Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (592)

Search Parameters:
Keywords = lactate signaling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2790 KiB  
Article
AiiA Lactonase Suppresses ETEC Pathogenicity Through 3OC12-HSL Quenching in a Murine Model
by Yang Yang, Ji Shao, Zixin Han, Junpeng Li, Qiaoqiao Fang and Guoqiang Zhu
Microbiol. Res. 2025, 16(8), 166; https://doi.org/10.3390/microbiolres16080166 - 31 Jul 2025
Viewed by 129
Abstract
This study elucidates how the quorum-sensing (QS) signal 3OC12-HSL exacerbates enterotoxigenic E. coli (ETEC) pathogenicity and intestinal barrier dysfunction. In vitro, 3OC12-HSL enhanced ETEC C83902 growth (66.7% CFU increase at 8 h) and dysregulated stress/growth genes (e.g., eight-fold rmf upregulation under static conditions). [...] Read more.
This study elucidates how the quorum-sensing (QS) signal 3OC12-HSL exacerbates enterotoxigenic E. coli (ETEC) pathogenicity and intestinal barrier dysfunction. In vitro, 3OC12-HSL enhanced ETEC C83902 growth (66.7% CFU increase at 8 h) and dysregulated stress/growth genes (e.g., eight-fold rmf upregulation under static conditions). In synthetic gut microbiota, 3OC12-HSL selectively augmented E. coli colonization (37.6% 16S rDNA increase at 12 h). Murine studies revealed 3OC12-HSL reduced jejunal villus height (381.5 μm vs. 543.2 μm in controls), elevated serum LPS, D-lactate, and DAO, and altered microbial composition (Firmicutes/Bacteroidetes imbalance). The lactonase AiiA reversed these effects by degrading 3OC12-HSL. It abrogated bacterial growth stimulation (in vitro CFU restored to baseline), normalized microbiota diversity (Shannon index recovered to control levels), suppressed pro-inflammatory cytokines (IL-6/TNF-α reduction), and restored intestinal integrity (villus length: 472.5 μm, 20.5% increase vs. ETEC-infected mice). Our findings establish AiiA as a potent quorum-quenching agent that counteracts ETEC virulence via targeted signal inactivation, highlighting its translational value. Full article
Show Figures

