Brain Injury Patterns and Short-TermOutcomes in Late Preterm Infants Treated with Hypothermia for Hypoxic Ischemic Encephalopathy
Abstract
1. Introduction
2. Materials and Methods
- (1)
- Infants born at ≥36 weeks’ gestation and ≤6 h of age;
- (2)
- A pH value of ≤7.00 or a base deficit of ≤−16 mmol/L in cord blood gas or in a blood sample obtained within the first hour after birth;
- (3)
- An Apgar score of ≤5 at 10 min or the need for prolonged resuscitation;
- (4)
- An abnormal neurological examination consistent with moderate to severe encephalopathy.
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kurinczuk, J.J.; White-Koning, M.; Badawi, N. Epidemiology of neonatal encephalopathy and hypoxicischaemic encephalopathy. Early Hum. Dev. 2010, 86, 329–338. [Google Scholar] [CrossRef]
- McIntyre, S.; Nelson, K.B.; Mulkey, S.B.; Lechpammer, M.; Molloy, E.; Badawi, N. Neonatal encephalopathy: Focus on epidemiology and underexplored aspects of etiology. Semin. Fetal Neonatal Med. 2021, 26, 1012653. [Google Scholar] [CrossRef]
- Okulu, E.; Hirfanoglu, I.M.; Satar, M.; Erdeve, O.; Koc, E.; Ozlu, F.; Gokce, M.; Armangil, D.; Tunc, G.; Demirel, N.; et al. An observational, multicenter, registry-based cohort study of Turkish Neonatal Society in neonates with Hypoxic ischemic encephalopathy. PLoS ONE 2023, 18, 0295759. [Google Scholar] [CrossRef] [PubMed]
- Badawi, N.; Felix, J.F.; Kurinczuk, J.J.; Dixon, G.; Watson, L.; Keogh, J.M.; Valentine, J.; Stanley, F.J. Cerebral palsy following term newborn encephalopathy: A population-based study. Dev. Med. Child. Neurol. 2005, 47, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Ristovska, S.; Stomnaroska, O.; Danilovski, D. Hypoxic Ischemic Encephalopathy (HIE) in Term and Preterm Infants. Prilozi 2022, 43, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, S.E.; Berg, M.; Hunt, R.; Tarnow-Mordi, W.O.; Inder, T.E.; Davis, P.G. Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane Database Syst. Rev. 2013, 1, CD003311. [Google Scholar] [CrossRef]
- Kodidhi, A.; Riley, M.; Vesoulis, Z. The influence of late prematurity on the encephalopathy exam of infants with neonatal encephalopathy. J. Neonatal Perinat. Med. 2023, 16, 693–700. [Google Scholar] [CrossRef]
- Shankaran, S.; Pappas, A.; McDonald, S.A.; Vohr, B.R.; Hintz, S.R.; Yolton, K.; Gustafson, K.E.; Leach, T.M.; Green, C.; Bara, R.; et al. Childhood outcomes after hypothermia for neonatal encephalopathy. N. Engl. J. Med. 2012, 366, 2085–2092. [Google Scholar] [CrossRef]
- Shankaran, S.; Laptook, A.R.; Ehrenkranz, R.A.; Tyson, J.E.; McDonald, S.A.; Donovan, E.F.; Fanaroff, A.A.; Poole, W.K.; Wright, L.L.; Higgins, R.D.; et al. Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. N. Engl. J. Med. 2005, 353, 1574–1584. [Google Scholar] [CrossRef]
- Azzopardi, D.V.; Strohm, B.; Edwards, A.D.; Dyet, L.; Halliday, H.L.; Juszczak, E.; Kapellou, O.; Levene, M.; Marlow, N.; Porter, E.; et al. Moderate hypothermia to treat perinatal asphyxial encephalopathy. N. Engl. J. Med. 2009, 361, 1349–1358. [Google Scholar] [CrossRef]
- Gluckman, P.D.; Wyatt, J.S.; Azzopardi, D.; Ballard, R.; Edwards, A.D.; Ferriero, D.M.; Polin, R.A.; Robertson, C.M.; Thoresen, M.; Whitelaw, D.; et al. Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: Multicentrerandomised trial. Lancet 2005, 365, 663–670. [Google Scholar] [CrossRef]
- Herrera, T.I.; Edwards, L.; Malcolm, W.F.; Smith, P.B.; Fisher, K.A.; Pizoli, C.; Gustafson, K.E.; Goldstein, R.F.; Cotton, C.M.; Goldberg, R.N.; et al. Outcomes of preterm infants treated with hypothermia for hypoxic-ischemic encephalopathy. Early Hum. Dev. 2018, 125, 1–7. [Google Scholar] [CrossRef]
- Berg, M. Therapeutic Hypothermia Increased 66% from 2012 to 2021. Vermont Oxford Network. 2025. Available online: https://public.vtoxford.org/nicu-by-the-numbers/therapeutic-hypothermia-increased-66-from-2012-to-2021/ (accessed on 1 June 2025).
