Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,076)

Search Parameters:
Keywords = joint power

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 3996 KiB  
Article
Incentive-Compatible Mechanism Design for Medium- and Long-Term/Spot Market Coordination in High-Penetration Renewable Energy Systems
by Sicong Wang, Weiqing Wang, Sizhe Yan and Qiuying Li
Processes 2025, 13(8), 2478; https://doi.org/10.3390/pr13082478 - 6 Aug 2025
Abstract
In line with the goals of “peak carbon emissions and carbon neutrality”, this study aims to develop a market-coordinated operation mechanism to promote renewable energy adoption and consumption, addressing the challenges of integrating medium- and long-term trading with spot markets in power systems [...] Read more.
In line with the goals of “peak carbon emissions and carbon neutrality”, this study aims to develop a market-coordinated operation mechanism to promote renewable energy adoption and consumption, addressing the challenges of integrating medium- and long-term trading with spot markets in power systems with high renewable energy penetration. A three-stage joint operation framework is proposed. First, a medium- and long-term trading game model is established, considering multiple energy types to optimize the benefits of market participants. Second, machine learning algorithms are employed to predict renewable energy output, and a contract decomposition mechanism is developed to ensure a smooth transition from medium- and long-term contracts to real-time market operations. Finally, a day-ahead market-clearing strategy and an incentive-compatible settlement mechanism, incorporating the constraints from contract decomposition, are proposed to link the two markets effectively. Simulation results demonstrate that the proposed mechanism effectively enhances resource allocation and stabilizes market operations, leading to significant revenue improvements across various generation units and increased renewable energy utilization. Specifically, thermal power units achieve a 19.12% increase in revenue, while wind and photovoltaic units show more substantial gains of 38.76% and 47.52%, respectively. Concurrently, the mechanism drives a 10.61% increase in renewable energy absorption capacity and yields a 13.47% improvement in Tradable Green Certificate (TGC) utilization efficiency, confirming its overall effectiveness. This research shows that coordinated optimization between medium- and long-term/spot markets, combined with a well-designed settlement mechanism, significantly strengthens the market competitiveness of renewable energy, providing theoretical support for the market-based operation of the new power system. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

14 pages, 3150 KiB  
Article
Research on the Influence Mechanism of Thermal Load on the Au-Sn Sealing Weld State on Three-Dimensional DPC Substrates
by Heran Zhao, Lihua Cao, ShiZhao Wang, He Zhang and Mingxiang Chen
Materials 2025, 18(15), 3678; https://doi.org/10.3390/ma18153678 - 5 Aug 2025
Abstract
Direct copper-plated ceramic (DPC) substrates have emerged as a favored solution for power device packaging due to their unique technical advantages. AuSn, characterized by its high hermeticity and environmental adaptability, represents the optimal sealing technology for DPC substrates. Through the application of vacuum [...] Read more.
Direct copper-plated ceramic (DPC) substrates have emerged as a favored solution for power device packaging due to their unique technical advantages. AuSn, characterized by its high hermeticity and environmental adaptability, represents the optimal sealing technology for DPC substrates. Through the application of vacuum sintering techniques and adjustment of peak temperatures (325 °C, 340 °C, and 355 °C), the morphology and composition of interfacial compounds were systematically investigated, along with an analysis of their formation mechanisms. A gradient aging experiment was designed (125 °C/150 °C/175 °C × oxygen/argon dual atmosphere × 600 h) to elucidate the synergistic effects of environmental temperature and atmosphere on the growth of intermetallic compounds (IMCs). The results indicate that the primary reaction in the sealing weld seam involves Ni interacting with Au-Sn to form (Ni, Au)3Sn2 and Au5Sn. However, upon completion of the sealing process, this reaction remains incomplete, leading to a coexistence state of (Ni, Au)3Sn2, Au5Sn, and AuSn. Additionally, Ni diffuses into the weld seam center via dendritic fracture and locally forms secondary phases such as δ(Ni) and ζ’(Ni). These findings suggest that the weld seam interface exhibits a complex, irregular, and asymmetric microstructure comprising multiple coexisting compounds. It was determined that Tpeak = 325 °C to 340 °C represents the ideal welding temperature range, where the weld seam morphology, width, and Ni diffusion degree achieve optimal states, ensuring excellent device hermeticity. Aging studies further demonstrate that IMC growth remains within controllable limits. These findings address critical gaps in the understanding of the microstructural evolution and interface characteristics of asymmetric welded joints formed by multi-material systems. Full article
Show Figures