Figure 1

11 pages, 217 KiB  
Article
Brain Injury Patterns and Short-TermOutcomes in Late Preterm Infants Treated with Hypothermia for Hypoxic Ischemic Encephalopathy
by Aslihan Kose Cetinkaya, Fatma Nur Sari, Avni Merter Keceli, Mustafa Senol Akin, Seyma Butun Turk, Omer Ertekin and Evrim Alyamac Dizdar
Children 2025, 12(8), 1012; https://doi.org/10.3390/children12081012 - 31 Jul 2025
Viewed by 225
Abstract
Background: Hypoxic–ischemic encephalopathy (HIE) is a leading cause of severe neurological impairments in childhood. Therapeutic hypothermia (TH) is both safe and effective in neonates born at ≥36 weeks gestation with moderate to severe HIE. We aimed to evaluate short-term outcomes—including brain injury detected [...] Read more.
Background: Hypoxic–ischemic encephalopathy (HIE) is a leading cause of severe neurological impairments in childhood. Therapeutic hypothermia (TH) is both safe and effective in neonates born at ≥36 weeks gestation with moderate to severe HIE. We aimed to evaluate short-term outcomes—including brain injury detected on magnetic resonance imaging (MRI)—in infants born at 34–35 weeks of gestation drawing on our clinical experience with neonates under 36 weeks of gestational age (GA). Methods: In this retrospective cohort study, 20 preterm infants with a GA of 34 to 35 weeks and a matched cohort of 80 infants with a GA of ≥36 weeks who were diagnosed with moderate to severe HIE and underwent TH were included. Infants were matched in a 1:4 ratio based on the worst base deficit in blood gas and sex. Maternal and neonatal characteristics, brain MRI findings and short term outcomes were compared. Results: Infants with a GA of 34–35 weeks had a lower birth weight and a higher rate of caesarean delivery (both p < 0.001). Apgar scores, sex, intubation rate in delivery room, blood gas pH, base deficit and lactate were comparable between the groups. Compared to infants born at ≥36 weeks of GA, preterm neonates were more likely to receive inotropes, had a longer time to achieve full enteral feeding, and experienced a longer hospital stay. The mortality rate was 10% in the 34–35 weeks GA group. Neuroimaging revealed injury in 66.7% of infants born at 34–35 weeks of gestation and in 58.8% of those born at ≥36 weeks (p = 0.56). Injury was observed across multiple brain regions, with white matter being the most frequently affected in the 34–35 weeks GA group. Thalamic and cerebellar abnormal signal intensity or diffusion restriction, punctate white matter lesions, and diffusion restriction in the corpus callosum and optic radiations were more frequently detected in infants born at 34–35 weeks of gestation. Conclusions: Our study contributes to the growing body of literature suggesting that TH may be feasible and tolerated in late preterm infants. Larger randomized controlled trials focused on this vulnerable population are necessary to establish clear guidelines regarding the safety and efficacy of TH in late preterm infants. Full article
(This article belongs to the Section Pediatric Neonatology)
18 pages, 300 KiB  
Review
Genetic Dissection of Energy Deficiency in Autism Spectrum Disorder
by John Jay Gargus
Genes 2025, 16(8), 923; https://doi.org/10.3390/genes16080923 (registering DOI) - 31 Jul 2025
Viewed by 370
Abstract
Background/Objectives: An important new consideration when studying autism spectrum disorder (ASD) is the bioenergetic mechanisms underlying the relatively recent rapid evolutionary expansion of the human brain, which pose fundamental risks for mitochondrial dysfunction and calcium signaling abnormalities and their potential role in [...] Read more.
Background/Objectives: An important new consideration when studying autism spectrum disorder (ASD) is the bioenergetic mechanisms underlying the relatively recent rapid evolutionary expansion of the human brain, which pose fundamental risks for mitochondrial dysfunction and calcium signaling abnormalities and their potential role in ASD, as recently highlighted by insights from the BTBR mouse model of ASD. The rapid brain expansion taking place as Homo sapiens evolved, particularly in the parietal lobe, led to increased energy demands, making the brain vulnerable to such metabolic disruptions as are seen in ASD. Methods: Mitochondrial dysfunction in ASD is characterized by impaired oxidative phosphorylation, elevated lactate and alanine levels, carnitine deficiency, abnormal reactive oxygen species (ROS), and altered calcium homeostasis. These dysfunctions are primarily functional, rather than being due to mitochondrial DNA mutations. Calcium signaling plays a crucial role in neuronal ATP production, with disruptions in inositol 1,4,5-trisphosphate receptor (ITPR)-mediated endoplasmic reticulum (ER) calcium release being observed in ASD patient-derived cells. Results: This impaired signaling affects the ER–mitochondrial calcium axis, leading to mitochondrial energy deficiency, particularly in high-energy regions of the developing brain. The BTBR mouse model, with its unique Itpr3 gene mutation, exhibits core autism-like behaviors and metabolic syndromes, providing valuable insights into ASD pathophysiology. Conclusions: Various interventions have been tested in BTBR mice, as in ASD, but none have directly targeted the Itpr3 mutation or its calcium signaling pathway. This review presents current genetic, biochemical, and neurological findings in ASD and its model systems, highlighting the need for further research into metabolic resilience and calcium signaling as potential diagnostic and therapeutic targets for ASD. Full article
(This article belongs to the Section Neurogenomics)
Show Figures

Graphical abstract

21 pages, 1971 KiB  
Review
Etiology of Delayed Lactogenesis in Obesity
by Gema Gomez-Casado, Natalia Saldaña-Garcia, Ernesto Gonzalez-Mesa and Almudena Ortega-Gomez
Biomedicines 2025, 13(8), 1848; https://doi.org/10.3390/biomedicines13081848 - 30 Jul 2025
Viewed by 299
Abstract
Obesity is a multifactorial condition that influences metabolic, endocrine, inflammatory, circadian, and behavioral systems. These disruptions can adversely affect the initiation of lactogenesis II—the critical process marking the onset of copious milk secretion following childbirth. In mothers with obesity, prolonged inflammation within the [...] Read more.
Obesity is a multifactorial condition that influences metabolic, endocrine, inflammatory, circadian, and behavioral systems. These disruptions can adversely affect the initiation of lactogenesis II—the critical process marking the onset of copious milk secretion following childbirth. In mothers with obesity, prolonged inflammation within the mammary gland, a blunted hormonal response (notably of prolactin), altered progesterone and estrogen dynamics, high leptin levels, and misaligned circadian rhythms contribute significantly to delayed lactogenesis. In addition, mechanical difficulties and psychological factors further hinder effective breastfeeding. This report synthesizes evidence from human epidemiological studies and animal models that elucidate the diverse mechanisms linking maternal obesity to delayed lactogenesis. We review the role of obesity-associated inflammatory mediators in impairing mammary tissue remodeling, the endocrine aberrations that impair lactogenic signaling, the consequences of circadian disruption on hormonal rhythmicity, and the behavioral influences that challenge effective breastfeeding. Finally, we discuss the clinical implications of these findings and propose future research directions targeting endocrine modulation, anti-inflammatory therapy, circadian interventions, and enhanced lactation support strategies for mothers with obesity. Full article
(This article belongs to the Special Issue Molecular Research in Obesity, 2nd Edition)
Show Figures