- Faix, R.G.; Laptook, A.R.; Shankaran, S.; Eggleston, B.; Chowdhury, D.; Heyne, R.J.; Das, A.; Pedroza, C.; Tyson, J.E.; Wusthoff, C.; et al. Whole-Body Hypothermia for Neonatal Encephalopathy in Preterm Infants 33 to 35 Weeks’ Gestation: A Randomized Clinical Trial. JAMA Pediatr. 2025, 179, 396–406. [Google Scholar] [CrossRef]
- Zubrow, A.B.; Hulman, S.; Kushner, H.; Falkner, B. Determinants of blood pressure in infants admitted to neonatal intensive care units: A prospective multicenter study. Philadelphia Neonatal Blood Pressure Study Group. J. Perinatol. 1995, 15, 470–479. [Google Scholar]
- Dong, Y.; Speer, C.P. Late-onset neonatal sepsis: Recent developments. Arch. Dis. Child. Fetal Neonatal Ed. 2015, 100, 257–263. [Google Scholar] [CrossRef]
- Nada, A.; Bonachea, E.M.; Askenazi, D.J. Acute kidney injury in the fetus and neonate. Semin. Fetal Neonatal Med. 2017, 22, 90–97. [Google Scholar] [CrossRef]
- Weeke, L.C.; Groenendaal, F.; Mudigonda, K.; Blennow, M.; Lequin, M.H.; Meiners, L.C.; Van Hasstert, I.C.; Benders, M.J.; Hallberg, B.A.; De Vries, L.S. Novel Magnetic Resonance Imaging Score Predicts Neurodevelopmental Outcome After Perinatal Asphyxia and Therapeutic Hypothermia. J. Pediatr. 2018, 192, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Rao, R.; Trivedi, S.; Vesoulis, Z.; Liao, S.M.; Smyser, C.D.; Mathur, A.M. Safety and Short-Term Outcomes of Therapeutic Hypothermia in Preterm Neonates 34–35 Weeks Gestational Age with Hypoxic-Ischemic Encephalopathy. J. Pediatr. 2017, 183, 37–42. [Google Scholar] [CrossRef]
- Moran, P.; Sullivan, K.; Zanelli, S.A.; Burnsed, J. Single-Center Experience with Therapeutic Hypothermia for Hypoxic-Ischemic Encephalopathy in Infants with <36 Weeks’ Gestation. Am. J. Perinatol. 2024, 41, 1680–1687. [Google Scholar] [PubMed]
- Kim, S.H.; El-Shibiny, H.; Inder, T.; El-Dib, M. Therapeutic hypothermia for preterm infants 34–35 weeks gestational age with neonatal encephalopathy. J. Perinatol. 2024, 44, 528–531. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, S.E.; Morley, C.J.; Inder, T.E.; Stewart, M.J.; Smith, K.R.; McNamara, P.J.; Wright, I.M.R.; Kirpalani, H.M.; Darlow, B.A.; Doyle, L.W. Whole-body hypothermia for term and near-term newborns with hypoxic-ischemic encephalopathy: A randomized controlled trial. Arch. Pediatr. Adolesc. Med. 2011, 165, 692–700. [Google Scholar] [CrossRef]
- Lademann, H.; Abshagen, K.; Janning, A.; Däbritz, J.; Olbertz, D. Long-Term Outcome after Asphyxia and Therapeutic Hypothermia in Late Preterm Infants: A Pilot Study. Healthcare 2021, 9, 994. [Google Scholar] [CrossRef] [PubMed]
- Laptook, A.R. Birth asphyxia and hypoxic-isch emic brain injury in the preterm infant. Clin. Perinatol. 2016, 43, 529–545. [Google Scholar] [CrossRef]
