Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (55)

Search Parameters:
Keywords = leak source location

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 6828 KiB  
Article
Acoustic Characterization of Leakage in Buried Natural Gas Pipelines
by Yongjun Cai, Xiaolong Gu, Xiahua Zhang, Ke Zhang, Huiye Zhang and Zhiyi Xiong
Processes 2025, 13(7), 2274; https://doi.org/10.3390/pr13072274 - 17 Jul 2025
Viewed by 309
Abstract
To address the difficulty of locating small-hole leaks in buried natural gas pipelines, this study conducted a comprehensive theoretical and numerical analysis of the acoustic characteristics associated with such leakage events. A coupled flow–acoustic simulation framework was developed, integrating gas compressibility via the [...] Read more.
To address the difficulty of locating small-hole leaks in buried natural gas pipelines, this study conducted a comprehensive theoretical and numerical analysis of the acoustic characteristics associated with such leakage events. A coupled flow–acoustic simulation framework was developed, integrating gas compressibility via the realizable k-ε and Large Eddy Simulation (LES) turbulence models, the Peng–Robinson equation of state, a broadband noise source model, and the Ffowcs Williams–Hawkings (FW-H) acoustic analogy. The effects of pipeline operating pressure (2–10 MPa), leakage hole diameter (1–6 mm), soil type (sandy, loam, and clay), and leakage orientation on the flow field, acoustic source behavior, and sound field distribution were systematically investigated. The results indicate that the leakage hole size and soil medium exert significant influence on both flow dynamics and acoustic propagation, while the pipeline pressure mainly affects the strength of the acoustic source. The leakage direction was found to have only a minor impact on the overall results. The leakage noise is primarily composed of dipole sources arising from gas–solid interactions and quadrupole sources generated by turbulent flow, with the frequency spectrum concentrated in the low-frequency range of 0–500 Hz. This research elucidates the acoustic characteristics of pipeline leakage under various conditions and provides a theoretical foundation for optimal sensor deployment and accurate localization in buried pipeline leak detection systems. Full article
(This article belongs to the Special Issue Design, Inspection and Repair of Oil and Gas Pipelines)
Show Figures

Figure 1

19 pages, 3047 KiB  
Article
Identifying the Combined Impacts of Sensor Quantity and Location Distribution on Source Inversion Optimization
by Shushuai Mao, Jianlei Lang, Feng Hu, Xiaoqi Wang, Kai Wang, Guiqin Zhang, Feiyong Chen, Tian Chen and Shuiyuan Cheng
Atmosphere 2025, 16(7), 850; https://doi.org/10.3390/atmos16070850 - 12 Jul 2025
Viewed by 161
Abstract
Source inversion optimization using sensor observations is a key method for rapidly and accurately identifying unknown source parameters (source strength and location) in abrupt hazardous gas leaks. Sensor number and location distribution both play important roles in source inversion; however, their combined impacts [...] Read more.
Source inversion optimization using sensor observations is a key method for rapidly and accurately identifying unknown source parameters (source strength and location) in abrupt hazardous gas leaks. Sensor number and location distribution both play important roles in source inversion; however, their combined impacts on source inversion optimization remain poorly understood. In our study, the optimization inversion method is established based on the Gaussian plume model and the generation algorithm. A research strategy combining random sampling and coefficient of variation methods was proposed to simultaneously quantify their combined impacts in the case of a single emission source. The sensor layout impact difference was analyzed under varying atmospheric conditions (unstable, neutral, and stable) and source location information (known or unknown) using the Prairie Grass experiments. The results indicated that adding sensors improved the source strength estimation accuracy more when the source location was known than when it was unknown. The impacts of sensor location distribution were strongly negatively correlated (r ≤ −0.985) with the number of sensors across scenarios. For source strength estimation, the impacts of the sensor location distribution difference decreased non-linearly with more sensors for known locations but linearly for unknown ones. The impacts of sensor number and location distribution on source strength estimation were amplified under stable atmospheric conditions compared to unstable and neutral conditions. The minimum number of randomly scattered sensors required for stable source strength inversion accuracy was 11, 12, and 17 for known locations under unstable, neutral, and stable atmospheric conditions, respectively, and 24, 9, and 21 for unknown locations. The multi-layer arc distribution outperformed rectangular, single-layer arc, and downwind-axis distributions in source strength estimation. This study enhances the understanding of factors influencing source inversion optimization and provides valuable insights for optimizing sensor layouts. Full article
(This article belongs to the Section Air Pollution Control)
Show Figures

