Characteristics of High-Pressure Hydrogen Jet Dispersion Along a Horizontal Plate
Abstract
1. Introduction
2. Methodology
2.1. Geometry
2.2. Numerical Model
2.3. Grid Sensitivity
2.4. Validation
3. Results and Discussion
3.1. Combustible Cloud
3.2. Streamwise Concentration Profiles
3.2.1. Jet Centerline
3.2.2. Pre-Attachment Zone
3.2.3. Post-Attachment Zone
3.3. Lateral Concentration Profiles
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, J.; Huang, J.; Ba, Q.; Zhou, B.; Christopher, D.M.; Gao, M.; Li, X. Cavity effects on spontaneous ignition of pressurized hydrogen jets. Fuel 2024, 359, 130495. [Google Scholar] [CrossRef]
- Jeddizahed, J.; Webley, P.A.; Hughes, T.J. Energy, exergy and optimization of a binary hydrogen-power production system with net zero emissions. Fuel 2025, 381, 133529. [Google Scholar] [CrossRef]
- Oğur, E.; Koç, A.; Köse, Ö.; Yağlı, H.; Koç, Y. Energy, exergy, exergoeconomic, exergy sustainability and exergoenvironmental analyses (5E) of a turbofan engine: A comparative study of hydrogen and kerosene fuels. Fuel 2025, 381, 133324. [Google Scholar] [CrossRef]
- Field, R.A.; Derwent, R.G. Global warming consequences of replacing natural gas with hydrogen in the domestic energy sectors of future low-carbon economies in the United Kingdom and the United States of America. Int. J. Hydrogen Energy 2021, 46, 30190–30203. [Google Scholar] [CrossRef]
- Shovon, S.M.; Akash, F.A.; Rahman, A.; Rahman, W.; Chakraborty, P.; Monir, M.U.; Sarkar, S.M.; Aziz, A.A.; Chowdhury, S. Advancements in hydrogen generation, storage, and utilizations: A comprehensive review of current trends in Bangladesh. Energy 2024, 292, 130477. [Google Scholar] [CrossRef]
- Zheng, J.; Liu, X.; Xu, P.; Liu, P.; Zhao, Y.; Yang, J. Development of high pressure gaseous hydrogen storage technologies. Int. J. Hydrogen Energy 2012, 37, 1048–1057. [Google Scholar] [CrossRef]
- Jugroot, M.; Groth, C.P.T.; Thomson, B.A.; Baranov, V.; Collings, B.A. Numerical investigation of interface region flows in mass spectrometers: Neutral gas transport. J. Phys. D Appl. Phys. 2004, 37, 1289. [Google Scholar] [CrossRef]
- Ruggles, A.J.; Ekoto, I.W. Ignitability and mixing of underexpanded hydrogen jets. Int. J. Hydrogen Energy 2012, 37, 17549–17560. [Google Scholar] [CrossRef]
- Crist, S.; Glass, D.R.; Sherman, P.M. Study of the highly underexpanded sonic jet. AIAA J. 1966, 4, 68–71. [Google Scholar] [CrossRef]
- Addy, A.L. Effects of axisymmetric sonic nozzle geometry on Mach disk characteristics. AIAA J. 1981, 19, 121–122. [Google Scholar] [CrossRef]
- Houf, W.; Schefer, R. Analytical and experimental investigation of small-scale unintended releases of hydrogen. Int. J. Hydrogen Energy 2008, 33, 1435–1444. [Google Scholar] [CrossRef]
- Takeno, K.; Okabayashi, K.; Kouchi, A.; Misaka, N.; Hashiguchi, K. Concentration fluctuation and ignition characteristics during atmospheric diffusion of hydrogen spouted from high pressure storage. Int. J. Hydrogen Energy 2017, 42, 15426–15434. [Google Scholar] [CrossRef]
- Yao, C.; Ba, Q.; Hecht, E.S.; Christopher, D.M.; Li, X. Concentration fluctuations and flammability of cryo-compressed hydrogen and methane jets. Fuel 2024, 358, 130230. [Google Scholar] [CrossRef]
- Schefer, R.W.; Houf, W.G.; Williams, T.C. Investigation of small-scale unintended releases of hydrogen: Momentum-dominated regime. Int. J. Hydrogen Energy 2008, 33, 6373–6384. [Google Scholar] [CrossRef]
- Asahara, M.; Iwasa, T.; Tsuboi, N.; Hayashi, A.K. Numerical study on unsteady characteristics of high-pressure hydrogen jet ejected from a pinhole. Int. J. Hydrogen Energy 2022, 47, 31709–31728. [Google Scholar] [CrossRef]