Figure 1

17 pages, 2388 KiB  
Review
Interactions Between Prolactin, Intracellular Signaling, and Possible Implications in the Contractility and Pathophysiology of Asthma
by Eduardo Calixto, Juan C. Gomez-Verjan, Marco Cerbón, Valeria Rodríguez-Chávez, Bianca S. Romero-Martínez, María E. Martinez-Enriquez, Luis M. Montaño, Héctor Solís-Chagoyán, Arnoldo Aquino-Gálvez, Nadia A. Rivero-Segura, Georgina González-Ávila, Ana del Carmen Susunaga Notario, Gloria E. Pérez-Figueroa, Verónica Carbajal, Edgar Flores-Soto and Bettina Sommer
Int. J. Mol. Sci. 2025, 26(15), 7332; https://doi.org/10.3390/ijms26157332 - 29 Jul 2025
Viewed by 378
Abstract
Prolactin (PRL) is a hormone primarily associated with lactation, but it plays various roles in both men and women. PRL belongs to the family of peptide hormones, including placental lactogen and growth hormone. Interestingly, PRL is a pleiotropic hormone affecting several physiological and [...] Read more.
Prolactin (PRL) is a hormone primarily associated with lactation, but it plays various roles in both men and women. PRL belongs to the family of peptide hormones, including placental lactogen and growth hormone. Interestingly, PRL is a pleiotropic hormone affecting several physiological and pathological conditions, including fertility. Moreover, several pathophysiological roles have been associated with this hormone, including those of the immune system, autoimmune disorders, asthma, and ageing. Additionally, PRL receptors are ubiquitously expressed in tissues, including the mammary gland, gonads, liver, kidney, adrenal gland, brain, heart, lungs, pituitary gland, uterus, skeletal muscle, skin blood cells, and immune system. Therefore, in the present paper, we cover the potential role that PRL may play in asthma by promoting inflammation and modulating immune responses. The detection of its receptor in lung tissue suggests a direct role in airway smooth muscle contractility through activation of signaling pathways such as JAK2-STAT5, MAPK/ERK1/2, and PI3K/Akt, as well as influencing ionic currents that regulate cell contraction, proliferation, and survival. In this sense, this review aims to explore the potential involvement of PRL in asthma pathophysiology by examining its interactions with intracellular signaling pathways and its possible impact on airway smooth muscle contractility and immune modulation. Full article
(This article belongs to the Special Issue New Insights into Airway Smooth Muscle: From Function to Dysfunction)
Show Figures