Figure 1

26 pages, 9416 KiB  
Article
Multi-Component Remote Sensing for Mapping Buried Water Pipelines
by John Lioumbas, Thomas Spahos, Aikaterini Christodoulou, Ioannis Mitzias, Panagiota Stournara, Ioannis Kavouras, Alexandros Mentes, Nopi Theodoridou and Agis Papadopoulos
Remote Sens. 2025, 17(12), 2109; https://doi.org/10.3390/rs17122109 - 19 Jun 2025
Viewed by 542
Abstract
Accurate localization of buried water pipelines in rural areas is crucial for maintenance and leak management but is often hindered by outdated maps and the limitations of traditional geophysical methods. This study aimed to develop and validate a multi-source remote-sensing workflow, integrating UAV [...] Read more.
Accurate localization of buried water pipelines in rural areas is crucial for maintenance and leak management but is often hindered by outdated maps and the limitations of traditional geophysical methods. This study aimed to develop and validate a multi-source remote-sensing workflow, integrating UAV (unmanned aerial vehicle)-borne near-infrared (NIR) surveys, multi-temporal Sentinel-2 imagery, and historical Google Earth orthophotos to precisely map pipeline locations and establish a surface baseline for future monitoring. Each dataset was processed within a unified least-squares framework to delineate pipeline axes from surface anomalies (vegetation stress, soil discoloration, and proxies) and rigorously quantify positional uncertainty, with findings validated against RTK-GNSS (Real-Time Kinematic—Global Navigation Satellite System) surveys of an excavated trench. The combined approach yielded sub-meter accuracy (±0.3 m) with UAV data, meter-scale precision (≈±1 m) with Google Earth, and precision up to several meters (±13.0 m) with Sentinel-2, significantly improving upon inaccurate legacy maps (up to a 300 m divergence) and successfully guiding excavation to locate a pipeline segment. The methodology demonstrated seasonal variability in detection capabilities, with optimal UAV-based identification occurring during early-vegetation growth phases (NDVI, Normalized Difference Vegetation Index ≈ 0.30–0.45) and post-harvest periods. A Sentinel-2 analysis of 221 cloud-free scenes revealed persistent soil discoloration patterns spanning 15–30 m in width, while Google Earth historical imagery provided crucial bridging data with intermediate spatial and temporal resolution. Ground-truth validation confirmed the pipeline location within 0.4 m of the Google Earth-derived position. This integrated, cost-effective workflow provides a transferable methodology for enhanced pipeline mapping and establishes a vital baseline of surface signatures, enabling more effective future monitoring and proactive maintenance to detect leaks or structural failures. This methodology is particularly valuable for water utility companies, municipal infrastructure managers, consulting engineers specializing in buried utilities, and remote-sensing practitioners working in pipeline detection and monitoring applications. Full article
(This article belongs to the Special Issue Remote Sensing Applications for Infrastructures)
Show Figures

Graphical abstract

24 pages, 9569 KiB  
Article
Numerical Simulation of Annular Flow Field and Acoustic Field of Oil Casing Leakage
by Yun-Peng Yang, Bing-Cai Sun, Ying-Hua Jing, Jin-You Wang, Jian-Chun Fan, Yi-Fan Gan, Shuang Liang, Yu-Shan Zheng and Mo-Song Li
Processes 2025, 13(6), 1799; https://doi.org/10.3390/pr13061799 - 5 Jun 2025
Viewed by 503
Abstract
The generation and propagation mechanisms of acoustic waves from leakage below the annular liquid level in gas wells have attracted widespread attention. To study the characteristics of acoustic sources beneath the liquid level, a physical model of leakage in the casing–tubing annulus was [...] Read more.
The generation and propagation mechanisms of acoustic waves from leakage below the annular liquid level in gas wells have attracted widespread attention. To study the characteristics of acoustic sources beneath the liquid level, a physical model of leakage in the casing–tubing annulus was established by simulating the distribution patterns of the flow field and acoustic field within the annulus under tubing leakage conditions. Distinct from the traditional acoustic analysis of wellbore leakage in gas wells, this study focuses on acoustic waves generated by leaks located below the annular protection fluid level. It analyzes the flow regime and acoustic source characteristics beneath the liquid level under various operating conditions (including leakage aperture, velocity, and position). The research summarizes the evolution patterns of flow regimes when gas leaks into the annular protection fluid under different conditions and elucidates the generation mechanism of sub-liquid leakage noise and its propagation mechanism across the liquid surface. This work lays the theoretical foundation for detecting sub-liquid leakage at the wellhead using acoustic methods. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