Graphical abstract

16 pages, 1628 KiB  
Article
A Stackelberg Game-Based Joint Clearing Model for Pumped Storage Participation in Multi-Tier Electricity Markets
by Lingkang Zeng, Mutao Huang, Hao Xu, Zhongzhong Chen, Wanjing Li, Jingshu Zhang, Senlin Ran and Xingbang Chen
Processes 2025, 13(8), 2472; https://doi.org/10.3390/pr13082472 - 4 Aug 2025
Abstract
To address the limited flexibility of pumped storage power stations (PSPSs) under hierarchical clearing of energy and ancillary service markets, this study proposes a joint clearing mechanism for multi-level electricity markets. A bi-level optimization model based on the Stackelberg game is developed to [...] Read more.
To address the limited flexibility of pumped storage power stations (PSPSs) under hierarchical clearing of energy and ancillary service markets, this study proposes a joint clearing mechanism for multi-level electricity markets. A bi-level optimization model based on the Stackelberg game is developed to characterize the strategic interaction between PSPSs and the market operator. Simulation results on the IEEE 30-bus system demonstrate that the proposed mechanism captures the dynamics of nodal supply and demand, as well as time-varying network congestion. It guides PSPSs to operate more flexibly and economically. Additionally, the mechanism increases PSPS profitability, reduces system costs, and improves frequency regulation performance. This game-theoretic framework offers quantitative decision support for PSPS participation in multi-level spot markets and provides insights for optimal storage deployment and market mechanism improvement. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

36 pages, 5151 KiB  
Article
Flexibility Resource Planning and Stability Optimization Methods for Power Systems with High Penetration of Renewable Energy
by Haiteng Han, Xiangchen Jiang, Yang Cao, Xuanyao Luo, Sheng Liu and Bei Yang
Energies 2025, 18(15), 4139; https://doi.org/10.3390/en18154139 - 4 Aug 2025
Abstract
With the accelerating global transition toward sustainable energy systems, power grids with a high share of renewable energy face increasing challenges due to volatility and uncertainty, necessitating advanced flexibility resource planning and stability optimization strategies. This paper presents a comprehensive distribution network planning [...] Read more.
With the accelerating global transition toward sustainable energy systems, power grids with a high share of renewable energy face increasing challenges due to volatility and uncertainty, necessitating advanced flexibility resource planning and stability optimization strategies. This paper presents a comprehensive distribution network planning framework that coordinates and integrates multiple types of flexibility resources through joint optimization and network reconfiguration to enhance system adaptability and operational resilience. A novel virtual network coupling modeling approach is proposed to address topological constraints during network reconfiguration, ensuring radial operation while allowing rapid topology adjustments to isolate faults and restore power supply. Furthermore, to mitigate the uncertainty and fault risks associated with extreme weather events, a CVaR-based risk quantification framework is incorporated into a bi-level optimization model, effectively balancing investment costs and operational risks under uncertainty. In this model, the upper-level planning stage optimizes the siting and sizing of flexibility resources, while the lower-level operational stage coordinates real-time dispatch strategies through demand response, energy storage operation, and dynamic network reconfiguration. Finally, a hybrid SA-PSO algorithm combined with conic programming is employed to enhance computational efficiency while ensuring high solution quality for practical system scales. Case study analyses demonstrate that, compared to single-resource configurations, the proposed coordinated planning of multiple flexibility resources can significantly reduce the total system cost and markedly improve system resilience under fault conditions. Full article
(This article belongs to the Special Issue Analysis and Control of Power System Stability)
24 pages, 997 KiB  
Article
A Spatiotemporal Deep Learning Framework for Joint Load and Renewable Energy Forecasting in Stability-Constrained Power Systems
by Min Cheng, Jiawei Yu, Mingkang Wu, Yihua Zhu, Yayao Zhang and Yuanfu Zhu
Information 2025, 16(8), 662; https://doi.org/10.3390/info16080662 - 3 Aug 2025
Viewed by 187
Abstract
With the increasing uncertainty introduced by the large-scale integration of renewable energy sources, traditional power dispatching methods face significant challenges, including severe frequency fluctuations, substantial forecasting deviations, and the difficulty of balancing economic efficiency with system stability. To address these issues, a deep [...] Read more.
With the increasing uncertainty introduced by the large-scale integration of renewable energy sources, traditional power dispatching methods face significant challenges, including severe frequency fluctuations, substantial forecasting deviations, and the difficulty of balancing economic efficiency with system stability. To address these issues, a deep learning-based dispatching framework is proposed, which integrates spatiotemporal feature extraction with a stability-aware mechanism. A joint forecasting model is constructed using Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) to handle multi-source inputs, while a reinforcement learning-based stability-aware scheduler is developed to manage dynamic system responses. In addition, an uncertainty modeling mechanism combining Dropout and Bayesian networks is incorporated to enhance dispatch robustness. Experiments conducted on real-world power grid and renewable generation datasets demonstrate that the proposed forecasting module achieves approximately a 2.1% improvement in accuracy compared with Autoformer and reduces Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) by 18.1% and 14.1%, respectively, compared with traditional LSTM models. The achieved Mean Absolute Percentage Error (MAPE) of 5.82% outperforms all baseline models. In terms of scheduling performance, the proposed method reduces the total operating cost by 5.8% relative to Autoformer, decreases the frequency deviation from 0.158 Hz to 0.129 Hz, and increases the Critical Clearing Time (CCT) to 2.74 s, significantly enhancing dynamic system stability. Ablation studies reveal that removing the uncertainty modeling module increases the frequency deviation to 0.153 Hz and raises operational costs by approximately 6.9%, confirming the critical role of this module in maintaining robustness. Furthermore, under diverse load profiles and meteorological disturbances, the proposed method maintains stable forecasting accuracy and scheduling policy outputs, demonstrating strong generalization capabilities. Overall, the proposed approach achieves a well-balanced performance in terms of forecasting precision, system stability, and economic efficiency in power grids with high renewable energy penetration, indicating substantial potential for practical deployment and further research. Full article
(This article belongs to the Special Issue Real-World Applications of Machine Learning Techniques)
Show Figures