Figure 1

16 pages, 3978 KiB  
Article
Cepharanthine Promotes Ca2+-Independent Premature Red Blood Cell Death Through Metabolic Insufficiency and p38 MAPK/CK1α/COX/MLKL/PKC/iNOS Signaling
by Shaymah H. Alruwaili, Jawaher Alsughayyir and Mohammad A. Alfhili
Int. J. Mol. Sci. 2025, 26(15), 7250; https://doi.org/10.3390/ijms26157250 - 27 Jul 2025
Viewed by 291
Abstract
Nonspecific toxicity to normal and malignant cells restricts the clinical utility of many anticancer drugs. In particular, anemia in cancer patients develops due to drug-induced toxicity to red blood cells (RBCs). The anticancer alkaloid, cepharanthine (CEP), elicits distinct forms of cell death including [...] Read more.
Nonspecific toxicity to normal and malignant cells restricts the clinical utility of many anticancer drugs. In particular, anemia in cancer patients develops due to drug-induced toxicity to red blood cells (RBCs). The anticancer alkaloid, cepharanthine (CEP), elicits distinct forms of cell death including apoptosis and autophagy, but its cytotoxicity to RBCs has not been investigated. Colorimetric and fluorometric techniques were used to assess eryptosis and hemolysis in control and CEP-treated RBCs. Cells were labeled with Fluo4/AM and annexin-V-FITC to measure Ca2+ and phosphatidylserine (PS) exposure, respectively. Forward scatter (FSC) was detected to estimate cell size, and extracellular hemoglobin along with lactate dehydrogenase and aspartate transaminase activities were assayed to quantify hemolysis. Physiological manipulation of the extracellular milieu and various signaling inhibitors were tested to dissect the underlying mechanisms of CEP-induced RBC death. CEP increased PS exposure and hemolysis indices and decreased FSC in a concentration-dependent manner with prominent membrane blebbing. Although no Ca2+ elevation was detected, chelation of intracellular Ca2+ by BAPTA-AM reduced hemolysis. Whereas SB203580, D4476, acetylsalicylic acid, necrosulfonamide, and melatonin inhibited both PS exposure and hemolysis, staurosporin, L-NAME, ascorbate, caffeine, adenine, and guanosine only prevented hemolysis. Interestingly, sucrose had a unique dual effect by exacerbating PS exposure and reversing hemolysis. Of note, blocking KCl efflux augmented PS exposure while aggravating hemolysis only under Ca2+-depleted conditions. CEP activates Ca2+-independent pathways to promote eryptosis and hemolysis. The complex cytotoxic profile of CEP can be mitigated by targeting the identified modulatory pathways to potentiate its anticancer efficacy. Full article
(This article belongs to the Special Issue Blood Cells in Human Health and Disease)
Show Figures

Figure 1

25 pages, 2229 KiB  
Review
The Roles of Lactate and Lactylation in Diseases Related to Mitochondrial Dysfunction
by Fei Ma and Wei Yu
Int. J. Mol. Sci. 2025, 26(15), 7149; https://doi.org/10.3390/ijms26157149 - 24 Jul 2025
Viewed by 261
Abstract
Glycolysis and oxidative phosphorylation are the main pathways of cellular energy production. Glucose is metabolized via glycolysis to generate pyruvate, which, under anaerobic conditions, is converted into lactate, while, under aerobic conditions, pyruvate enters mitochondria for oxidative phosphorylation to produce more energy. Accordingly, [...] Read more.
Glycolysis and oxidative phosphorylation are the main pathways of cellular energy production. Glucose is metabolized via glycolysis to generate pyruvate, which, under anaerobic conditions, is converted into lactate, while, under aerobic conditions, pyruvate enters mitochondria for oxidative phosphorylation to produce more energy. Accordingly, mitochondrial dysfunction disrupts the energy balance. Lactate, historically perceived as a harmful metabolic byproduct. However, emerging research indicates that lactate has diverse biological functions, encompassing energy regulation, epigenetic remodeling, and signaling activities. Notably, the 2019 study revealed the role of lactate in regulating gene expression through histone and non-histone lactylation, thereby influencing critical biological processes. Metabolic reprogramming is a key adaptive mechanism of cells responding to stresses. The Warburg effect in tumor cells exemplifies this, with glucose preferentially converted to lactate for rapid energy, accompanied by metabolic imbalances, characterized by exacerbated aerobic glycolysis, lactate accumulation, suppressed mitochondrial oxidative phosphorylation, and compromised mitochondrial function, ultimately resulting in a vicious cycle of metabolic dysregulation. As molecular bridges connecting metabolism and epigenetics, lactate and lactylation offer novel therapeutic targets for diseases like cancer and neurodegenerative diseases. This review summarizes the interplay between metabolic reprogramming and mitochondrial dysfunction, while discussing lactate and lactylation’s mechanistic in the pathogenesis of related diseases. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

