Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,796)

Search Parameters:
Keywords = irrigation periods

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3488 KiB  
Article
Effects of Continuous Saline Water Irrigation on Soil Salinization Characteristics and Dryland Jujube Tree
by Qiao Zhao, Mingliang Xin, Pengrui Ai and Yingjie Ma
Agronomy 2025, 15(8), 1898; https://doi.org/10.3390/agronomy15081898 - 7 Aug 2025
Abstract
The sustainable utilization of saline water resources represents an effective strategy for alleviating water scarcity in arid regions. However, the mechanisms by which prolonged saline water irrigation influences soil salinization and dryland crop growth are not yet fully understood. This study examined the [...] Read more.
The sustainable utilization of saline water resources represents an effective strategy for alleviating water scarcity in arid regions. However, the mechanisms by which prolonged saline water irrigation influences soil salinization and dryland crop growth are not yet fully understood. This study examined the effects of six irrigation water salinity levels (CK: 0.87 g·L−1, S1: 2 g·L−1, S2: 4 g·L−1, S3: 6 g·L−1, S4: 8 g·L−1, S5: 10 g·L−1) on soil salinization dynamics and jujube growth during a three-year field experiment (2020–2022). The results showed that soil salinity within the 0–1 m profile significantly increased with rising irrigation water salinity and prolonged irrigation duration, with the 0–0.4 m layer accounting for 50.27–74.95% of the total salt accumulation. A distinct unimodal salt distribution was observed in the 0.3–0.6 m soil zone, with the salinity peak shifting downward from 0.4 to 0.5 m over time. Meanwhile, soil pH and sodium adsorption ratio (SAR) increased steadily over the study period. The dominant hydrochemical type shifted from SO42−-Ca2+·Mg2+ to Cl-Na+·Mg2+. Crop performance exhibited a nonlinear response to irrigation salinity levels. Low salinity (2 g·L−1) significantly enhanced plant height, stem diameter, leaf area index (LAI), vitamin C content, and yield, with improvements of up to 12.11%, 3.96%, 16.67%, 16.24%, and 16.52% in the early years. However, prolonged exposure to saline irrigation led to significant declines in both plant growth and water productivity (WP) by 2022. Under high-salinity conditions (S5), yield decreased by 16.75%, while WP declined by more than 30%. To comprehensively evaluate the trade-off between economic effects and soil environment, the entropy weight TOPSIS method was employed to identify S1 as the optimal irrigation treatment for the 2020–2021 period and control (CK) as the optimal treatment for 2022. Through fitting analysis, the optimal irrigation water salinity levels over 3 years were determined to be 2.75 g·L−1, 2.49 g·L−1, and 0.87 g·L−1, respectively. These findings suggest that short-term irrigation of jujube trees with saline water at concentrations ≤ 3 g·L−1 is agronomically feasible. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

28 pages, 2340 KiB  
Article
Determining the Operating Performance of an Isolated, High-Power, Photovoltaic Pumping System Through Sensor Measurements
by Florin Dragan, Dorin Bordeasu and Ioan Filip
Appl. Sci. 2025, 15(15), 8639; https://doi.org/10.3390/app15158639 - 4 Aug 2025
Viewed by 178
Abstract
Modernizing irrigation systems (ISs) from traditional gravity methods to sprinkler and drip technologies has significantly improved water use efficiency. However, it has simultaneously increased electricity demand and operational costs. Integrating photovoltaic generators into ISs represents a promising solution, as solar energy availability typically [...] Read more.
Modernizing irrigation systems (ISs) from traditional gravity methods to sprinkler and drip technologies has significantly improved water use efficiency. However, it has simultaneously increased electricity demand and operational costs. Integrating photovoltaic generators into ISs represents a promising solution, as solar energy availability typically aligns with peak irrigation periods. Despite this potential, photovoltaic pumping systems (PVPSs) often face reliability issues due to fluctuations in solar irradiance, resulting in frequent start/stop cycles and premature equipment wear. The IEC 62253 standard establishes procedures for evaluating PVPS performance but primarily addresses steady-state conditions, neglecting transient regimes. As the main contribution, the current paper proposes a non-intrusive, high-resolution monitoring system and a methodology to assess the performance of an isolated, high-power PVPS, considering also transient regimes. The system records critical electrical, hydraulic and environmental parameters every second, enabling in-depth analysis under various weather conditions. Two performance indicators, pumped volume efficiency and equivalent operating time, were used to evaluate the system’s performance. The results indicate that near-optimal performance is only achievable under clear sky conditions. Under the appearance of clouds, control strategies designed to protect the system reduce overall efficiency. The proposed methodology enables detailed performance diagnostics and supports the development of more robust PVPSs. Full article
(This article belongs to the Special Issue New Trends in Renewable Energy and Power Systems)
Show Figures