Figure 1

23 pages, 3940 KiB  
Article
Recovery Strategies for Combined Optical Storage Systems Based on System Short-Circuit Ratio (SCR) Thresholds
by Qingji Yang, Baohong Li, Qin Jiang and Qiao Peng
Energies 2025, 18(15), 4112; https://doi.org/10.3390/en18154112 - 3 Aug 2025
Viewed by 205
Abstract
The penetration rate of variable energy sources in the current power grid is increasing, with the aim being to expand the use of these energy sources and to replace the traditional black start power supply. This study investigates the black start of a [...] Read more.
The penetration rate of variable energy sources in the current power grid is increasing, with the aim being to expand the use of these energy sources and to replace the traditional black start power supply. This study investigates the black start of a photovoltaic storage joint system based on the system’s short-circuit ratio threshold. Firstly, the principles and control modes of the photovoltaic (PV) system, energy storage system (ESS), and high-voltage direct current (DC) transmission system are studied separately to build an overall model; secondly, computational determinations of the short-circuit ratio under different scenarios are introduced to analyze the strength of the system, and the virtual inertia and virtual damping of the PV system are configured based on this; finally, the change trend of the storage system’s state of charge (SOC) is computed and observed, and the limits of what the system can support in each stage are determined. An electromagnetic transient simulation model of a black start system is constructed in PSCAD/EMTDC, and according to the proposed recovery strategy, the system frequency is maintained in the range of 49.4~50.6 Hz during the entire black start process; the fluctuation in maximum frequency after the recovery of the DC transmission system is no more than 0.1%; and the fluctuation in photovoltaic power at each stage is less than 3%. In addition, all the key indexes meet the requirements for black start technology, which verifies the validity of the strategy and provides theoretical support and a practical reference for the black start of a grid with variable energy sources. Full article
(This article belongs to the Special Issue Analysis and Control of Power System Stability)
Show Figures

