Genetic Dissection of Energy Deficiency in Autism Spectrum Disorder
Abstract
1. The Rapidly Expanded Homo Sapiens Brain and ASD Vulnerability
2. A Mini-Evolutionary Case Study of the BTBR Mouse: From Abnormal Taste Preferences to Calcium Signaling-Based ASD
3. Final Synthesis
- The evolutionary importance of—and potentially critical historical, ecological- niche- permissive—newly-evolving energy-hungry enlarged human “social brain”, conveying the uniquely human set of “theory of mind” capabilities underlying language and culture, but that are specifically challenged in ASD.
- The critical role of ITPR channel gating in calcium signals that homeostatically control mitochondrial oxidative metabolic energy production, and the molecular ITPR gating defect that compromises calcium signaling and energetics that is observed in patients with an ADOS-confirmed diagnosis of ASD.
- The unique BTBR mouse model of ASD has cryptically harbored a unique missense mutation of that same mechanism, the Itpr3 gene, which causes a syndrome not merely of taste dysfunction and unusual hair growth but also of all conventional ASD behavioral abnormalities, as well as an additional broad, recognizably patient-related set of physiological abnormalities of the gut, immune cells, and sensory systems, all of which are related to its ability to model a typical ASD syndrome and are already mechanistically linked to signaling via the ITPR.
4. A Hopeful Future
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ITPR | inositol 1,4,5-trisphosphate receptor |
ER | endoplasmic reticulum |
BTBR | a specific mouse strain developed in the 1950s |
ROS | reactive oxygen species |
HAR | human accelerated regions |
PUFA | polyunsaturated fatty acids |
FADS | fatty acid desaturase genes |
DMN | default mode network |
BBB | blood-brain barrier |
SOCE | store-operated calcium channels |
SERCA | sarcoplasmic/endoplasmic reticulum calcium ATPase |
UPR | unfolded protein response |
IRE1 | inositol-requiring enzyme 1 |
XBP1 | an endonuclease |
ERAD | ER-associated degradation |
PERK | protein kinase RNA-like ER kinase |
eIF2α | α-subunit of eukaryotic initiation factor 2 |
ATF6 | activating transcription factor 6 |
VDAC | mitochondrial voltage-dependent anion channel |
GRP75 | glucose-regulated protein 75 |
MCU | mitochondrial calcium uniporter |
STIM1 | stromal interaction molecule 1 |
MAM | mitochondrial-associated membrane |
PDH | pyruvate dehydrogenase |
IDH | isocitrate dehydrogenase |
α-KGDH | α-ketoglutarate dehydrogenase |
NADH | nicotinamide adenine dinucleotide (in its reduced form) |
FADH2 | flavin adenine dinucleotide (in its reduced form) |
ETC | electron transport chain |
P2Y | P2Y purinergic receptor |
iPSC | induced pluripotent stem cells |
FLIPR | fluorescent light plate reader |
ROC | receiver operator characteristic |
AUC | area under the curve |
ADOS | Autism Diagnostic Observation Schedule |
fMRI | functional magnetic resonance imaging |
MRI | magnetic resonance imaging |
EEG | electroencephalogram |
NIRS | near-infrared spectroscopy |
tf | tufted allele in mice |
T | homozygous lethal allele at the brachyury locus |
PKU | phenylketonuria |
Abs | antibodies |
MHC | major histocompatibility locus |
F1 | first filial offspring |
Ig | immunoglobulin |
FITC | fluorescein isothiocyanate |
TNF-α | tumor necrosis factor alpha |
IL-6 | interleukin-6 |
BTBR T+ Itpr3^tf^/J | full name of the BTBR mouse strain from Jackson Labs |
Itpr3^tf^ | full name of the tufted allele in the BTBR mouse |
BDNF | brain-derived neurotrophic factor |
CRISPR/Cas9 | clustered regularly interspaced short palindromic repeats/CRISPR-associated protein |
mGluR5 | metabotropic glutamate receptor 5 |
MPEP | antagonist of mGluR5 |
GRN-529 | negative allosteric modulator of mGluR5 |
mPFC | medial prefrontal cortex |