- Neil, J.J.; Volpe, J.J. Encephalopathy of prematurity: Clinical neurological features, diagnosis, imaging, prognosis, therapy. In Volpe's Neurology of the Newborn, 6th ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2017; pp. 425–457. [Google Scholar]
- Ambalavanan, N.; Carlo, W.A. Hypoxic–Ischemic Encephalopathy. In Nelson Textbook of Pediatrics, 20th ed.; Elsevier Inc.: New York, NY, USA, 2016; pp. 838–842. [Google Scholar]
- Kinney, H.C.; Volpe, J.J. Hypoxic-ischemic injury in the term infant: Neuropathology. In Volpe's Neurology of the Newborn, 6th ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 484–499. [Google Scholar]
- Cowan, F.M.; Pennock, J.M.; Hanrahan, J.D.; Manji, K.P.; Edwards, A.D. Early detection of cerebral infarction and hypoxic ischemic encephalopathy in neonates using diffusion weighted magnetic resonance imaging. Neuropediatrics 1994, 25, 172–175. [Google Scholar] [CrossRef]
- Robertson, R.L.; Ben-Sira, L.; Barnes, P.D.; Mulkern, R.V.; Robson, C.D.; Maier, S.E.; Rivkin, M.J.; Du Plessis, A. MR line-scan diffusion-weighted imaging of term neonates with perinatal brain ischemia. AJNR Am. J. Neuroradiol. 1999, 20, 1658–1670. [Google Scholar] [PubMed]
- Wisnowski, J.L.; Wintermark, P.; Bonifacio, S.L.; Smyser, C.D.; Barkovich, A.J.; Edwards, A.D.; De Vries, L.S.; Inder, T.E.; Chau, V. Neuroimaging in the term newborn with neonatal encephalopathy. Semin. Fetal Neonatal Med. 2021, 26, 101304. [Google Scholar] [CrossRef]
- Volpe, J.J. Hypoxic-Ischemic Injury in the Term Infant: Pathophysiology. In Volpe’s Neurology of the Newborn, 6th ed.; Elsevier: Amsterdam, The Netherlands, 2018; Chapter 19; pp. 500–509. [Google Scholar]
- Li, A.M.; Chau, V.; Poskitt, K.J.; Sargent, M.A.; Lupton, B.A.; Hill, A.; Roland, E.; Miller, S.P. White matter injury in term newborns with neonatal encephalopathy. Pediatr. Res. 2009, 65, 85–89. [Google Scholar] [CrossRef]
- Hayakawa, K.; Tanda, K.; Nishimura, A.; Kinoshita, D.; Kizaki, Z.; Ohno, K. Diffusion Restriction in the Optic Radiation of Term Neonates with Hypoxic-Ischemic Encephalopathy Demonstrated by Magnetic Resonance Imaging (MRI). J. Child. Neurol. 2021, 36, 950–957. [Google Scholar] [CrossRef] [PubMed]
- Kale, A.; Joshi, P.; Kelkar, A.B. Restricted diffusion in the corpus callosum: A neuroradiological marker in hypoxic-ischemic encephalopathy. Indian J. Radiol. Imaging 2016, 26, 487–492. [Google Scholar] [CrossRef]
- Binet, L.; Debillon, T.; Beck, J.; Vilotitch, A.; Guellec, I.; Ego, A.; Chevallier, M. Effect of gestational age on cerebral lesions in neonatal encephalopathy. Arch. Dis. Child. Fetal Neonatal Ed. 2024, 109, 562–568. [Google Scholar] [CrossRef]
- Logitharajah, P.; Rutherford, M.A.; Cowan, F.M. Hypoxic-ischemic encephalopathy in preterm infants: Antecedent factors, brain imaging, and outcome. Pediatr. Res. 2009, 66, 222–229. [Google Scholar] [CrossRef] [PubMed]