18 pages, 2600 KiB  
Article
Nintedanib Induces Mesenchymal-to-Epithelial Transition and Reduces Subretinal Fibrosis Through Metabolic Reprogramming
by David Hughes, Jüergen Prestle, Nina Zippel, Sarah McFetridge, Manon Szczepan, Heike Neubauer, Heping Xu and Mei Chen
Int. J. Mol. Sci. 2025, 26(15), 7131; https://doi.org/10.3390/ijms26157131 - 24 Jul 2025
Viewed by 359
Abstract
This study aimed to investigate the tyrosine kinase inhibitor Nintedanib and its potential role in reversing epithelial–mesenchymal transition (EMT) induced by transforming growth factor beta 2 (TGF-β2) in retinal pigment epithelial (RPE) cells, along with its therapeutic potential using a mouse model of [...] Read more.
This study aimed to investigate the tyrosine kinase inhibitor Nintedanib and its potential role in reversing epithelial–mesenchymal transition (EMT) induced by transforming growth factor beta 2 (TGF-β2) in retinal pigment epithelial (RPE) cells, along with its therapeutic potential using a mouse model of subretinal fibrosis. We hypothesized that the blockade of angiogenesis promoting and fibrosis inducing signaling using the receptor tyrosine kinase inhibitor Nintedanib (OfevTM) can prevent or reverse EMT both in vitro and in our in vivo model of subretinal fibrosis. Primary human retinal pigment epithelial cells (phRPE) and adult retinal pigment epithelial cell line (ARPE-19) cells were treated with TGF-β210 ng/mL for two days followed by four days of Nintedanib (1 µM) incubation. Epithelial and mesenchymal phenotypes were assessed by morphological examination, quantitative real-time polymerase chain reaction(qPCR) (ZO-1, Acta2, FN, and Vim), and immunocytochemistry (ZO-1, vimentin, fibronectin, and αSMA). Metabolites were measured using luciferase-based assays. Extracellular acidification and oxygen consumption rates were measured using the Seahorse XF system. Metabolic-related genes (GLUT1, HK2, PFKFB3, CS, LDHA, LDHB) were evaluated by qPCR. A model of subretinal fibrosis using the two-stage laser-induced method in C57BL/6J mice assessed Nintedanib’s therapeutic potential. Fibro-vascular lesions were examined 10 days later via fluorescence angiography and immunohistochemistry. Both primary and ARPE-19 RPE stimulated with TGF-β2 upregulated expression of fibronectin, αSMA, and vimentin, and downregulation of ZO-1, consistent with morphological changes (i.e., elongation). Glucose consumption, lactate production, and glycolytic reserve were significantly increased in TGF-β2-treated cells, with upregulation of glycolysis-related genes (GLUT1, HK2, PFKFB3, CS). Nintedanib treatment reversed TGF-β2-induced EMT signatures, down-regulated glycolytic-related genes, and normalized glycolysis. Nintedanib intravitreal injection significantly reduced collagen-1+ fibrotic lesion size and Isolectin B4+ neovascularization and reduced vascular leakage in the two-stage laser-induced model of subretinal fibrosis. Nintedanib can induce Mesenchymal-to-Epithelial Transition (MET) in RPE cells and reduce subretinal fibrosis through metabolic reprogramming. Nintedanib can therefore potentially be repurposed to treat retinal fibrosis. Full article
Show Figures

Figure 1

22 pages, 3999 KiB  
Review
The Role of Lactate in Immune Regulation: A Metabolic Rheostat via Transporters, Receptors, and Epigenetic Modifiers
by Eun Jung Choi, Yoon Young Jang, Eun Joo Choi and Chang Joo Oh
Cells 2025, 14(14), 1096; https://doi.org/10.3390/cells14141096 - 17 Jul 2025
Viewed by 695
Abstract
Lactate, once regarded as a metabolic byproduct, is now recognized as a critical immunometabolic regulator that shapes immune responses in both physiological and pathological contexts. This review examines how lactate accumulation occurs across diverse disease settings, including cancer, sepsis, and diabetes, through mechanisms [...] Read more.
Lactate, once regarded as a metabolic byproduct, is now recognized as a critical immunometabolic regulator that shapes immune responses in both physiological and pathological contexts. This review examines how lactate accumulation occurs across diverse disease settings, including cancer, sepsis, and diabetes, through mechanisms such as hypoxia, mitochondrial dysfunction, and pharmacologic intervention. We then explore how lactate modulates immunity via four integrated mechanisms: transporter-mediated flux, receptor signaling (e.g., GPR81), context-dependent metabolic rewiring, and histone/protein lactylation. Particular emphasis is placed on the dichotomous effects of endogenous versus exogenous lactate, with the former supporting glycolytic effector functions and the latter reprogramming immune cells toward regulatory phenotypes via redox shifts and epigenetic remodeling. The review also highlights how the directionality of lactate transport, and the metabolic readiness of the cell determine, whether lactate sustains inflammation or promotes resolution. After analyzing emerging data across immune cell subsets and disease contexts, we propose that lactate serves as a dynamic rheostat that integrates environmental cues with intracellular metabolic and epigenetic programming. Understanding these context-dependent mechanisms is essential for the rational design of lactate-targeted immunotherapies that aim to modulate immune responses without disrupting systemic homeostasis. Full article
(This article belongs to the Section Cellular Immunology)
Show Figures