18 pages, 3160 KiB  
Article
Ultrasonic Beamforming-Based Visual Localisation of Minor and Multiple Gas Leaks Using a Microelectromechanical System (MEMS) Microphone Array
by Tao Wang, Jiawen Ji, Jianglong Lan and Bo Wang
Sensors 2025, 25(10), 3190; https://doi.org/10.3390/s25103190 - 19 May 2025
Viewed by 676
Abstract
The development of a universal method for real-time gas leak localisation imaging is crucial for preventing substantial financial losses and hazardous incidents. To achieve this objective, this study integrates array signal processing and electronic techniques to construct an ultrasonic sensor array for gas [...] Read more.
The development of a universal method for real-time gas leak localisation imaging is crucial for preventing substantial financial losses and hazardous incidents. To achieve this objective, this study integrates array signal processing and electronic techniques to construct an ultrasonic sensor array for gas leak detection and localisation. A digital microelectromechanical system microphone array is used to capture spatial ultrasonic information. By processing the array signals using beamforming algorithms, an acoustic spatial power spectrum is obtained, which facilitates the estimation of the locations of potential gas leak sources. In the pre-processing of beamforming, the Hilbert transform is employed instead of the fast Fourier transform to save computational resources. Subsequently, the spatial power spectrum is fused with visible-light images to generate acoustic localisation images, which enables the visualisation of gas leak sources. Experimental validation demonstrates that the system detects minor and multiple gas leaks in real time, meeting the sensitivity and accuracy requirements of embedded industrial applications. These findings contribute to the development of practical, cost-effective, and scalable gas leak detection systems for industrial and environmental safety applications. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

18 pages, 12576 KiB  
Article
Global Methane Retrieval, Monitoring, and Quantification in Hotspot Regions Based on AHSI/ZY-1 Satellite
by Tong Lu, Zhengqiang Li, Cheng Fan, Zhuo He, Xinran Jiang, Ying Zhang, Yuanyuan Gao, Yundong Xuan and Gerrit de Leeuw
Atmosphere 2025, 16(5), 510; https://doi.org/10.3390/atmos16050510 - 28 Apr 2025
Viewed by 674
Abstract
Methane is the second largest greenhouse gas. The detection of methane super-emitters and the quantification of their emission rates are necessary for the implementation of methane emission reduction policies to mitigate global warming. High-spectral-resolution satellites such as Gaofen-5 (GF-5), EMIT, GHGSat, and MethaneSAT [...] Read more.
Methane is the second largest greenhouse gas. The detection of methane super-emitters and the quantification of their emission rates are necessary for the implementation of methane emission reduction policies to mitigate global warming. High-spectral-resolution satellites such as Gaofen-5 (GF-5), EMIT, GHGSat, and MethaneSAT have been successfully employed to detect and quantify methane point source leaks. In this study, a matched filter (MF) algorithm is improved using data from the EMIT instrument and applied to data from the Advanced Hyperspectral Imager (AHSI) onboard the Ziyuan-1 (ZY-1) satellite. Validation by comparison with EMIT′s L2 XCH4 products shows the good performance of the improved MF algorithm, in spite of the lower spectral resolution of AHSI/ZY-1 in comparison with other point source imagers. The improved MF algorithm applied to AHSI/ZY-1 data was used to detect and quantify methane super-emitters in global methane hotspot regions. The results show that the improved MF algorithm effectively suppresses noise in retrieval results over both land and ocean surfaces, enhancing algorithm robustness. Sixteen methane plumes were detected in global hotspot regions, originating from coal mines, oil and gas fields, and landfills, with emission rates ranging from 0.57 to 78.85 t/h. The largest plume was located at an offshore oil and gas field in the Gulf of Mexico, with instantaneous emissions nearly equal to the combined total of the other 15 plumes. The findings demonstrate that AHSI, despite its lower spectral resolution, can detect sources with emission rates as small as 571 kg/h and achieve faster retrieval speeds, showing significant potential for global methane monitoring. Additionally, this study highlights the need to focus on methane emissions from marine sources, alongside terrestrial sources, to efficiently implement reduction strategies. Full article
(This article belongs to the Special Issue Feature Papers in Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