Figure 1

20 pages, 4135 KiB  
Article
Climate-Induced Water Management Challenges for Cabbage and Carrot in Southern Poland
by Stanisław Rolbiecki, Barbara Jagosz, Roman Rolbiecki and Renata Kuśmierek-Tomaszewska
Sustainability 2025, 17(15), 6975; https://doi.org/10.3390/su17156975 - 31 Jul 2025
Viewed by 267
Abstract
Climate warming poses significant challenges for the sustainable management of natural water resources, making efficient planning and usage essential. This study evaluates the water requirements, irrigation demand, and rainfall deficits for two key vegetable crops, carrot and white cabbage, under projected climate scenarios [...] Read more.
Climate warming poses significant challenges for the sustainable management of natural water resources, making efficient planning and usage essential. This study evaluates the water requirements, irrigation demand, and rainfall deficits for two key vegetable crops, carrot and white cabbage, under projected climate scenarios RCP 4.5 and RCP 8.5 for the period 2031–2100. The analysis was conducted for Kraków and Rzeszów Counties in southern Poland using projected monthly temperature and precipitation data from the Klimada 2.0 portal. Potential evapotranspiration (ETp) during the growing season (May–October) was estimated using Treder’s empirical model and the crop coefficient method adapted for Polish conditions. The reference period for comparison was 1951–2020. The results reveal a significant upward trend in water demand for both crops, with the highest increases under the RCP 8.5 scenario–seasonal ETp values reaching up to 517 mm for cabbage and 497 mm for carrot. Rainfall deficits are projected to intensify, especially during July and August, with greater shortages in Rzeszów County compared to Kraków County. Irrigation demand varies depending on soil type and drought severity, becoming critical in medium and very dry years. These findings underscore the necessity of adapting irrigation strategies and water resource management to ensure sustainable vegetable production under changing climate conditions. The data provide valuable guidance for farmers, advisors, and policymakers in planning effective irrigation infrastructure and optimizing water-use efficiency in southern Poland. Full article
Show Figures

Figure 1

13 pages, 3187 KiB  
Article
An Approach to Improve Land–Water Salt Flux Modeling in the San Francisco Estuary
by John S. Rath, Paul H. Hutton and Sujoy B. Roy
Water 2025, 17(15), 2278; https://doi.org/10.3390/w17152278 - 31 Jul 2025
Viewed by 261
Abstract
In this case study, we used the Delta Simulation Model II (DSM2) to study the salt balance at the land–water interface in the river delta of California’s San Francisco Estuary. Drainage, a source of water and salt for adjacent channels in the study [...] Read more.
In this case study, we used the Delta Simulation Model II (DSM2) to study the salt balance at the land–water interface in the river delta of California’s San Francisco Estuary. Drainage, a source of water and salt for adjacent channels in the study area, is affected by channel salinity. The DSM2 approach has been adopted by several hydrodynamic models of the estuary to enforce water volume balance between diversions, evapotranspiration and drainage at the land–water interface, but does not explicitly enforce salt balance. We found deviations from salt balance to be quite large, albeit variable in magnitude due to the heterogeneity of hydrodynamic and salinity conditions across the study area. We implemented a procedure that approximately enforces salt balance through iterative updates of the baseline drain salinity boundary conditions (termed loose coupling). We found a reasonable comparison with field measurements of drainage salinity. In particular, the adjusted boundary conditions appear to capture the range of observed interannual variability better than the baseline periodic estimates. The effect of the iterative adjustment procedure on channel salinity showed substantial spatial variability: locations dominated by large flows were minimally impacted, and in lower flow channels, deviations between baseline and adjusted channel salinity series were notable, particularly during the irrigation season. This approach, which has the potential to enhance the simulation of extreme salinity intrusion events (when high channel salinity significantly impacts drainage salinity), is essential for robustly modeling hydrodynamic conditions that pre-date contemporary water management infrastructure. We discuss limitations associated with this approach and recommend that—for this case study—further improvements could best be accomplished through code modification rather than coupling of transport and island water balance models. Full article
(This article belongs to the Special Issue Advances in Coastal Hydrological and Geological Processes)
Show Figures