Figure 1

11 pages, 653 KiB  
Review
Lactate in Heart Failure
by Piotr Gajewski, Michał Maksymilian Wilk, Krzysztof Aleksandrowicz, Beata Ponikowska and Robert Zymliński
Int. J. Mol. Sci. 2025, 26(14), 6810; https://doi.org/10.3390/ijms26146810 - 16 Jul 2025
Viewed by 474
Abstract
This narrative review explores the multifaceted role of lactate in heart failure (HF), focusing on its diagnostic and prognostic significance in both acute and chronic HF. Lactate functions not only as a marker of hypoperfusion and anaerobic metabolism but also as an active [...] Read more.
This narrative review explores the multifaceted role of lactate in heart failure (HF), focusing on its diagnostic and prognostic significance in both acute and chronic HF. Lactate functions not only as a marker of hypoperfusion and anaerobic metabolism but also as an active metabolic substrate. In acute HF, elevated lactate levels often signal circulatory insufficiency and predict adverse outcomes. In chronic HF, especially HFpEF, lactate dynamics during exercise reflect metabolic inefficiency and correlate with functional impairment. This review emphasizes the dual nature of lactate and discusses its potential utility in risk stratification and therapeutic guidance. Full article
(This article belongs to the Special Issue Molecular Mechanism and Pathogenesis of Cardiac Disease)
Show Figures

Figure 1

13 pages, 614 KiB  
Review
Context Matters: Divergent Roles of Exercise-Induced and Tumor-Derived Lactate in Cancer
by Amir hossein Ahmadi Hekmatikar, Ghazal Zolfaghari, Aref Basereh, D. Maryama Awang Daud and Kayvan Khoramipour
Biomolecules 2025, 15(7), 1010; https://doi.org/10.3390/biom15071010 - 14 Jul 2025
Viewed by 454
Abstract
Instead of being waste product of metabolism, lactate, has become a key metabolic and signaling molecule in both exercise physiology and tumor biology. Carcinogenic cells produce huge amounts of lactate through the Warburg effect, which is a hallmark of aggressive tumors, increasing acidity [...] Read more.
Instead of being waste product of metabolism, lactate, has become a key metabolic and signaling molecule in both exercise physiology and tumor biology. Carcinogenic cells produce huge amounts of lactate through the Warburg effect, which is a hallmark of aggressive tumors, increasing acidity in the environment that can stimulates angiogenesis, immune evasion, and metastasis. Conversely, while exercise acutely elevates blood lactate concentration but it consider helpful for cancer patients. This paradox raises the following question: is exercise-induced lactate a friend or foe in cancer? This study reviews current evidence on the mechanistic, metabolic, immunological, and clinical impacts of exercise-induced lactate in cancer patients, highlighting the context-dependent effects that render lactate either beneficial or detrimental. Tumor-derived lactate seems to be pro-tumorigenic, driving immune suppression and disease progression, whereas short bursts of lactate from exercise can enhance anti-tumor immunity and metabolic reprogramming under the right conditions. Therefore, lactate’s impact on cancer is “all about the context”. Full article
Show Figures