GABA | gamma-aminobutyric acid |
References
- Kuzawa, C.W.; Chugani, H.T.; Grossman, L.I.; Lipovich, L.; Muzik, O.; Hof, P.R.; Wildman, D.E.; Sherwood, C.C.; Leonard, W.R.; Lange, N. Metabolic costs and evolutionary implications of human brain development. Proc. Natl. Acad. Sci. USA 2014, 111, 13010–13015. [Google Scholar] [CrossRef]
- Marean, C.W. The transition to foraging for dense and predictable resources and its impact on the evolution of modern humans. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2016, 371, 20150239. [Google Scholar] [CrossRef]
- Marean, C.W. Coastal South Africa and the coevolution of the modern human lineage and the coastal adaptation. Afr. Archaeol. Rev. 2010, 27, 303–330. [Google Scholar]
- Gargus, J.J.; Haier, R.J. Towards a molecular biology of human intelligence. Intell. Cogn. Abil. 2025; in review. [Google Scholar]
- Cavanna, A.E.; Trimble, M.R. The precuneus: A review of its functional anatomy and behavioral correlates. Brain 2006, 129 Pt 3, 564–583. [Google Scholar] [CrossRef]
- Di Martino, A.; Kelly, C.; Grzadzinski, R.; Zuo, X.N.; Mennes, M.; Mairena, M.A.; Lord, C.; Castellanos, F.X.; Milham, M.P. Aberrant striatal functional connectivity in children with autism. Biol. Psychiatry 2011, 69, 847–856. [Google Scholar] [CrossRef]
- Buckner, R.L.; Krienen, F.M. The evolution of distributed association networks in the human brain. Trends Cogn. Sci. 2013, 17, 648–665. [Google Scholar] [CrossRef] [PubMed]
- Utevsky, A.V.; Smith, D.V.; Huettel, S.A. Precuneus is a functional core of the default-mode network. J. Neurosci. 2014, 34, 932–940, Erratum in J. Neurosci. 2016, 36, 12066–12068. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Filipek, P.A.; Juranek, J.; Nguyen, M.T.; Cummings, C.; Gargus, J.J. Relative carnitine deficiency in autism. J. Autism Dev. Disord. 2004, 34, 615–623. [Google Scholar] [CrossRef] [PubMed]
- Gargus, J.J.; Imtiaz, F. Mitochondrial Energy-Deficient Endophenotype in Autism. Am. J. Biochem. Biotechnol. 2008, 4, 198–207, ISSN 1553-3468. [Google Scholar]
- Smith, M.; Flodman, P.L.; Gargus, J.J.; Simon, M.T.; Verrell, K.; Haas, R.; Reiner, G.E.; Naviaux, R.; Osann, K.; Spence, M.A.; et al. Mitochondrial and ion channel gene alterations in autism. Biochim. Biophys. Acta 2012, 1817, 1796–1802. [Google Scholar] [CrossRef] [PubMed]
- Rossignol, D.A.; Frye, R.E. Mitochondrial dysfunction in autism spectrum disorders: A systematic review and meta-analysis. Mol. Psychiatry 2012, 17, 290–314. [Google Scholar] [CrossRef]
- Shoffner, J.; Hyams, L.; Langley, G.N.; Cossette, S.; Mylacraine, L.; Dale, J.; Ollis, L.; Kuoch, S.; Bennett, K.; Aliberti, A.; et al. Fever plus mitochondrial disease could be risk factors for autistic regression. J. Child Neurol. 2010, 25, 429–434. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, L.; Papaleo, V.; Porcelli, V.; Scarcia, P.; Gaita, L.; Sacco, R.; Hager, J.; Rousseau, F.; Curatolo, P.; Manzi, B.; et al. Altered calcium homeostasis in autism-spectrum disorders: Evidence from biochemical and genetic studies of the mitochondrial aspartate/glutamate carrier AGC1. Mol. Psychiatry 2010, 15, 38–52. [Google Scholar] [CrossRef] [PubMed]
- Hagihara, H.; Shoji, H.; Hattori, S.; Sala, G.; Takamiya, Y.; Tanaka, M.; Ihara, M.; Shibutani, M.; Hatada, I.; Hori, K.; et al. Large-scale animal model study uncovers altered brain pH and lactate levels as a transdiagnostic endophenotype of neuropsychiatric disorders involving cognitive impairment. Elife 2024, 12, RP89376. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Howarth, C.; Gleeson, P.; Attwell, D. Updated Energy Budgets for Neural Computation in the Neocortex and Cerebellum. J. Cereb. Blood Flow Metab. 2012, 32, 1222–1232. [Google Scholar] [CrossRef] [PubMed]