Figure 1

28 pages, 2503 KiB  
Article
The Identification of Transcriptomic and Phytohormonal Biomarkers for Monitoring Drought and Evaluating the Potential of Acibenzolar-S-Methyl Root Application to Prime Two Apple Rootstock Genotypes for Drought Resistance
by Kirstin V. Wurms, Tony Reglinski, Erik H. A. Rikkerink, Nick Gould, Catrin S. Günther, Janine M. Cooney, Poppy Buissink, Annette Ah Chee, Christina B. Fehlmann, Dwayne J. A. Jensen and Duncan Hedderley
Int. J. Mol. Sci. 2025, 26(14), 6986; https://doi.org/10.3390/ijms26146986 - 21 Jul 2025
Viewed by 329
Abstract
Droughts are predicted to intensify with climate change, posing a serious threat to global crop production. Increasing drought tolerance in plants requires an understanding of the underlying mechanisms. This study measured the physiological, phytohormonal and transcriptomic responses to drought in two apple rootstocks [...] Read more.
Droughts are predicted to intensify with climate change, posing a serious threat to global crop production. Increasing drought tolerance in plants requires an understanding of the underlying mechanisms. This study measured the physiological, phytohormonal and transcriptomic responses to drought in two apple rootstocks to identify drought ‘biomarkers’ and investigated whether the application of acibenzolar-S-methyl (ASM) to the roots could enhance drought tolerance. Two potted-plant trials were conducted on dwarfing (M9) and semi-dwarfing (CG202) apple rootstocks. In both trials, the response patterns in the roots and leaves were compared between irrigated and non-irrigated plants over a 14-day period. In trial 2, ASM was applied 14 days before and immediately before withdrawing irrigation. Drought induced significant decreases in transpiration, photosynthesis and stomatal conductance in both trials. This was accompanied by the accumulation of abscisic acid (ABA) metabolites and the upregulation of ABA pathway transcripts (CYP707A1/A2 and NCED3), a decrease in 12-oxophytodienoic acid (cis-OPDA) and the downregulation of ABA receptor genes (PYL4). The responses to drought were greater in the roots than the leaves, broadly similar across both rootstocks, but differed in strength and timing between the rootstocks. The application of ASM to the roots did not significantly affect the responsiveness to drought in either rootstock. The identified phytohormonal and transcriptomic biomarkers require further validation across a broader range of genotypes. Full article
(This article belongs to the Special Issue Phytohormones: From Physiological Response to Application)
Show Figures