16 pages, 3950 KiB  
Article
Characteristics of High-Pressure Hydrogen Jet Dispersion Along a Horizontal Plate
by Zhonglong He, Qingxin Ba, Jiaxin Zhang, Chenyi Yao, Yujie Wang and Xuefang Li
Energies 2025, 18(9), 2242; https://doi.org/10.3390/en18092242 - 28 Apr 2025
Viewed by 469
Abstract
Creating and updating safety regulations and standards for industrial processes and end-uses related to hydrogen demand a solid scientific foundation, which requires extensive research on unignited hydrogen releases from high-pressure systems across different situations. This study focuses on high-pressure hydrogen releases along a [...] Read more.
Creating and updating safety regulations and standards for industrial processes and end-uses related to hydrogen demand a solid scientific foundation, which requires extensive research on unignited hydrogen releases from high-pressure systems across different situations. This study focuses on high-pressure hydrogen releases along a horizontal plate to investigate the surface effects on hydrogen dispersion. Hydrogen releases from high-pressure sources up to 30 MPa were modeled using a computational fluid dynamics (CFD) method, with the CFD models validated by experimental data. The hydrogen dispersion characteristics along the plate were studied for various source pressures and leak nozzle diameters. The results show that the maximum flammable extent along the plate increases linearly with both the source pressure and nozzle diameter, while the combustible mass increases to the power of 1.5 with the increase in leakage flow rate. The locations where the jet centerline attach to the plate are identical (about 0.41 m away from the nozzle exit in the axial direction) for different source pressures (10~30 MPa) and nozzle diameters (0.5~1.5 mm). The flow region was divided into pre-attachment and attachment zones by the attachment point, and the self-similarity characteristics of both zones were analyzed. Finally, correlations for the centerline and lateral concentration distributions were developed for both the pre- and post-attachment zones. The results can help users quickly assess safety distance when hydrogen leaks along the plate. Full article
(This article belongs to the Special Issue Sustainable Development of Fuel Cells and Hydrogen Technologies)
Show Figures

Figure 1

21 pages, 6459 KiB  
Article
Optimizing Sensor Placement for Enhanced Source Term Estimation in Chemical Plants
by Hao Tian, Ziqiang Lang, Chenxi Cao and Bing Wang
Processes 2025, 13(3), 825; https://doi.org/10.3390/pr13030825 - 12 Mar 2025
Viewed by 715
Abstract
The leakage of hazardous chemical gases in chemical plants can lead to severe consequences. Source term estimation (STE) algorithms are effective in locating the leak source. The layout of the sensor network significantly affects the performance of the STE algorithm, yet the underlying [...] Read more.
The leakage of hazardous chemical gases in chemical plants can lead to severe consequences. Source term estimation (STE) algorithms are effective in locating the leak source. The layout of the sensor network significantly affects the performance of the STE algorithm, yet the underlying mechanism remains unclear. In this study, we first applied computational fluid dynamics (CFD) to simulate 160 hazardous chemical gas leakage scenarios under multi-directional wind conditions in two hypothetic scenes with a natural convection environment, creating an accident dataset. Subsequently, a mathematical model for sensor placement optimization was developed and applied to the dataset to generate a series of sensor layout solutions. Based on these layouts, 12,216 STE cases were calculated. By analyzing the error distribution of these cases, the relationship between sensor placement and STE performance was systematically investigated, and the most effective sensor layout optimization strategies were discussed. This study found that in scenarios with complex obstacles, increasing the average measured concentration of the sensor network can significantly reduce the errors in the STE algorithm. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