- Jensen, N.J.; Wodschow, H.Z.; Nilsson, M.; Rungby, J. Effects of Ketone Bodies on Brain Metabolism and Function in Neurodegenerative Diseases. Int. J. Mol. Sci. 2020, 21, 8767. [Google Scholar] [CrossRef] [PubMed]
- Cunnane, S.C.; Crawford, M.A. Energetic and nutritional constraints on infant brain development: Implications for brain expansion during human evolution. J. Hum. Evol. 2014, 77, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Kothapalli, K.S.; Ye, K.; Gadgil, M.S.; Carlson, S.E.; O’Brien, K.O.; Zhang, J.Y.; Park, H.G.; Ojukwu, K.; Zou, J.; Hyon, S.S.; et al. Positive Selection on a Regulatory Insertion-Deletion Polymorphism in FADS2 Influences Apparent Endogenous Synthesis of Arachidonic Acid. Mol. Biol. Evol. 2016, 33, 1726–1739. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Harris, J.J.; Jolivet, R.; Attwell, D. Synaptic energy use and supply. Neuron 2012, 75, 762–777. [Google Scholar] [CrossRef] [PubMed]
- Balla, T.; Gulyas, G.; Kim, Y.J.; Pemberton, J. PHOSPHOINOSITIDES AND CALCIUM SIGNALING. A MARRIAGE ARRANGED IN ER-PM CONTACT SITES. Curr. Opin. Physiol. 2020, 17, 149–157. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Smyth, J.T.; Hwang, S.Y.; Tomita, T.; DeHaven, W.I.; Mercer, J.C.; Putney, J.W. Activation and regulation of store-operated calcium entry. J. Cell. Mol. Med. 2010, 14, 2337–2349. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hetz, C.; Papa, F.R. The Unfolded Protein Response and Cell Fate Control. Mol. Cell 2018, 69, 169–181. [Google Scholar] [CrossRef] [PubMed]
- Pakos-Zebrucka, K.; Koryga, I.; Mnich, K.; Ljujic, M.; Samali, A.; Gorman, A.M. The integrated stress response. EMBO Rep. 2016, 17, 1374–1395. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Walter, P.; Ron, D. The unfolded protein response: From stress pathway to homeostatic regulation. Science 2011, 334, 1081–1086. [Google Scholar] [CrossRef] [PubMed]
- Rizzuto, R.; De Stefani, D.; Raffaello, A.; Mammucari, C. Mitochondria as sensors and regulators of calcium signalling. Nat. Rev. Mol. Cell Biol. 2012, 13, 566–578. [Google Scholar] [CrossRef] [PubMed]
- Schmunk, G.; Gargus, J.J. Channelopathy pathogenesis in autism spectrum disorders. Front. Genet. 2013, 4, 222. [Google Scholar] [CrossRef] [PubMed]
- Schmunk, G.; Boubion, B.J.; Smith, I.F.; Parker, I.; Gargus, J.J. Shared functional defect in IP3R-mediated calcium signaling in diverse monogenic autism syndromes. Transl. Psychiatry 2015, 5, e643. [Google Scholar] [CrossRef] [PubMed]
- Schmunk, G.; Nguyen, R.L.; Ferguson, D.L.; Kumar, K.; Parker, I.; Gargus, J.J. High-throughput screen detects calcium signaling dysfunction in typical sporadic autism spectrum disorder. Sci. Rep. 2017, 7, 40740. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, R.L.; Medvedeva, Y.V.; Ayyagari, T.E.; Schmunk, G.; Gargus, J.J. Intracellular calcium dysregulation in autism spectrum disorder: An analysis of converging organelle signaling pathways. Biochim. Biophys. Acta Mol. Cell Res. 2018, 1865 Pt B, 1718–1732. [Google Scholar] [CrossRef] [PubMed]
- Gargus, J.J. Unraveling monogenic channelopathies and their implications for complex polygenic disease. Am. J. Hum. Genet. 2003, 72, 785–803. [Google Scholar] [CrossRef] [PubMed]
- Gargus, J.J. Genetic calcium signaling abnormalities in the central nervous system: Seizures, migraine, and autism. Ann. N. Y. Acad. Sci. 2009, 1151, 133–156. [Google Scholar] [CrossRef] [PubMed]