Figure 1

24 pages, 3172 KiB  
Article
A DDPG-LSTM Framework for Optimizing UAV-Enabled Integrated Sensing and Communication
by Xuan-Toan Dang, Joon-Soo Eom, Binh-Minh Vu and Oh-Soon Shin
Drones 2025, 9(8), 548; https://doi.org/10.3390/drones9080548 - 1 Aug 2025
Viewed by 296
Abstract
This paper proposes a novel dual-functional radar-communication (DFRC) framework that integrates unmanned aerial vehicle (UAV) communications into an integrated sensing and communication (ISAC) system, termed the ISAC-UAV architecture. In this system, the UAV’s mobility is leveraged to simultaneously serve multiple single-antenna uplink users [...] Read more.
This paper proposes a novel dual-functional radar-communication (DFRC) framework that integrates unmanned aerial vehicle (UAV) communications into an integrated sensing and communication (ISAC) system, termed the ISAC-UAV architecture. In this system, the UAV’s mobility is leveraged to simultaneously serve multiple single-antenna uplink users (UEs) and perform radar-based sensing tasks. A key challenge stems from the target position uncertainty due to movement, which impairs matched filtering and beamforming, thereby degrading both uplink reception and sensing performance. Moreover, UAV energy consumption associated with mobility must be considered to ensure energy-efficient operation. We aim to jointly maximize radar sensing accuracy and minimize UAV movement energy over multiple time steps, while maintaining reliable uplink communications. To address this multi-objective optimization, we propose a deep reinforcement learning (DRL) framework based on a long short-term memory (LSTM)-enhanced deep deterministic policy gradient (DDPG) network. By leveraging historical target trajectory data, the model improves prediction of target positions, enhancing sensing accuracy. The proposed DRL-based approach enables joint optimization of UAV trajectory and uplink power control over time. Extensive simulations validate that our method significantly improves communication quality and sensing performance, while ensuring energy-efficient UAV operation. Comparative results further confirm the model’s adaptability and robustness in dynamic environments, outperforming existing UAV trajectory planning and resource allocation benchmarks. Full article
Show Figures

Figure 1

35 pages, 10962 KiB  
Article
A Preliminary Assessment of Offshore Winds at the Potential Organized Development Areas of the Greek Seas Using CERRA Dataset
by Takvor Soukissian, Natalia-Elona Koutri, Flora Karathanasi, Kimon Kardakaris and Aristofanis Stefatos
J. Mar. Sci. Eng. 2025, 13(8), 1486; https://doi.org/10.3390/jmse13081486 - 31 Jul 2025
Viewed by 173
Abstract
Τhe Greek Seas are one of the most favorable locations for offshore wind energy development in the Mediterranean basin. In 2023, the Hellenic Hydrocarbons & Energy Resources Management Company SA published the draft National Offshore Wind Farm Development Programme (NDP-OWF), including the main [...] Read more.
Τhe Greek Seas are one of the most favorable locations for offshore wind energy development in the Mediterranean basin. In 2023, the Hellenic Hydrocarbons & Energy Resources Management Company SA published the draft National Offshore Wind Farm Development Programme (NDP-OWF), including the main pillars for the design, development, siting, installation, and exploitation of offshore wind farms, along with the Strategic Environmental Impact Assessment. The NDP-OWF is under assessment by the relevant authorities and is expected to be finally approved through a Joint Ministerial Decision. In this work, the preliminary offshore wind energy assessment of the Greek Seas is performed using the CERRA wind reanalysis data and in situ measurements from six offshore locations of the Greek Seas. The in situ measurements are used in order to assess the performance of the reanalysis datasets. The results reveal that CERRA is a reliable source for preliminary offshore wind energy assessment studies. Taking into consideration the potential offshore wind farm organized development areas (OWFODA) according to the NDP-OWF, the study of the local wind characteristics is performed. The local wind speed and wind power density are assessed, and the wind energy produced from each OWFODA is estimated based on three different capacity density settings. According to the balanced setting (capacity density of 5.0 MW/km2), the annual energy production will be 17.5 TWh, which is equivalent to 1509.1 ktoe. An analysis of the wind energy correlation, synergy, and complementarity between the OWFODA is also performed, and a high degree of wind energy synergy is identified, with a very low degree of complementarity. Full article
(This article belongs to the Section Marine Energy)
Show Figures