34–35 Weeks GA n = 20 | 35 Weeks GA n = 18 | ≥36 Weeks GA n = 80 | p-Value | |
---|---|---|---|---|
GA (weeks) * | 35 (35–35) | 35 (35–35) | 39 (38–40) | <0.001 |
Birthweight (g) * | 2510 (2275–3035) | 2640 (2295–3102) | 3240 (2965–3490) | <0.001 |
Male, n (%) | 8 (40) | 7 (39) | 30 (37.5) | 0.83 |
1 min. Apgar score * | 4.5 (2–6) | 4 (2–6) | 5 (3–6) | 0.32 |
5 min. Apgar score * | 7 (6–8) | 6.5 (4–8) | 7 (4.5–8) | 0.54 |
10 min. Apgar score * | 7 (5–8) | 7 (5–8) | 7 (6–8) | 0.60 |
Intubation in DR | 7 (35) | 7 (39) | 19 (23.8) | 0.30 |
Blood gas * | ||||
pH | 6.97 (6.79–6.98) | 6.90 (6.70–7.00) | 6.97 (6.90–7.04) | 0.17 |
Base deficit (mmol/L) | −17.6 [(−24.5)–(−16.2)] | −17.1 [(−24.2)–(−15.7)] | −16.4 [(−20.8)–(−14.5)] | 0.11 |
Lactate (mmol/L) | 8.9 (5–12) | 9.1 (5.5–12.1) | 8.4 (5.6–11.2) | 0.93 |
Grade of HIE | ||||
Moderate | 16 (80) | 14 (77.8) | 75 (93.8) | 0.055 |
Severe | 4 (20) | 4 (22.2) | 5 (6.2) | |
Outborn, n (%) | 3 (15) | 3 (16.7) | 24 (30) | 0.17 |
Caesarean delivery, n (%) | 19 (95) | 17 (94.4) | 36 (45) | <0.001 |
Pregnancy complications, n (%) | ||||
Preeclampsia | 1 (5) | 1 (5.6) | 1 (1.3) | 0.28 |
Diabetes | 0 (0) | 0 (0) | 3 (3.8) | 0.37 |
Hypothyroidism | 1 (5) | 0 (0) | 3 (3.8) | 0.79 |
Preterm rupture of membranes | 1 (5) | 1 (5.6) | 4 (5) | 1.00 |
Delivery complications, n (%) | ||||
Uterine rupture | 0 (0) | 0 (0) | 1 (1.3) | 0.61 |
Placental abruption | 1 (5) | 0 (0) | 5 (6.3) | 0.83 |
Cord prolapse | 0 (0) | 0 (0) | 2 (2.5) | 0.47 |
Fetal decelerations/bradycardia | 5 (25) | 5 (27.8) | 7 (8.8) | 0.045 |
Meconium presence | 1 (5) | 1 (5.6) | 14 (17.5) | 0.16 |
34–35 Weeks GA n = 20 | 35 Weeks GA n = 18 | ≥36 Weeks GA n = 80 | p-Value | |
---|---|---|---|---|
Hypoglycemia, n (%) | 5 (25) | 4 (22.2) | 8 (10) | 0.057 |
Hyperglycemia, n (%) | 3 (15) | 3 (16.6) | 7 (9.2) | 0.35 |
Abnormal coagulation, n (%) | 11 (55) | 11 (61) | 32 (46.4) | 0.26 |
Thrombocytopenia, n (%) | 5 (25) | 5 (27.8) | 11 (13.8) | 0.22 |
Hypotension/inotropic support, n (%) | 8 (40) | 8 (44.4) | 8 (10) | 0.001 |
RBC transfusion, n (%) | 2 (10) | 2 (11.1) | 6 (7.5) | 0.71 |
Platelet transfusion, n (%) | 3 (15) | 3 (16.7) | 9 (11.3) | 0.64 |
Fresh frozen plasma transfusion, n (%) | 4 (20) | 4 (22.2) | 15 (18.8) | 0.89 |
Cryoprecipitate transfusion, n (%) | 0 (0) | 0 (0) | 2 (2.5) | 0.47 |
Intubation during hospitalization, n (%) | 13 (65) | 12 (66.7) | 28 (35) | 0.015 |
Seizures, n (%) | 10 (50) | 9 (50) | 25 (31.3) | 0.11 |
Acute renal injury, n (%) | 1 (5) | 1 (5.6) | 5 (6.3) | 0.83 |
Culture proven LOS, n (%) | 2 (10) | 2 (11.1) | 5 (6.3) | 0.55 |
Time of FEF (days) * | 8 (6–10) | 7.5 (6–10) | 5 (4–7) | 0.004 |
Length of stay (days) * | 16 (12–25) | 16 (12–24) | 10 (7–15) | 0.002 |
Mortality, n (%) | 2 (10) | 2 (11.1) | 1 (1.3) | 0.040 |
34–35 Weeks GA n = 17 | ≥36 Weeks GA n = 80 | p-Value | |