13 pages, 9050 KiB  
Article
Numerical Simulation Study on the Diffusion Characteristics of High-Pressure Hydrogen Gas Leakage in Confined Spaces
by Feng-Ming Li, Yuan Zhang, Zheng-Nan Wei, Lin Yuan, Jia-Dong Li, Liang Gong and Chuan-Yong Zhu
Processes 2024, 12(12), 2711; https://doi.org/10.3390/pr12122711 - 1 Dec 2024
Cited by 1 | Viewed by 1176
Abstract
Hydrogen, as one of the most promising renewable clean energy sources, holds significant strategic importance and vast application potential. However, as a high-energy combustible gas, hydrogen poses risks of fire and explosion in the event of a leakage. Hydrogen production plants typically feature [...] Read more.
Hydrogen, as one of the most promising renewable clean energy sources, holds significant strategic importance and vast application potential. However, as a high-energy combustible gas, hydrogen poses risks of fire and explosion in the event of a leakage. Hydrogen production plants typically feature large spatial volumes and complex obstacles, which can significantly influence the diffusion pathways and localized accumulation of hydrogen during a short-term, high-volume release, further increasing the risk of accidents. Implementing effective hydrogen leakage monitoring measures can mitigate these risks, ensuring the safety of personnel and the environment to the greatest extent possible. Therefore, this paper uses CFD methods to simulate the hydrogen leakage process in a hydrogen production plant. The study examines the molar fraction distribution characteristics of hydrogen in the presence of obstacles by varying the ventilation speed of the plant and the directions of leakage. The main conclusions are as follows: enhancing ventilation can effectively prevent the rapid increase in hydrogen concentration, with higher ventilation speeds yielding better suppression. After a hydrogen leak in a confined space, hydrogen tends to diffuse along the walls and accumulate in corner areas, indicating that hydrogen monitoring equipment should be placed in corner locations. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

25 pages, 8699 KiB  
Article
Numerical Simulation of an Isolated N-Heptane Pool Fire
by Manolis Baglatzis, Konstantinos Vasilopoulos, Ioannis Lekakis and Ioannis Sarris
Fire 2024, 7(11), 398; https://doi.org/10.3390/fire7110398 - 31 Oct 2024
Cited by 3 | Viewed by 1778
Abstract
Refineries are industrial complexes of great economic importance which are located close to major cities. A pool fire accident that can occur from an oil leak combined with wind can result in disastrous consequences for such an industry. This study investigates the characteristics [...] Read more.
Refineries are industrial complexes of great economic importance which are located close to major cities. A pool fire accident that can occur from an oil leak combined with wind can result in disastrous consequences for such an industry. This study investigates the characteristics of an isolated n-heptane square pool fire of 36 m2 under the influence of a cross wind. The pool fire characteristics are numerically studied using open-source Computational Fluid Dynamics (CFD) software, such as FireFoam (v4.1) and Fire Dynamic Simulator (FDS) (version 6.9.0). The turbulent flow field and the fire characteristics were simulated with the LES Method. The crucial parameters of the pool fire, such as (a) the temperature and velocity fields, (b) the flame length and height, (c) the surface emissive power, and (d) the flame tilt angles, were computed. Comparisons against experimental data for both small and large-area pool fires from the literature were made successfully. The flame tilt angle is shown to correlate very well with the reciprocal of the Richardson number, which was approximated within a multiplication constant to the Froude number. Thus, both the reciprocal Richardson number and Froude number can be used for correlating the flame tilt angle. It is shown that both of these numbers are used to correlate the tilt angle of experimental pool fires with effective diameters from a fraction of a meter to approximately 16 m, and wind speeds up to 7 m/s. The goodness of a linear fit based on the sum of the residual squares is 0.91. Full article
(This article belongs to the Special Issue Advances in Pool Fire Dynamics)
Show Figures