Figure 1

20 pages, 7700 KiB  
Article
Influence of Pregnancy on Whole-Transcriptome Sequencing in the Mammary Gland of Kazakh Mares
by Zhenyu Zhang, Zhixin Lu, Xinkui Yao, Linling Li, Jun Meng, Jianwen Wang, Yaqi Zeng and Wanlu Ren
Animals 2025, 15(14), 2056; https://doi.org/10.3390/ani15142056 - 11 Jul 2025
Viewed by 347
Abstract
Kazakh mares have drawn significant attention for their outstanding lactation traits. Lactation, a complex physiological activity, is modulated by multiple factors. This study utilized high-throughput sequencing to conduct whole-transcriptome sequencing analysis on the mammary gland tissue of eight Kazakh mares, of which four [...] Read more.
Kazakh mares have drawn significant attention for their outstanding lactation traits. Lactation, a complex physiological activity, is modulated by multiple factors. This study utilized high-throughput sequencing to conduct whole-transcriptome sequencing analysis on the mammary gland tissue of eight Kazakh mares, of which four were pregnant and four were non-pregnant, to systematically reveal the molecular regulatory mechanisms. The results showed differential expression in 2136 mRNAs, 180 lncRNAs, 104 miRNAs, and 1162 circRNAs. Gene ontology functional annotation indicates that these differentially expressed genes are involved in multiple key biological processes, such as the cellular process (BP), metabolic process, and biological regulation. Kyoto Encyclopedia of Genes and Genomes analysis suggests that the differentially expressed genes are significantly enriched in essential pathways such as cytokine–cytokine receptor interaction, the chemokine signaling pathway, and the PI3K-Akt signaling pathway. Additionally, this study constructed a competing endogenous RNA (ceRNA) regulatory network based on the differentially expressed genes (|log2FC| > 1, FDR < 0.05), offering a novel perspective for revealing the functional regulation of the mammary gland. This study compared genomic differences in mammary gland tissue of pregnant and non-pregnant Kazakh mares and identified candidate genes that are closely related to lactation regulation. It found that various genes, such as PIK3CG, IL7R, and SOD2, play central regulatory roles in activating mammary gland functions. These findings provide theoretical support for explaining the molecular mechanisms underlying the mammary gland development of Kazakh mares. Full article
(This article belongs to the Section Equids)
Show Figures

Figure 1

16 pages, 1588 KiB  
Review
The Role of Lactylation in Virus–Host Interactions
by Gejie Zhao, Jia Zhou, Shutong He, Xiao Fei and Guijie Guo
Int. J. Mol. Sci. 2025, 26(14), 6613; https://doi.org/10.3390/ijms26146613 - 10 Jul 2025
Viewed by 463
Abstract
Lactylation, a novel form of post-translational modifications (PTMs) of protein, particularly within histone proteins, has recently gained attention for its role in regulating gene expression and cellular processes. In recent years, lactylation has been widely studied in cancer, immune diseases, neurological diseases, cardiovascular [...] Read more.
Lactylation, a novel form of post-translational modifications (PTMs) of protein, particularly within histone proteins, has recently gained attention for its role in regulating gene expression and cellular processes. In recent years, lactylation has been widely studied in cancer, immune diseases, neurological diseases, cardiovascular diseases, metabolic diseases, etc. Increasing evidence now suggests that lactylation also plays a significant role in the host’s innate immune response to viruses. Lactylation influences fundamental cellular functions, including transcriptional regulation, signal transduction, cell proliferation and differentiation. It affects protein behavior by modulating their function, stability, subcellular localization and interactions. Studies have shown that many viral infections promote lactate production through enhanced glycolysis, a process that facilitates viral replication. Given that innate immunity serves as the host’s first line of defense against pathogenic invasion, understanding how lactylation regulates antiviral responses offers promising avenues for the development of diagnostic tools and therapeutic strategies against viral diseases. In this review, we provide a comprehensive overview of recent research on the role of lactylation in viral–host interactions. Full article
(This article belongs to the Special Issue Viral Infections and Immune Responses)
Show Figures