---|---|---|---|
Grey matter injury on MRI | 4 (23.5%) | 17 (21.3%) | 0.836 |
Thalamus abnormal signal intensity or diffusion restriction | 3 (17.6%) | 3 (3.8%) | 0.031 |
Basal ganglia abnormal signal intensity or diffusion restriction | 3 (17.6%) | 9 (11.3%) | 0.467 |
PLIC myelination or diffusion restriction | 3 (17.6%) | 8 (10%) | 0.367 |
Brainstem (peduncles) abnormal signal intensity or diffusion restriction | 1 (5.9%) | 1 (1.3%) | 0.222 |
Perirolandic cortex diffusion restriction | 2 (11.8%) | 8 (10%) | 0.828 |
Hippocampus diffusion restriction | 1 (5.9%) | 1 (1.3%) | 0.222 |
White matter/cortex injury on MRI | 8 (47.1%) | 29 (36.3%) | 0.405 |
Cortex abnormal signal intensity or diffusion restriction not being perirolandic cortex | 0 (0) | 1 (1.3%) | 0.643 |
White matter increased signal intensity or diffusion restriction not being PWML | 7 (41.2%) | 18 (22.5%) | 0.110 |
PWML | 3 (17.6%) | 1 (1.3%) | 0.002 |
Hemorrhage not being PWML | 2 (11.8%) | 14 (17.5%) | 0.563 |
Optic radiation diffusion restriction | 4 (23.5%) | 3 (3.8%) | 0.004 |
Corpus callosum diffusion restriction | 5 (29.4%) | 8 (10%) | 0.033 |
Cerebellum injury on MRI | 2 (11.8%) | 2 (2.5%) | 0.081 |
Cerebellum abnormal signal intensity or diffusion restriction | 1 (5.9%) | 0 (0) | 0.029 |
Cerebellar hemorrhage | 1 (5.9%) | 2 (2.5%) | 0.464 |
IVH | 1 (5.9%) | 3 (3.8%) | 0.688 |
SDH | 5 (29.4%) | 12 (15%) | 0.156 |
CSVT | 0 (0) | 2 (2.5%) | 0.510 |
Weeke total score | 2 (0–4) | 1 (0–2) | 0.145 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kose Cetinkaya, A.; Sari, F.N.; Keceli, A.M.; Akin, M.S.; Butun Turk, S.; Ertekin, O.; Alyamac Dizdar, E. Brain Injury Patterns and Short-TermOutcomes in Late Preterm Infants Treated with Hypothermia for Hypoxic Ischemic Encephalopathy. Children 2025, 12, 1012. https://doi.org/10.3390/children12081012
Kose Cetinkaya A, Sari FN, Keceli AM, Akin MS, Butun Turk S, Ertekin O, Alyamac Dizdar E. Brain Injury Patterns and Short-TermOutcomes in Late Preterm Infants Treated with Hypothermia for Hypoxic Ischemic Encephalopathy. Children. 2025; 12(8):1012. https://doi.org/10.3390/children12081012
Chicago/Turabian StyleKose Cetinkaya, Aslihan, Fatma Nur Sari, Avni Merter Keceli, Mustafa Senol Akin, Seyma Butun Turk, Omer Ertekin, and Evrim Alyamac Dizdar. 2025. "Brain Injury Patterns and Short-TermOutcomes in Late Preterm Infants Treated with Hypothermia for Hypoxic Ischemic Encephalopathy" Children 12, no. 8: 1012. https://doi.org/10.3390/children12081012
APA StyleKose Cetinkaya, A., Sari, F. N., Keceli, A. M., Akin, M. S., Butun Turk, S., Ertekin, O., & Alyamac Dizdar, E. (2025). Brain Injury Patterns and Short-TermOutcomes in Late Preterm Infants Treated with Hypothermia for Hypoxic Ischemic Encephalopathy. Children, 12(8), 1012. https://doi.org/10.3390/children12081012