- Li, X.; Yao, C.; Egbert, S.C.; He, Q.; Zhao, Z.; Christopher, D.M.; Hecht, E.S. Self-similar characteristics of underexpanded, cryogenic hydrogen and methane jets. Int. J. Hydrogen Energy 2023, 48, 4104–4117. [Google Scholar] [CrossRef]
- Wang, L.; Lyu, X.; Zhang, J.; Liu, F.; Li, X.; Qiu, X.; Song, Q.; Lin, J.; Ma, T. Analysis of hydrogen leakage behavior and risk mitigation measures in a hydrogen refueling station. Int. J. Hydrogen Energy 2024, 83, 545–552. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.; Shi, X.; Fan, R. Safety analysis of hydrogen leakage accident with a mobile hydrogen refueling station. Process Saf. Environ. Prot. 2023, 171, 619–629. [Google Scholar] [CrossRef]
- Zhou, C.; Yang, Z.; Chen, G.; Li, X. Optimizing hydrogen refueling station layout based on consequences of leakage and explosion accidents. Int. J. Hydrogen Energy 2024, 54, 817–836. [Google Scholar] [CrossRef]
- Bi, Y.; Wu, Q.; Wang, S.; Shi, J.; Cong, H.; Ye, L.; Gao, W.; Bi, M. Hydrogen leakage location prediction at hydrogen refueling stations based on deep learning. Energy 2023, 284, 129361. [Google Scholar] [CrossRef]
- Li, J.; Liu, J.; Wang, T.; Zou, W.; Yang, Q.; Shen, J. Analysis of the evolution characteristics of hydrogen leakage and diffusion in a temperature stratified environment. Energy 2024, 293, 130598. [Google Scholar] [CrossRef]
- Shen, Y.; Lv, H.; Zheng, T.; Liu, Y.; Zhou, W.; Zhang, C. Temporal and spatial evolution of hydrogen leakage and diffusion from tube fittings on fuel cell vehicles under the effect of ambient wind. Renew. Sustain. Energy Rev. 2023, 185, 113596. [Google Scholar] [CrossRef]
- Liu, S.; He, R. Decision-level fusion detection method of hydrogen leakage in hydrogen supply system of fuel cell truck. Fuel 2024, 367, 131455. [Google Scholar] [CrossRef]
- Mao, X.; Ying, R.; Yuan, Y.; Li, F.; Shen, B. Simulation and analysis of hydrogen leakage and explosion behaviors in various compartments on a hydrogen fuel cell ship. Int. J. Hydrogen Energy 2021, 46, 6857–6872. [Google Scholar] [CrossRef]
- Kim, B.; Hwang, K.I. Experimental analysis of the effects of ship motion on hydrogen dispersion in an enclosed area. Int. J. Hydrogen Energy 2023, 48, 31779–31789. [Google Scholar] [CrossRef]
- Xin, J.; Duan, Q.; Jin, K.; Sun, J. A reduced-scale experimental study of dispersion characteristics of hydrogen leakage in an underground parking garage. Int. J. Hydrogen Energy 2023, 48, 16936–16948. [Google Scholar] [CrossRef]
- Hajji, Y.; Jouini, B.; Bouteraa, M.; Elcafsi, A.; Belghith, A.; Bournot, P. Numerical study of hydrogen release accidents in a residential garage. Int. J. Hydrogen Energy 2015, 40, 9747–9759. [Google Scholar] [CrossRef]
- Huang, T.; Zhao, M.; Ba, Q.; Christopher, D.M.; Li, X. Modeling of hydrogen dispersion from hydrogen fuel cell vehicles in an underground parking garage. Int. J. Hydrogen Energy 2022, 47, 686–696. [Google Scholar] [CrossRef]
- Sposato, C.; Tamanini, F.; Rogers, W.J.; Mannan, M.S. Effects of plate impingement on the flammable volume of fuel jet releases. Process Saf. Prog. 2003, 22, 201–211. [Google Scholar] [CrossRef]
- Tchouvelev, A.V.; Cheng, Z.; Agranat, V.M.; Zhubrin, S.V. Effectiveness of small barriers as means to reduce clearance distances. Int. J. Hydrogen Energy 2007, 32, 1409–1415. [Google Scholar] [CrossRef]
- Hu, J.; Christopher, D.M.; Li, X. Simplified partitioning model to simulate high pressure under-expanded jet flows impinging vertical obstacles. Int. J. Hydrogen Energy 2018, 43, 13649–13658. [Google Scholar] [CrossRef]
- Su, X.; Wang, H.; Chen, B.; Ren, Y.; Zhu, Z.; Zhang, Y.; Lin, R. Migration characteristics of nodules at the critical position of a Coandă effect harvesting model. Ocean Eng. 2024, 295, 116861. [Google Scholar] [CrossRef]