- Buxbaum, J.D.; Daly, M.J.; Devlin, B.; Lehner, T.; Roeder, K.; State, M.W. Autism Sequencing Consortium. The autism sequencing consortium: Large-scale, high-throughput sequencing in autism spectrum disorders. Neuron 2012, 76, 1052–1056. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Satterstrom, F.K.; Kosmicki, J.A.; Wang, J.; Breen, M.S.; De Rubeis, S.; An, J.Y.; Peng, M.; Collins, R.; Grove, J.; Klei, L.; et al. Large-Scale Exome Sequencing Study Implicates Both Developmental and Functional Changes in the Neurobiology of Autism. Cell 2020, 180, 568–584.e23. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fu, J.M.; Satterstrom, F.K.; Peng, M.; Brand, H.; Collins, R.L.; Dong, S.; Wamsley, B.; Klei, L.; Wang, L.; Hao, S.P.; et al. Rare coding variation provides insight into the genetic architecture and phenotypic context of autism. Nat. Genet. 2022, 54, 1320–1331. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Koko, M.; Satterstrom, F.K.; Autism Sequencing Consortium; APEX consortium; Warrier, V.; Martin, H. Contribution of autosomal rare and de novo variants to sex differences in autism. Am. J. Hum. Genet. 2025, 112, 599–614. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cárdenas, C.; Miller, R.A.; Smith, I.; Bui, T.; Molgó, J.; Müller, M.; Vais, H.; Cheung, K.H.; Yang, J.; Parker, I.; et al. Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell 2010, 142, 270–283. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pattabiraman, K.; Muchnik, S.K.; Sestan, N. The evolution of the human brain and disease susceptibility. Curr. Opin. Genet. Dev. 2020, 65, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Padmanabhan, A.; Lynch, C.J.; Schaer, M.; Menon, V. The default mode network in autism. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2017, 2, 476–486. [Google Scholar] [CrossRef]
- Floris, D.L.; Llera, A.; Zabihi, M.; Moessnang, C.; Jones, E.J.H.; Mason, L.; Haartsen, R.; Holz, N.E.; Mei, T.; Elleaume, C.; et al. A multimodal neural signature of face processing in autism within the fusiform gyrus. Nat. Ment. Health 2025, 3, 31–45. [Google Scholar] [CrossRef] [PubMed]
- Leyhausen, J.; Schäfer, T.; Gurr, C.; Berg, L.M.; Seelemeyer, H.; Pretzsch, C.M.; Loth, E.; Oakley, B.; Buitelaar, J.K.; Beckmann, C.F.; et al. Differences in Intrinsic Gray Matter Connectivity and Their Genomic Underpinnings in Autism Spectrum Disorder. Biol. Psychiatry 2024, 95, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Barstein, J.; Ethridge, L.E.; Mosconi, M.W.; Takarae, Y.; Sweeney, J.A. Resting state EEG abnormalities in autism spectrum disorders. J. Neurodev. Disord. 2013, 5, 24. [Google Scholar] [CrossRef]
- de Jonge, E.; Garcés, P.; de Bildt, A.; Groen, Y.; Jones, E.J.H.; Mason, L.; Holt, R.J.; Hayward, H.; Murphy, D.; Oakley, B.; et al. Atypical Resting-State EEG Graph Metrics of Network Efficiency Across Development in Autism and Their Association with Social Cognition: Results from the LEAP Study. J. Autism Dev. Disord. 2025. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, M.; Pinti, P.; Brigadoi, S.; Lloyd-Fox, S.; Elwell, C.E.; Johnson, M.H.; Tachtsidis, I.; Jones, E.J.H. Using multi-modal neuroimaging to characterise social brain specialisation in infants. Elife 2023, 12, e84122. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, M.F.; Elwell, C.; Johnson, M.H. Mitochondrial Dysfunction in Autism Spectrum Disorders. Autism Open Access 2016, 6, 1000190. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, M.F.; Lloyd-Fox, S.; Kaynezhad, P.; Tachtsidis, I.; Johnson, M.H.; Elwell, C.E. Changes in Cytochrome-C-Oxidase Account for Changes in Attenuation of Near-Infrared Light in the Healthy Infant Brain. Adv. Exp. Med. Biol. 2018, 1072, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Russell, E.S. A history of mouse genetics. Annu. Rev. Genet. 1985, 19, 1–28. [Google Scholar] [CrossRef]
- Silver, L.M. Mouse t haplotypes. Annu. Rev. Genet. 1985, 19, 179–208. [Google Scholar] [CrossRef] [PubMed]
- Lyon, M.F. Hereditary hair loss in the tufted mutant of the house mouse. J. Hered. 1956, 47, 101–103. [Google Scholar] [CrossRef]
- Jackson Labs Catalog. Available online: https://www.jax.org/ (accessed on 9 July 2025).