Figure 1

22 pages, 6436 KiB  
Article
Low-Resolution ADCs Constrained Joint Uplink/Downlink Channel Estimation for mmWave Massive MIMO
by Songxu Wang, Yinyuan Wang and Congying Hu
Electronics 2025, 14(15), 3076; https://doi.org/10.3390/electronics14153076 - 31 Jul 2025
Viewed by 206
Abstract
The use of low-resolution analog-to-digital converters (ADCs) in receivers has emerged as an effective solution for reducing power consumption in millimeter-wave (mmWave) massive multiple-input–multiple-output (MIMO) systems. However, low-resolution ADCs also pose significant challenges for channel estimation. To address this issue, we propose a [...] Read more.
The use of low-resolution analog-to-digital converters (ADCs) in receivers has emerged as an effective solution for reducing power consumption in millimeter-wave (mmWave) massive multiple-input–multiple-output (MIMO) systems. However, low-resolution ADCs also pose significant challenges for channel estimation. To address this issue, we propose a joint uplink/downlink (UL/DL) channel estimation algorithm that utilizes the spatial reciprocity of frequency division duplex (FDD) to improve the estimation of quantized UL channels. Quantified UL/DL channels are concentrated at the BS for joint estimation. This estimation problem is regarded as a compressed sensing problem with finite bits, which has led to the development of expectation-maximization-based quantitative generalized approximate messaging (EM-QGAMP) algorithms. In the expected step, QGAMP is used for posterior estimation of sparse channel coefficients, and the block maximization minimization (MM) algorithm is introduced in the maximization step to improve the estimation accuracy. Finally, simulation results verified the robustness of the proposed EM-QGAMP algorithm, and the proposed algorithm’s NMSE (normalized mean squared error) outperforms traditional methods by over 90% and recent state-of-the-art techniques by 30%. Full article
Show Figures

Figure 1

11 pages, 2887 KiB  
Article
INTEGRAL/ISGRI Post 2024-Periastron View of PSR B1259-63
by Aleksei Kuzin, Denys Malyshev, Maria Chernyakova, Brian van Soelen and Andrea Santangelo
Universe 2025, 11(8), 254; https://doi.org/10.3390/universe11080254 - 31 Jul 2025
Viewed by 118
Abstract
PSR B1259-63/LS 2883 is a well-studied gamma-ray binary hosting a pulsar in a 3.4-year eccentric orbit around a Be-type star. Its non-thermal emission spans from radio to TeV energies, exhibiting a significant increase near the periastron passage. This paper is dedicated to the [...] Read more.
PSR B1259-63/LS 2883 is a well-studied gamma-ray binary hosting a pulsar in a 3.4-year eccentric orbit around a Be-type star. Its non-thermal emission spans from radio to TeV energies, exhibiting a significant increase near the periastron passage. This paper is dedicated to the analysis of INTEGRAL observations of the system following its last periastron passage in June 2024. We aim to study the spectral evolution of this gamma-ray binary in the soft (0.3–10 keV) and hard (30–300 keV) X-ray energy bands. We performed a joint analysis of the data taken by INTEGRAL/ISGRI in July–August 2024 and quasi-simultaneous Swift/XRT observations. The spectrum of the system in the 0.3–300 keV band is well described by an absorbed power law with a photon index of Γ=1.42±0.03. We place constraints on potential spectral curvature, limiting the break energy Eb>30 keV for ΔΓ>0.3 and cutoff energy Ecutoff>150 keV at a 95% confidence level. For one-zone leptonic emission models, these values correspond to electron distribution spectral parameters of Eb,e>0.8 TeV and Ecutoff,e>1.7 TeV, consistent with previous constraints derived by H.E.S.S. Full article
(This article belongs to the Section Compact Objects)
Show Figures