- Hourri, A.; Angers, B.; Bénard, P. Surface effects on flammable extent of hydrogen and methane jets. Int. J. Hydrogen Energy 2009, 34, 1569–1577. [Google Scholar] [CrossRef]
- Hourri, A.; Angers, B.; Bénard, P.; Tchouvelev, A.; Agranat, V. Numerical investigation of the flammable extent of semi-confined hydrogen and methane jets. Int. J. Hydrogen Energy 2011, 36, 2567–2572. [Google Scholar] [CrossRef]
- Hall, J.E.; Hooker, P.; O’sullivan, L.; Angers, B.; Hourri, A.; Bénard, P. Flammability profiles associated with high-pressure hydrogen jets released in close proximity to surfaces. Int. J. Hydrogen Energy 2017, 42, 7413–7421. [Google Scholar] [CrossRef]
- Bénard, P.; Hourri, A.; Angers, B.; Tchouvelev, A. Adjacent surface effect on the flammable cloud of hydrogen and methane jets: Numerical investigation and engineering correlations. Int. J. Hydrogen Energy 2016, 41, 18654–18662. [Google Scholar] [CrossRef]
- Xie, Q.; Lu, Q.; Yuan, Y.; Zhang, J.; Zhou, F. Numerical study on the horizontal stretching effect of ground on high-pressure vapor jets of LNG tank leakage. J. Loss Prev. Process Ind. 2021, 72, 104526. [Google Scholar] [CrossRef]
- Colombini, C.; Martani, A.; Rota, R.; Busini, V. Ground influence on high-pressure methane jets: Practical tools for risk assessment. J. Loss Prev. Process Ind. 2020, 67, 104240. [Google Scholar] [CrossRef]
- Gao, Q.; Qu, X.; Peng, W.; Zhang, P.; Chen, S. Influence of obstacle morphology on safety of nuclear hydrogen production system. Int. J. Hydrogen Energy 2022, 47, 36733–36748. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, Y.; Jin, Z. Co-design and aerodynamic study on a two-step high pressure reducing system for hydrogen decompression: From hydrogen refueling station to hydrogen fuel cell vehicle. Int. J. Hydrogen Energy 2023, 48, 10968–10981. [Google Scholar] [CrossRef]
- Swain, M.R.; Grilliot, E.S.; Swain, M.N. Experimental verification of a hydrogen risk assessment method. J. Chem. Health Saf. 1999, 6, 28–32. [Google Scholar] [CrossRef]
- Nasr, A.; Lai, J.C.S. A turbulent plane offset jet with small offset ratio. Exp. Fluids 1998, 24, 47–57. [Google Scholar] [CrossRef]
- Hecht, E.S.; Panda, P.P. Mixing and warming of cryogenic hydrogen releases. Int. J. Hydrogen Energy 2019, 44, 8960–8970. [Google Scholar] [CrossRef]
- Schefer, R.W.; Houf, W.G.; Williams, T.C. Investigation of small-scale unintended releases of hydrogen: Buoyancy effects. Int. J. Hydrogen Energy 2008, 33, 4702–4712. [Google Scholar] [CrossRef]
- Nadarajah, S. A generalized normal distribution. J. Appl. Stat. 2005, 32, 685–694. [Google Scholar] [CrossRef]
- Achim, A.; Loza, A.; Bull, D.; Canagarajah, N. Statistical modelling for wavelet-domain image fusion. In Image Fusion; Stathaki, T., Ed.; Academic Press: Oxford, UK, 2008; pp. 119–138. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Z.; Ba, Q.; Zhang, J.; Yao, C.; Wang, Y.; Li, X. Characteristics of High-Pressure Hydrogen Jet Dispersion Along a Horizontal Plate. Energies 2025, 18, 2242. https://doi.org/10.3390/en18092242
He Z, Ba Q, Zhang J, Yao C, Wang Y, Li X. Characteristics of High-Pressure Hydrogen Jet Dispersion Along a Horizontal Plate. Energies. 2025; 18(9):2242. https://doi.org/10.3390/en18092242
Chicago/Turabian StyleHe, Zhonglong, Qingxin Ba, Jiaxin Zhang, Chenyi Yao, Yujie Wang, and Xuefang Li. 2025. "Characteristics of High-Pressure Hydrogen Jet Dispersion Along a Horizontal Plate" Energies 18, no. 9: 2242. https://doi.org/10.3390/en18092242
APA StyleHe, Z., Ba, Q., Zhang, J., Yao, C., Wang, Y., & Li, X. (2025). Characteristics of High-Pressure Hydrogen Jet Dispersion Along a Horizontal Plate. Energies, 18(9), 2242. https://doi.org/10.3390/en18092242