Figure 1

26 pages, 3110 KiB  
Review
Water Leak Detection: A Comprehensive Review of Methods, Challenges, and Future Directions
by Elias Farah and Isam Shahrour
Water 2024, 16(20), 2975; https://doi.org/10.3390/w16202975 - 18 Oct 2024
Cited by 9 | Viewed by 10000
Abstract
This paper provides a comprehensive review of the methods and techniques developed for detecting leaks in water distribution systems, with a focus on highlighting their strengths, weaknesses, and areas for future research. Given the substantial economic, social, and environmental impacts of undetected leaks, [...] Read more.
This paper provides a comprehensive review of the methods and techniques developed for detecting leaks in water distribution systems, with a focus on highlighting their strengths, weaknesses, and areas for future research. Given the substantial economic, social, and environmental impacts of undetected leaks, timely detection and precise location of leaks are critical concerns for water authorities. This review categorizes existing methods into traditional approaches, such as manual sounding, and modern techniques involving smart water management and sensor technologies. A multidimensional bibliometric analysis was employed to systematically identify, select, and evaluate 600 scholarly articles on water leak detection, sourced from the Scopus database over a 23-year period (2000–2023). The paper evaluates each method based on leak sensitivity, burst detection, continuous monitoring, alarm accuracy, and implementation costs. Novel insights include an analysis of emerging smart water technologies and their integration into real-world water distribution networks, offering improved efficiency in leak detection. The paper also identifies key gaps in current research and suggests future directions for advancing the accuracy and cost-effectiveness of these technologies. Full article
(This article belongs to the Section Urban Water Management)
Show Figures

Figure 1

13 pages, 2378 KiB  
Article
Analysis of the Role of Aquatic Gases in the Formation of Sea-Ice Porosity
by Vadim K. Goncharov and Natalia Yu. Klementieva
Water 2024, 16(15), 2213; https://doi.org/10.3390/w16152213 - 5 Aug 2024
Cited by 2 | Viewed by 1358
Abstract
The porosity of freshwater ice and sea ice is one of the main parameters that determine their strength. The strength of ice varies over a wide range of values, and the differences in the intensity of the mechanisms of ice porosity formation in [...] Read more.
The porosity of freshwater ice and sea ice is one of the main parameters that determine their strength. The strength of ice varies over a wide range of values, and the differences in the intensity of the mechanisms of ice porosity formation in different water areas can be one of the possible reasons for these variations. The water mass contains gases in two forms: gases dissolved in the water mass, as well as gas bubbles that are formed when wind waves break up, and bubbles that float up from the seabed. This article presents the results of an analysis of the role of each of these forms in the formation of gas inclusions (pores) in the crystal structure of ice. The results showed that the main source of gas pores in ice crystals is the gas bubbles coming to the surface from the bottom, formed during the decomposition of bottom sediments or during gas leaks from near-bottom oil and gas fields. The possibility of gas bubbles occurring and rising to the ice–water boundary depends on the presence of bottom sources of the gases, the intensity of dissolution of the bubbles and the depth of the water area. Therefore, the variation in the porosity and the strength of ice over the space of the water areas can be associated with the changes in their depths, and the presence and location of the natural gas sources. Full article
Show Figures

Figure 1

11 pages, 16475 KiB  
Article
Detecting Smell/Gas-Source Direction Using Output Voltage Characteristics of a CMOS Smell Sensor
by Yoshihiro Asada, Kenichi Maeno, Kenichi Hashizume, Yusuke Yodo, Toshihiko Noda, Kazuaki Sawada and Masahiro Akiyama
Electronics 2024, 13(10), 1847; https://doi.org/10.3390/electronics13101847 - 9 May 2024
Viewed by 1870
Abstract
Various organisms, such as dogs and moths, can locate their prey and mates by sensing their smells. Following this manner, if an engineering device with the capability to detect a smell or gas source is realized, it can have a wide range of [...] Read more.
Various organisms, such as dogs and moths, can locate their prey and mates by sensing their smells. Following this manner, if an engineering device with the capability to detect a smell or gas source is realized, it can have a wide range of potential applications, such as searching for landmines, locating gas leaks, and rapid detection of fire. A previous study on the estimation of smell and gas-flow direction successfully detected the smell/gas-source direction in low-wind-velocity environments using a semiconductor gas sensor array. However, some problems are generally associated with the use of semiconductor gas sensors due to the use of heaters. This study aimed to detect the location of a smell/gas source using an integrated CMOS smell sensor array, which operates at room temperature without a heater. The experiment showed that under ideal conditions, the order of gas responses and concentration gradient of the gas enabled the estimation of the direction of the smell/gas-source location on one side of the sensor. Full article
Show Figures