Figure 1

16 pages, 2448 KiB  
Article
A Body-Powered Underactuated Prosthetic Finger Driven by MCP Joint Motion
by Worathris Chungsangsatiporn, Chaiwuth Sithiwichankit, Ratchatin Chancharoen, Ronnapee Chaichaowarat, Nopdanai Ajavakom and Gridsada Phanomchoeng
Robotics 2025, 14(8), 107; https://doi.org/10.3390/robotics14080107 - 31 Jul 2025
Viewed by 268
Abstract
This study presents the design, fabrication, and clinical validation of a lightweight, body-powered prosthetic index finger actuated via metacarpophalangeal (MCP) joint motion. The proposed system incorporates an underactuated, cable-driven mechanism combining rigid and compliant elements to achieve passive adaptability and embodied intelligence, supporting [...] Read more.
This study presents the design, fabrication, and clinical validation of a lightweight, body-powered prosthetic index finger actuated via metacarpophalangeal (MCP) joint motion. The proposed system incorporates an underactuated, cable-driven mechanism combining rigid and compliant elements to achieve passive adaptability and embodied intelligence, supporting intuitive user interaction. Results indicate that the prosthesis successfully mimics natural finger flexion and adapts effectively to a variety of grasping tasks with minimal effort. This study was conducted in accordance with ethical standards and approved by the Institutional Review Board (IRB), Project No. 670161, titled “Biologically-Inspired Synthetic Finger: Design, Fabrication, and Application.” The findings suggest that the device offers a viable and practical solution for individuals with partial hand loss, particularly in settings where electrically powered systems are unsuitable or inaccessible. Full article
(This article belongs to the Section Neurorobotics)
Show Figures

Figure 1

19 pages, 3297 KiB  
Article
Secrecy Rate Maximization via Joint Robust Beamforming and Trajectory Optimization for Mobile User in ISAC-UAV System
by Lvxin Xu, Zhi Zhang and Liuguo Yin
Drones 2025, 9(8), 536; https://doi.org/10.3390/drones9080536 - 30 Jul 2025
Viewed by 154
Abstract
Unmanned aerial vehicles (UAVs) have emerged as a promising platform for integrated sensing and communication (ISAC) due to their mobility and deployment flexibility. By adaptively adjusting their flight trajectories, UAVs can maintain favorable line-of-sight (LoS) communication links and sensing angles, thus enhancing overall [...] Read more.
Unmanned aerial vehicles (UAVs) have emerged as a promising platform for integrated sensing and communication (ISAC) due to their mobility and deployment flexibility. By adaptively adjusting their flight trajectories, UAVs can maintain favorable line-of-sight (LoS) communication links and sensing angles, thus enhancing overall system performance in dynamic and complex environments. However, ensuring physical layer security (PLS) in such UAV-assisted ISAC systems remains a significant challenge, particularly in the presence of mobile users and potential eavesdroppers. This manuscript proposes a joint optimization framework that simultaneously designs robust transmit beamforming and UAV trajectories to secure downlink communication for multiple ground users. At each time slot, the UAV predicts user positions and maximizes the secrecy sum-rate, subject to constraints on total transmit power, multi-target sensing quality, and UAV mobility. To tackle this non-convex problem, we develop an efficient optimization algorithm based on successive convex approximation (SCA) and constrained optimization by linear approximations (COBYLA). Numerical simulations validate that the proposed framework effectively enhances the secrecy performance while maintaining high-quality sensing, achieving near-optimal performance under realistic system constraints. Full article
Show Figures

Figure 1

19 pages, 2137 KiB  
Article
Optimal Configuration and Empirical Analysis of a Wind–Solar–Hydro–Storage Multi-Energy Complementary System: A Case Study of a Typical Region in Yunnan
by Yugong Jia, Mengfei Xie, Ying Peng, Dianning Wu, Lanxin Li and Shuibin Zheng
Water 2025, 17(15), 2262; https://doi.org/10.3390/w17152262 - 29 Jul 2025
Viewed by 265
Abstract
The increasing integration of wind and photovoltaic energy into power systems brings about large fluctuations and significant challenges for power absorption. Wind–solar–hydro–storage multi-energy complementary systems, especially joint dispatching strategies, have attracted wide attention due to their ability to coordinate the advantages of different [...] Read more.
The increasing integration of wind and photovoltaic energy into power systems brings about large fluctuations and significant challenges for power absorption. Wind–solar–hydro–storage multi-energy complementary systems, especially joint dispatching strategies, have attracted wide attention due to their ability to coordinate the advantages of different resources and enhance both flexibility and economic efficiency. This paper develops a capacity optimization model for a wind–solar–hydro–storage multi-energy complementary system. The objectives are to improve net system income, reduce wind and solar curtailment, and mitigate intraday fluctuations. We adopt the quantum particle swarm algorithm (QPSO) for outer-layer global optimization, combined with an inner-layer stepwise simulation to maximize life cycle benefits under multi-dimensional constraints. The simulation is based on the output and load data of typical wind, solar, water, and storage in Yunnan Province, and verifies the effectiveness of the proposed model. The results show that after the wind–solar–hydro–storage multi-energy complementary system is optimized, the utilization rate of new energy and the system economy are significantly improved, which has a wide range of engineering promotion value. The research results of this paper have important reference significance for the construction of new power systems and the engineering design of multi-energy complementary projects. Full article
(This article belongs to the Special Issue Research Status of Operation and Management of Hydropower Station)
Show Figures