- Leiter, E.H. The genetics of diabetes susceptibility in mice. FASEB J. 1989, 3, 2231–2234. [Google Scholar] [CrossRef]
- Heo, Y.; Zhang, Y.; Gao, D.; Miller, V.M. Lawrence DA. Aberrant immune responses in a mouse with behavioral disorders. PLoS ONE 2011, 6, e20912. [Google Scholar] [CrossRef] [PubMed]
- Uddin, M.N.; Yao, Y.; Manley, K.; Lawrence, D.A. Development, phenotypes of immune cells in BTBR T+Itpr3tf/J mice. Cell. Immunol. 2020, 358, 104223. [Google Scholar] [CrossRef]
- Mutovina, A.; Ayriyants, K.; Mezhlumyan, E.; Ryabushkina, Y.; Litvinova, E.; Bondar, N.; Khantakova, J.; Reshetnikov, V. Unique Features of the Immune Response in BTBR Mice. Int. J. Mol. Sci. 2022, 23, 15577. [Google Scholar] [CrossRef] [PubMed]
- Coretti, L.; Cristiano, C.; Florio, E.; Scala, G.; Lama, A.; Keller, S.; Cuomo, M.; Russo, R.; Pero, R.; Paciello, O.; et al. Sex-related alterations of gut microbiota composition in the BTBR mouse model of autism spectrum disorder. Sci. Rep. 2017, 7, 45356. [Google Scholar] [CrossRef]
- Martin, L.J.; Poulson, S.J.; Mannan, E.; Sivaselvachandran, S.; Cho, M.; Setak, F.; Chan, C. Altered nociceptive behavior and emotional contagion of pain in mouse models of autism. Genes Brain Behav. 2022, 21, e12778. [Google Scholar] [CrossRef]
- Tordoff, M.G.; Bachmanov, A.A.; Reed, D.R. Forty mouse strain survey of voluntary calcium intake, blood calcium, and bone mineral content. Physiol. Behav. 2007, 91, 632–643. [Google Scholar] [CrossRef]
- Tordoff, M.G.; Ellis, H.T. Taste dysfunction in BTBR mice due to a mutation of Itpr3, the inositol triphosphate receptor 3 gene. Physiol. Genom. 2013, 45, 834–855. [Google Scholar] [CrossRef] [PubMed]
- Bolivar, V.J.; Walters, S.R.; Phoenix, J.L. Assessing autism-like behavior in mice: Variations in social interactions among inbred strains. Behav. Brain Res. 2007, 176, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Moy, S.S.; Nadler, J.J.; Young, N.B.; Perez, A.; Holloway, L.P.; Barbaro, R.P.; Barbaro, J.R.; Wilson, L.M.; Threadgill, D.W.; Lauder, J.M.; et al. Mouse behavioral tasks relevant to autism: Phenotypes of 10 inbred strains. Behav. Brain Res. 2007, 176, 4–20. [Google Scholar] [CrossRef] [PubMed]
- Ellegood, J.; Anagnostou, E.; Babineau, B.A.; Crawley, J.N.; Lin, L.; Genestine, M.; DiCicco-Bloom, E.; Lai, J.K.; Foster, J.A.; Peñagarikano, O.; et al. Clustering autism: Using neuroanatomical differences in 26 mouse models to gain insight into the heterogeneity. Mol. Psychiatry 2015, 20, 118–125. [Google Scholar] [CrossRef] [PubMed]
- McFarlane, H.G.; Kusek, G.K.; Yang, M.; Phoenix, J.L.; Bolivar, V.J.; Crawley, J.N. Autism-like behavioral phenotypes in BTBR T1tf/J mice. Genes Brain Behav. 2008, 7, 152–163. [Google Scholar] [CrossRef]
- Scattoni, M.L.; Ricceri, L.; Crawley, J.N. Unusual repertoire of vocalizations in adult BTBR T+tf/J mice during three types of social encounters. Genes Brain Behav. 2011, 10, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Silverman, J.L.; Gastrell, P.T.; Karras, M.N.; Solomon, M.; Crawley, J.N. Cognitive abilities on transitive inference using a novel touchscreen technology for mice. Cereb. Cortex 2015, 25, 1133–1142. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Clarke, A.M.; Crawley, J.N. Postnatal lesion evidence against a primary role for the corpus callosum in mouse sociability. Eur. J. Neurosci. 2009, 29, 1663–1677. [Google Scholar] [CrossRef] [PubMed]
