPG fuel) system. J. Clean. Prod. 2021, 279, 123222. [Google Scholar] [CrossRef]
- Song, Q.; Wang, B.; Wang, Z.; Wen, L. Multi-objective capacity configuration optimization of the combined wind-Storage system considering ELCC and LCOE. Energy 2024, 301, 131558. [Google Scholar] [CrossRef]
- Beni, A.N.; Ghofrani, I.; Nouri-Borujerdi, A.; Moosavi, A.; Warsinger, D.M. Membrane properties overview in integrated forward osmosis/osmotically assisted reverse osmosis systems. Desalination 2024, 569, 117008. [Google Scholar] [CrossRef]
- Kouhkord, A.; Hassani, F.; Amirmahani, M.; Golshani, A.; Naserifar, N.; Moghanlou, F.S.; Beris, A.T. Controllable microfluidic system through intelligent framework: Data-driven modeling, machine learning energy analysis, comparative multiobjective optimization, and experimental study. Ind. Eng. Chem. Res. 2024, 63, 13326–13344. [Google Scholar] [CrossRef]
- Ma, H.; Zhang, Y.; Sun, S.; Liu, T.; Shan, Y. A comprehensive survey on NSGA-II for multi-objective optimization and applications. Artif. Intell. Rev. 2023, 56, 15217–15270. [Google Scholar] [CrossRef]
- Shahverdian, M.H.; Sohani, A.; Zamani Pedram, M.; Sayyaadi, H. An optimal strategy for application of photovoltaic-wind turbine with PEMEC-PEMFC hydrogen storage system based on techno-economic, environmental, and availability indicators. J. Clean. Prod. 2023, 384, 135499. [Google Scholar] [CrossRef]
- Sanaye, S.; Sarrafi, A. A novel energy management method based on Deep Q Network algorithm for low operating cost of an integrated hybrid system. Energy Rep. 2021, 7, 2647–2663. [Google Scholar] [CrossRef]
City | Summer | Winter | Lat (°N) | Lon (°E) | Climate | |
---|---|---|---|---|---|---|
Tdb (°C) | Twb (°C) | Tdb (°C) | ||||
Zahedan | 38 ± 2.2 | 21 ± 1.5 | 15 ± 1.2 | 29.5 | 60.8 | Hot Desert |
Item | Value |
---|---|
Roof | 0.6 |
Floor | 0.67 |
Windows | 2.8 |
Internal Wall | 1.42 |
External Wall | 1.01 |
Component | Item | Value |
---|---|---|
PV | Nominal power | 580 W |
Reference efficiency | 22.47% | |
Temperature coefficient | 0.3%·°C−1 | |
Dimensions | 2.278 × 1.133 m2 | |
NOCT | 42 °C | |
WT | Nominal power | 2 kW |
Hub height | 13 m | |
α | 1.7 | |
k | 1.43 |
Parameter | Value | Unit |
---|---|---|
IC PV | 500 | $ per kW |
IC WT | 1200 | $ per kW |
IC RO | 1400 | $ per kW |
Discount rate | 3 | % |
Lifetime | 25 | year |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Najaftomaraei, M.; Osouli, M.; Erbay, H.; Shahverdian, M.H.; Sohani, A.; Mazarei Saadabadi, K.; Sayyaadi, H. Artificial Intelligence-Based Optimization of Renewable-Powered RO Desalination for Reduced Grid Dependence. Water 2025, 17, 1981. https://doi.org/10.3390/w17131981
Najaftomaraei M, Osouli M, Erbay H, Shahverdian MH, Sohani A, Mazarei Saadabadi K, Sayyaadi H. Artificial Intelligence-Based Optimization of Renewable-Powered RO Desalination for Reduced Grid Dependence. Water. 2025; 17(13):1981. https://doi.org/10.3390/w17131981
Chicago/Turabian StyleNajaftomaraei, Mohammadreza, Mahdis Osouli, Hasan Erbay, Mohammad Hassan Shahverdian, Ali Sohani, Kasra Mazarei Saadabadi, and Hoseyn Sayyaadi. 2025. "Artificial Intelligence-Based Optimization of Renewable-Powered RO Desalination for Reduced Grid Dependence" Water 17, no. 13: 1981. https://doi.org/10.3390/w17131981
APA StyleNajaftomaraei, M., Osouli, M., Erbay, H., Shahverdian, M. H., Sohani, A., Mazarei Saadabadi, K., & Sayyaadi, H. (2025). Artificial Intelligence-Based Optimization of Renewable-Powered RO Desalination for Reduced Grid Dependence. Water, 17(13), 1981. https://doi.org/10.3390/w17131981