Figure 1

20 pages, 1449 KiB  
Article
Deep Reinforcement Learning-Based Resource Allocation for UAV-GAP Downlink Cooperative NOMA in IIoT Systems
by Yuanyan Huang, Jingjing Su, Xuan Lu, Shoulin Huang, Hongyan Zhu and Haiyong Zeng
Entropy 2025, 27(8), 811; https://doi.org/10.3390/e27080811 - 29 Jul 2025
Viewed by 305
Abstract
This paper studies deep reinforcement learning (DRL)-based joint resource allocation and three-dimensional (3D) trajectory optimization for unmanned aerial vehicle (UAV)–ground access point (GAP) cooperative non-orthogonal multiple access (NOMA) communication in Industrial Internet of Things (IIoT) systems. Cooperative and non-cooperative users adopt different signal [...] Read more.
This paper studies deep reinforcement learning (DRL)-based joint resource allocation and three-dimensional (3D) trajectory optimization for unmanned aerial vehicle (UAV)–ground access point (GAP) cooperative non-orthogonal multiple access (NOMA) communication in Industrial Internet of Things (IIoT) systems. Cooperative and non-cooperative users adopt different signal transmission strategies to meet diverse, task-oriented, quality-of-service requirements. Specifically, the DRL framework based on the Soft Actor–Critic algorithm is proposed to jointly optimize user scheduling, power allocation, and UAV trajectory in continuous action spaces. Closed-form power allocation and maximum weight bipartite matching are integrated to enable efficient user pairing and resource management. Simulation results show that the proposed scheme significantly enhances system performance in terms of throughput, spectral efficiency, and interference management, while enabling robustness against channel uncertainties in dynamic IIoT environments. The findings indicate that combining model-free reinforcement learning with conventional optimization provides a viable solution for adaptive resource management in dynamic UAV-GAP cooperative communication scenarios. Full article
Show Figures

Figure 1

21 pages, 9715 KiB  
Article
Fault-Tolerant Control of Non-Phase-Shifted Dual Three-Phase PMSM Joint Motor for Open Phase Fault with Minimized Copper Loss and Reduced Torque Ripple
by Xian Luo, Guangyu Pu, Wenhao Han, Huaqi Li and Hanlin Zhan
Energies 2025, 18(15), 4020; https://doi.org/10.3390/en18154020 - 28 Jul 2025
Viewed by 254
Abstract
Dual three-phase PMSMs (DTP-PMSMs) have attracted increasing attention in the field of robotics industry for their higher power density and enhanced fault-tolerant ability. The non-phase-shifted DTP-PMSM (NPSDTP-PMSM), which shows naturally prevailed performance on zero-sequence current (ZSC) suppression, necessitates the investigation on the control [...] Read more.
Dual three-phase PMSMs (DTP-PMSMs) have attracted increasing attention in the field of robotics industry for their higher power density and enhanced fault-tolerant ability. The non-phase-shifted DTP-PMSM (NPSDTP-PMSM), which shows naturally prevailed performance on zero-sequence current (ZSC) suppression, necessitates the investigation on the control method with improved fault-tolerant performance. In this paper, a novel fault-tolerant control (FTC) method for NPSDTP-PMSM is proposed, which concurrently simultaneously reduces copper loss and suppresses torque ripple under single and dual open phase fault. Firstly, the mathematical model of NPSDTP-PMSM is established, where the ZSC self-suppressing mechanism is revealed. Based on which, investigations on open phase fault and the copper loss characteristics for NPSDTP-PMSM are conducted. Subsequently, a novel fault-tolerant control method is proposed for NPSDTP-PMSM, where the torque ripple is reduced by mutual cancellation of harmonic torques from two winding sets and minimized copper loss is achieved based on the convex characteristic of copper loss. Experimental validation on an integrated robotic joint motor platform confirms the effectiveness of the proposed method. Full article
Show Figures

Figure 1

Back to TopTop