- Stephenson, D.T.; O’Neill, S.M.; Narayan, S.; Tiwari, A.; Arnold, E.; Samaroo, H.D.; Du, F.; Ring, R.H.; Campbell, B.; Pletcher, M.; et al. Histopathologic characterization of the BTBR T+tf/J mouse model of autism. Mol. Autism 2011, 2, 7. [Google Scholar] [CrossRef]
- Fenlon, L.R.; Liu, S.; Gobius, I.; Kurniawan, N.D.; Murphy, S.; Moldrich, R.X.; Richards, L.J. Formation of functional areas in the cerebral cortex is disrupted in a mouse model of autism spectrum disorder. Neural Dev. 2015, 10, 10. [Google Scholar] [CrossRef]
- Meyza, K.Z.; Blanchard, D.C. The BTBR mouse model of idiopathic autism: Current view on mechanisms. Neurosci. Biobehav. Rev. 2017, 76 Pt A, 99–110. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar]
- Ellis, H.T.; Tordoff, M.G.; Parker, M.R. Itpr3 Is responsible for the mouse tufted (tf) locus. J. Hered. 2013, 104, 295–297. [Google Scholar] [CrossRef] [PubMed]
- Rhine, M.A.; Parrott, J.M.; Schultz, M.N.; Kazdoba, T.M.; Crawley, J.N. Hypothesis-driven investigations of diverse pharmacological targets in two mouse models of autism. Autism Res. 2019, 12, 401–421. [Google Scholar] [CrossRef] [PubMed]
- Bove, M.; Palmieri, M.A.; Santoro, M.; Agosti, L.P.; Gaetani, S.; Romano, A.; Dimonte, S.; Costantino, G.; Sikora, V.; Tucci, P.; et al. Amygdalar neurotransmission alterations in the BTBR mice model of idiopathic autism. Transl. Psychiatry 2024, 14, 193. [Google Scholar] [CrossRef]
- Daimon, C.M.; Jasien, J.M.; Wood, W.H., 3rd; Zhang, Y.; Becker, K.G.; Silverman, J.L.; Crawley, J.N.; Martin, B.; Maudsley, S. Hippocampal transcriptomic and proteomic alterations in the BTBR mouse model of autism spectrum disorder. Front. Physiol. 2015, 6, 324. [Google Scholar] [CrossRef]
- Charles River Catalog. Available online: https://www.criver.com/products-services/discovery-services/pharmacology-studies/neuroscience-models-assays/psychiatric-disease-studies/autism-spectrum-disorder-mouse-model?region=3701 (accessed on 9 July 2025).
- Kisaretova, P.; Tsybko, A.; Bondar, N.; Reshetnikov, V. Molecular Abnormalities in BTBR Mice and Their Relevance to Schizophrenia and Autism Spectrum Disorders: An Overview of Transcriptomic and Proteomic Studies. Biomedicines 2023, 11, 289. [Google Scholar] [CrossRef]
- Khanbabaei, M.; Hughes, E.; Ellegood, J.; Qiu, L.R.; Yip, R.; Dobry, J.; Murari, K.; Lerch, J.P.; Rho, J.M.; Cheng, N. Precocious myelination in a mouse model of autism. Transl. Psychiatry 2019, 9, 251. [Google Scholar] [CrossRef]
- Silverman, J.L.; Tolu, S.S.; Barkan, C.L.; Crawley, J.N. Repetitive self-grooming behavior in the BTBR mouse model of autism is blocked by the mGluR5 antagonist MPEP. Neuropsychopharmacology 2010, 35, 976–989. [Google Scholar] [CrossRef]
- Silverman, J.L.; Smith, D.G.; Rizzo, S.J.; Karras, M.N.; Turner, S.M.; Tolu, S.S.; Bryce, D.K.; Smith, D.L.; Fonseca, K.; Ring, R.H.; et al. Negative allosteric modulation of the mGluR5 receptor reduces repetitive behaviors and rescues social deficits in mouse models of autism. Sci. Transl. Med. 2012, 4, 131ra51. [Google Scholar] [CrossRef]
- Chhabra, S.; Nardi, L.; Leukel, P.; Sommer, C.J.; Schmeisser , M.J. Striatal increase of dopamine receptor 2 density in idiopathic and syndromic mouse models of autism spectrum disorder. Front. Psychiatry 2023, 14, 1110525. [Google Scholar] [CrossRef]