Figure 1

31 pages, 7304 KiB  
Article
Integrating Groundwater Modelling for Optimized Managed Aquifer Recharge Strategies
by Ghulam Zakir-Hassan, Jehangir F. Punthakey, Catherine Allan and Lee Baumgartner
Water 2025, 17(14), 2159; https://doi.org/10.3390/w17142159 - 20 Jul 2025
Viewed by 493
Abstract
Managed aquifer recharge (MAR) is a complex and hidden process of storing surplus water under the ground surface and extracting it as, when and where needed. Evaluation of the success of any MAR project is challenging due to uncertainty in estimating the hydrogeological [...] Read more.
Managed aquifer recharge (MAR) is a complex and hidden process of storing surplus water under the ground surface and extracting it as, when and where needed. Evaluation of the success of any MAR project is challenging due to uncertainty in estimating the hydrogeological characteristics of the subsurface media. This paper demonstrates the use of a groundwater model (MODFLOW) to evaluate a new, large-scale regional MAR project in the agricultural heartland in Punjab, Pakistan. In this MAR project, flood waters have been diverted to the bed of an abandoned canal, where 144 recharge wells (the wells for accelerating the recharge into the aquifer) have been constructed to accelerate the recharge to the aquifer. The model was calibrated for a period of five years from October 2015 to June 2020 on a monthly stress period and the resulting water levels were simulated till 2035. The water balance components and future response of the aquifer to different scenarios up to 2035 including with and without MAR situations are presented. The model simulations showed that MAR can contribute to the replenishment of the aquifer and its potential for the case study site to contribute significantly to the management of groundwater and to enhance supplies for intensive agriculture. It was further established that MODFLOW can help in the evaluation of effectiveness of a MAR scheme. This study is unique as it evaluates a significantly large MAR project in an area where this practice has not been developed for improving groundwater access for large scale irrigation. The model provides guidelines for decision makers in the region as well as for the global community and livelihood benefits for rural communities. Full article
(This article belongs to the Special Issue Advances in Surface Water and Groundwater Simulation in River Basin)
Show Figures

Figure 1

14 pages, 1393 KiB  
Article
Mitigating Water Stress and Enhancing Aesthetic Quality in Off-Season Potted Curcuma cv. ‘Jasmine Pink’ via Potassium Silicate Under Deficit Irrigation
by Vannak Sour, Anoma Dongsansuk, Supat Isarangkool Na Ayutthaya, Soraya Ruamrungsri and Panupon Hongpakdee
Horticulturae 2025, 11(7), 856; https://doi.org/10.3390/horticulturae11070856 - 20 Jul 2025
Viewed by 410
Abstract
Curcuma spp. is a popular ornamental crop valued for its vibrant appearance and suitability for both regular and off-season production. As global emphasis on freshwater conservation increases and with a demand for compact potted plants, reducing water use while maintaining high aesthetic quality [...] Read more.
Curcuma spp. is a popular ornamental crop valued for its vibrant appearance and suitability for both regular and off-season production. As global emphasis on freshwater conservation increases and with a demand for compact potted plants, reducing water use while maintaining high aesthetic quality presents a key challenge for horticulturists. Potassium silicate (PS) has been proposed as a foliar spray to alleviate plant water stress. This study aimed to evaluate the effects of PS on growth, ornamental traits, and photosynthetic parameters of off-season potted Curcuma cv. ‘Jasmine Pink’ under deficit irrigation (DI). Plants were subjected to three treatments in a completely randomized design: 100% crop evapotranspiration (ETc), 50% ETc, and 50% ETc with 1000 ppm PS (weekly sprayed on leaves for 11 weeks). Both DI treatments (50% ETc and 50% ETc + PS) reduced plant height by 7.39% and 9.17%, leaf number by 16.99% and 7.03%, and total biomass by 21.13% and 20.58%, respectively, compared to 100% ETc. Notably, under DI, PS-treated plants maintained several parameters equivalent to the 100% ETc treatment, including flower bud emergence, blooming period, green bract number, effective quantum yield of PSII (ΔF/Fm′), and electron transport rate (ETR). In addition, PS application increased leaf area by 8.11% and compactness index by 9.80% relative to untreated plants. Photosynthetic rate, ΔF/Fm′, and ETR increased by 31.52%, 13.63%, and 9.93%, while non-photochemical quenching decreased by 16.51% under water-limited conditions. These findings demonstrate that integrating deficit irrigation with PS foliar application can enhance water use efficiency and maintain ornamental quality in off-season potted Curcuma, promoting sustainable water management in horticulture. Full article
Show Figures