Figure 1

19 pages, 2922 KiB  
Article
Identification, Antioxidant and Immunomodulatory Activities of a Neutral Exopolysaccharide from Lactiplantibacillus plantarum DMDL 9010
by Yanyan Huang, Weiting Liang, Yunhui Lu, Jie Xiong, Dongmei Liu and Xiangze Jia
Nutrients 2025, 17(14), 2265; https://doi.org/10.3390/nu17142265 - 9 Jul 2025
Viewed by 324
Abstract
Objectives: This study investigated the properties of a neutral exopolysaccharide (EPS-LP1) with an average molecular weight of 55,637 Da, isolated from Lactiplantibacillus plantarum DMDL 9010 (LP9010). Results: The composition of EPS-LP1 includes galactose (Gal), glucose (Glu) and mannose (Man) in a molar ratio [...] Read more.
Objectives: This study investigated the properties of a neutral exopolysaccharide (EPS-LP1) with an average molecular weight of 55,637 Da, isolated from Lactiplantibacillus plantarum DMDL 9010 (LP9010). Results: The composition of EPS-LP1 includes galactose (Gal), glucose (Glu) and mannose (Man) in a molar ratio of 5.35:86.25:8.40. Notably, EPS-LP1 exhibits a smooth and rod-like surface along with thermal stability. Methylation combined with nuclear magnetic resonance analysis revealed that EPS-LP1 structured as t-Galp(1→, →6)-Glcp(1→, 4)-Glcp(1→ and →4,6)-Galp(1→), with relative molar ratio of 1.016:9.874:4.355:78.693:6.062, respectively. In the concentration range of 50 to 400 mg/mL, we observed the absence of cytotoxic effects from EPS-LP1 on RAW264.7 cells. Furthermore, EPS-LP1 demonstrated protective effects on RAW264.7 cells against oxidative damage by reducing the production of reactive oxygen species (ROS), malondialdehyde (MDA), and lactate dehydrogenase (LDH) release. Conversely, an increase in superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and concentrations of glutathione (GSH) was observed. Immunoreactivity assays indicated that EPS-LP1 can effectively reduce the production of nitric oxide (NO) and inhibit the secretion of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Additionally, it inhibited the activation of the mitogen-activated protein kinase (MAPK)/nuclear factor-kappa B gene binding (NF-kB) signaling pathway. Conclusions: This research provides a foundation basis for further investigations into the neutral exopolysaccharide derived from LP9010. Full article
(This article belongs to the Special Issue Effects of Dietary Polysaccharides and Their Molecular Mechanisms)
Show Figures

Figure 1

20 pages, 2783 KiB  
Article
Dietary Tea Polyphenols Improve Growth Performance and Intestinal Microbiota Under Chronic Crowding Stress in Hybrid Crucian Carp
by Zhe Yang, Gege Sun, Jinsheng Tao, Weirong Tang, Wenpei Li, Zehong Wei and Qifang Yu
Animals 2025, 15(13), 1983; https://doi.org/10.3390/ani15131983 - 5 Jul 2025
Viewed by 388
Abstract
This study systematically investigated the effects of dietary tea polyphenols (TPs, major bioactive polyphenols from Camellia sinensis with potent antioxidant and anti-inflammatory properties) on the growth performance and intestinal health of hybrid crucian carp HCC2 under chronic crowding stress. A low-density control group [...] Read more.
This study systematically investigated the effects of dietary tea polyphenols (TPs, major bioactive polyphenols from Camellia sinensis with potent antioxidant and anti-inflammatory properties) on the growth performance and intestinal health of hybrid crucian carp HCC2 under chronic crowding stress. A low-density control group (44.4 fish/m3, basal diet without TPs) and four high-density crowding stress groups (222.2 fish/m3) were established, one fed the basal diet without TPs (CS) and three fed basal diets supplemented with 100 (CSLTP), 200 (CSMTP), or 400 (CSHTP) mg/kg TPs. We analyzed the impacts of TPs on growth performance, serum biochemical parameters, antioxidant capacity, expression of lipid metabolism-related genes, and intestinal microbiota composition. The results demonstrated that chronic crowding stress significantly suppressed the final body weight, weight gain rate, and specific growth rate of HCC2, while increasing serum lactate LDH, TG, and ALB and decreasing GLU, LDL-C, ALT, AST, and ALP levels. Dietary TPs supplementation enhanced antioxidant capacity (T-AOC, SOD, CAT, and GSH) and alleviated lipid metabolic disorders by activating the Nrf2/Keap1 and PPARα signaling pathways, thereby upregulating the expression of liver antioxidant genes (CAT and SOD) and fatty acid oxidation genes (CPT1 and acox1). Furthermore, intestinal microbiota analysis revealed that chronic crowding stress significantly increased the abundance of Proteobacteria and decreased the proportion of Firmicutes compared to the low-density control. Dietary TPs intervention, particularly at higher doses, partially restored the Firmicutes abundance and reduced the enrichment of potential pathogenic bacteria associated with stress. This study is the first to comprehensively elucidate the mechanism by which TPs alleviate crowding stress through enhanced antioxidant capacity, metabolic regulation, and microbiota remodeling, providing robust theoretical support for the application of plant-based additives in aquaculture. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

Back to TopTop