Figure 1

15 pages, 6347 KiB  
Article
An Experimental Study on the Large-Volume Liquid Hydrogen Release in an Open Space
by Zhao Zhang, Gang Lei, Ruofan Sun, Liang Pu, Tianxiang Wang, Wei Dong, Qiang Chen, Qiufan Wei, Mu Liu, Yongchen He, Zhi Zheng and Shengqi Zhang
Appl. Sci. 2024, 14(9), 3645; https://doi.org/10.3390/app14093645 - 25 Apr 2024
Cited by 6 | Viewed by 1868
Abstract
Liquid hydrogen is one of the high-quality energy carriers, but a large leak of liquid hydrogen can pose significant safety risks. Understanding its diffusion law after accidental leakage is an important issue for the safe utilization of hydrogen energy. In this paper, a [...] Read more.
Liquid hydrogen is one of the high-quality energy carriers, but a large leak of liquid hydrogen can pose significant safety risks. Understanding its diffusion law after accidental leakage is an important issue for the safe utilization of hydrogen energy. In this paper, a series of open-space large-volume liquid hydrogen release experiments are performed to observe the evolution of visible clouds during the release, and an array of hydrogen concentration sensors is set up to monitor the fluctuation in hydrogen concentration at different locations. Based on the experimental conditions, the diffusion of hydrogen clouds in the atmosphere under different release hole diameters and different ground materials is compared. The results show that with the release of liquid hydrogen, the white visible cloud formed by air condensation or solidification is generated rapidly and spread widely, and the visible cloud is most obvious near the ground. With the termination of liquid hydrogen release, solid air is deposited on the ground, and the visible clouds gradually shrink from the far field to the release source. Hydrogen concentration fluctuations in the far field in the case of the cobblestone ground are more dependent on spontaneous diffusion by the hydrogen concentration gradient. In addition, compared with the concrete ground, the cobblestone ground has greater resistance to liquid hydrogen extension; the diffusion of hydrogen clouds to the far field lags. The rapid increase stage of hydrogen concentration at N8 in Test 7 lags about 3 s behind N12 in Test 6, N3 lags about 7.5 s behind N1, and N16 lags about 8.25 s behind N14. The near-source space is prone to high-concentration hydrogen clouds. The duration of the high-concentration hydrogen cloud at N12 is about 15 s, which is twice as long as the duration at N8, increasing the safety risk of the near-source space. Full article
(This article belongs to the Special Issue Cryogenic Liquid Storage, Transportation and Applications)
Show Figures

Figure 1

13 pages, 9553 KiB  
Article
Acoustic Imaging Method for Gas Leak Detection and Localization Using Virtual Ultrasonic Sensor Array
by Mu Liang, Kuan Yang, Mingyang Feng, Kaijun Mu, Mingqi Jiao and Lei Li
Sensors 2024, 24(5), 1366; https://doi.org/10.3390/s24051366 - 20 Feb 2024
Cited by 5 | Viewed by 3431
Abstract
An acoustic imaging method for detecting and locating gas leaks based on a virtual ultrasonic sensor array is proposed and experimentally demonstrated. A scanning sensor array of only two sensors is used to collect the acoustic signals generated by the leakage hole. The [...] Read more.
An acoustic imaging method for detecting and locating gas leaks based on a virtual ultrasonic sensor array is proposed and experimentally demonstrated. A scanning sensor array of only two sensors is used to collect the acoustic signals generated by the leakage hole. The matrix of the leakage signal is processed by the cross-power spectrum method to achieve time consistency, afterward, the location of the leakage source can be calculated by the virtual beamforming method. The influence of the number of sensors and the distance between adjacent sensors on the effect of the proposed method are compared and discussed. To verify the effectiveness and operability of the detection and localization method, several experiments were carried out. Furthermore, a series of experiments were conducted to assess the accuracy and stability of this method. The experimental results demonstrate that the proposed method based on a virtual sensor array can achieve highly accurate localization of gas leaks and performs well regarding stability. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

Back to TopTop