- Lv, H.; Gu, X.; Shan, X.; Zhu, T.; Ma, B.; Zhang, H.T.; Bambini-Junior, V.; Zhang, T.; Li, W.G.; Gao, X.; et al. Nanoformulated bumetanide ameliorates social deficiency in BTBR mice model of autism spectrum disorder. Front. Immunol. 2022, 13, 870577. [Google Scholar] [CrossRef] [PubMed]
- Ryu, Y.K.; Park, H.Y.; Go, J.; Choi, D.H.; Choi, Y.K.; Rhee, M.; Lee, C.H.; Kim, K.S. Sodium phenylbutyrate reduces repetitive self-grooming behavior and rescues social and cognitive deficits in mouse models of autism. Psychopharmacology 2021, 238, 1833–1845. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, S.; Urruela, M.; Devine, D.P. Effects of environmental enrichment on repetitive behaviors in the BTBR T+tf/J mouse model of autism. Autism Res. 2013, 6, 337–343. [Google Scholar] [CrossRef] [PubMed]
- van Elst, K.; Brouwers, J.F.; Merkens, J.E.; Broekhoven, M.H.; Birtoli, B.; Helms, J.B.; Kas, M.J.H. Chronic dietary changes in n-6/n-3 polyunsaturated fatty acid ratios cause developmental delay and reduce social interest in mice. Eur. Neuropsychopharmacol. 2019, 29, 16–31. [Google Scholar] [CrossRef]
- Ruskin, D.N.; Svedova, J.; Cote, J.L.; Sandau, U.; Rho, J.M.; Kawamura, M., Jr.; Boison, D.; Masino, S.A. Ketogenic diet improves core symptoms of autism in BTBR mice. PLoS ONE 2013, 8, e65021. [Google Scholar] [CrossRef]
- Möhrle, D.; Murari, K.; Rho, J.M.; Cheng, N. Vocal communication in asocial BTBR mice is more malleable by a ketogenic diet in juveniles than adults. Neuroscience 2024, 561, 43–64. [Google Scholar] [CrossRef]
- Liu, S.; Xi, H.; Xue, X.; Sun, X.; Huang, H.; Fu, D.; Mi, Y.; He, Y.; Yang, P.; Tang, Y.; et al. Clostridium butyricum regulates intestinal barrier function via TREK1 to improve behavioral abnormalities in mice with autism spectrum disorder. Cell Biosci. 2024, 14, 95. [Google Scholar] [CrossRef]
- Xue, Y.; Morris, J.L.; Yang, K.; Fu, Z.; Zhu, X.; Johnson, F.; Meehan, B.; Witkowski, L.; Yasmeen, A.; Golenar, T.; et al. SMARCA4/2 loss inhibits chemotherapy-induced apoptosis by restricting IP3R3-mediated Ca2⁺ flux to mitochondria. Nat. Commun. 2021, 12, 5404. [Google Scholar] [CrossRef] [PubMed]
- Kerkhofs, M.; Seitaj, B.; Ivanova, H.; Monaco, G.; Bultynck, G.; Parys, J.B. Pathophysiological consequences of isoform-specific IP3 receptor mutations. Biochim. Biophys. Acta Mol. Cell Res. 2018, 1865 Pt B, 1707–1717. [Google Scholar] [CrossRef] [PubMed]
- Katona, M.; Bartók, Á.; Nichtova, Z.; Csordás, G.; Berezhnaya, E.; Weaver, D.; Ghosh, A.; Várnai, P.; Yule, D.I.; Hajnóczky, G. Capture at the ER-mitochondrial contacts licenses IP3 receptors to stimulate local Ca2+ transfer and oxidative metabolism. Nat. Commun. 2022, 13, 6779. [Google Scholar] [CrossRef] [PubMed]
- Marean, C.W. The most invasive species of all. Sci. Am. 2015, 313, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Marean, C.W. When the sea saved humanity. Sci. Am. 2010, 303, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Gargus, J.; Justus, D.; Dolinsky, J.S.; Limon, J.; Chao, E.; Smith, I. Autism diagnosis at birth via functional analysis of IP3 RECEPTOR Ca+2 signaling in fibroblasts. In Proceedings of the INSAR Meeting Abstract, Seatle, WA, USA, 30 April 2025–3 May 2025. [Google Scholar]
- Dawson, G.; Rogers, S.; Munson, J.; Smith, M.; Winter, J.; Greenson, J.; Donaldson, A.; Varley, J. Randomized, controlled trial of an intervention for toddlers with autism: The Early Start Denver Model. Pediatrics 2010, 125, e17–e23. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Whitehouse, A.J.O.; Varcin, K.J.; Pillar, S.; Billingham, W.; Alvares, G.A.; Barbaro, J.; Bent, C.A.; Blenkley, D.; Boutrus, M.; Chee, A.; et al. Effect of Preemptive Intervention on Developmental Outcomes Among Infants Showing Early Signs of Autism: A Randomized Clinical Trial of Outcomes to Diagnosis. JAMA Pediatr. 2021, 175, e213298. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Smith, C.G.; Jones, E.J.H.; Wass, S.V.; Pasco, G.; Johnson, M.H.; Charman, T.; Wan, M.W. BASIS Team. Infant Effortful Control Mediates Relations Between Nondirective Parenting and Internalising-Related Child Behaviours in an Autism-Enriched Infant Cohort. J. Autism Dev. Disord. 2022, 52, 3496–3511. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Azumaya, C.M.; Linton, E.A.; Risener, C.J.; Nakagawa, T.; Karakas, E. Cryo-EM structure of human type-3 inositol triphosphate receptor reveals the presence of a self-binding peptide that acts as an antagonist. J. Biol. Chem. 2020, 295, 1743–1753. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nam, Y.W.; Im, D.; Garcia, A.S.C.; Tringides, M.L.; Nguyen, H.M.; Liu, Y.; Orfali, R.; Ramanishka, A.; Pintilie, G.; Su, C.C.; et al. Cryo-EM structures of the small-conductance Ca2+-activated KCa2.2 channel. Nat. Commun. 2025, 16, 3690. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ong, S.T.; Nam, Y.W.; Nasburg, J.A.; Ramanishka, A.; Ng, X.R.; Zhuang, Z.; Goay, S.S.M.; Nguyen, H.M.; Singh, L.; Singh, V.; et al. Design and structural basis of selective 1,4-dihydropyridine inhibitors of the calcium-activated potassium channel KCa3.1. Proc. Natl. Acad. Sci. USA 2025, 122, e2425494122. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, M.; Feng, J.; Xie, C.; Song, N.; Jin, C.; Wang, J.; Zhao, Q.; Zhang, L.; Wang, B.; Sun, Y.; et al. Assembly and architecture of endogenous NMDA receptors in adult cerebral cortex and hippocampus. Cell 2025, 188, 1198–1207.e13. [Google Scholar] [CrossRef] [PubMed]
- Kumar Mondal, A.; Carrillo, E.; Jayaraman, V.; Twomey, E.C. Glutamate gating of AMPA-subtype iGluRs at physiological temperatures. Nature 2025, 641, 788–796. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, H.; Huang, J.; Zang, J.; Jin, X.; Yan, N. Drug discovery targeting Nav1.8: Structural insights and therapeutic potential. Curr. Opin. Chem. Biol. 2024, 83, 102538, Erratum in Curr. Opin. Chem. Biol. 2025, 84, 102546. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gargus, J.J. Genetic Dissection of Energy Deficiency in Autism Spectrum Disorder. Genes 2025, 16, 923. https://doi.org/10.3390/genes16080923
Gargus JJ. Genetic Dissection of Energy Deficiency in Autism Spectrum Disorder. Genes. 2025; 16(8):923. https://doi.org/10.3390/genes16080923
Chicago/Turabian StyleGargus, John Jay. 2025. "Genetic Dissection of Energy Deficiency in Autism Spectrum Disorder" Genes 16, no. 8: 923. https://doi.org/10.3390/genes16080923
APA StyleGargus, J. J. (2025). Genetic Dissection of Energy Deficiency in Autism Spectrum Disorder. Genes, 16(8), 923. https://doi.org/10.3390/genes16080923