Figure 1

27 pages, 2272 KiB  
Article
A New Approach Based on Trend Analysis to Estimate Reference Evapotranspiration for Irrigation Planning
by Murat Ozocak
Sustainability 2025, 17(14), 6531; https://doi.org/10.3390/su17146531 - 17 Jul 2025
Viewed by 382
Abstract
Increasing drought conditions at the global level have created concerns about the decrease in water resources. This situation has made the correct planning of irrigation applications the most important situation. Irrigation management in future periods is possible with the correct determination of the [...] Read more.
Increasing drought conditions at the global level have created concerns about the decrease in water resources. This situation has made the correct planning of irrigation applications the most important situation. Irrigation management in future periods is possible with the correct determination of the reference evapotranspiration (ET0) trend. In the current situation, the trend is usually determined using one or two methods. Failure to conduct a detailed trend analysis results in incorrect irrigation management. With the new approach presented in the research, all of the Mann–Kendall (MK), innovative trend analysis (ITA), Sen’s slope (SS) and Spearman’s rho (SR) tests were used, and the common results of the four tests, namely increase, decrease, and no trend, were taken into account. The ET0 values calculated in different approaches were focused on temporal and spatial analysis for the future irrigation management of Türkiye with the Blaney–Criddle (BC), Turc (TR), and Coutagne (CT) methods. The future period forecast was made using four different trend analyses with geographical information system (GIS) based spatial applications using 12-month ET0 data calculated from 59 years of data between 1965 and 2023. Statistical analysis was performed to reveal the relationship between ET0 calculation methods. The findings showed that although there is a general increasing trend in ET0 values in the region, this situation is more pronounced, especially in the provinces in the western and central regions. The research results improve the determination of plant water needs for future periods in terms of irrigation management. This new approach, which determines ET0 trend analysis in the Black Sea region, can be used in regional, national, and international studies by supporting different calculations to be made in order to plan future water management correctly, to reduce the concern of decreasing water resources in drought conditions, and to obtain comprehensive data in order to provide appropriate irrigation. Full article
Show Figures

Figure 1

16 pages, 6892 KiB  
Article
Interrelation Between Growing Conditions in Caucasus Subtropics and Actinidia deliciosa ‘Hayward’ Yield for the Sustainable Agriculture
by Tsiala V. Tutberidze, Alexey V. Ryndin, Tina D. Besedina, Natalya S. Kiseleva, Vladimir Brigida and Aleksandr P. Boyko
Sustainability 2025, 17(14), 6499; https://doi.org/10.3390/su17146499 - 16 Jul 2025
Viewed by 324
Abstract
Kiwifruit is a high-value subtropical crop with significant nutritional and economic importance, but its cultivation faces growing challenges due to climate change, particularly in Caucasus. This study aims to study the impact of abiotic stressors such as temperature extremes, drought, and frost on [...] Read more.
Kiwifruit is a high-value subtropical crop with significant nutritional and economic importance, but its cultivation faces growing challenges due to climate change, particularly in Caucasus. This study aims to study the impact of abiotic stressors such as temperature extremes, drought, and frost on the yield of the ‘Hayward’ cultivar over a 20-year period (from 2003 to 2022). Using a combination of agroclimatic data analysis, measurements of soluble solid content, and soil moisture assessments, this research identified key factors which limit kiwifruit cultivation productivity. The results revealed a high yield variability—68%, with the mean value declining by 16.6% every five years due to increasing aridity and heat stress. Extreme temperature rises of up to 30 °C caused yield losses of 79–89%, and the presence of frost led to declines of 71–94%. In addition, it is objectively proven that the vulnerability of kiwifruit is subject to climate-driven water imbalances. This highlights the need for adaptive strategy formation in the area of optimized irrigation for the sustainable cultivation of fruit in the subtropics. One of the study’s limitations was that it was organized around a single variety of kiwifruit (‘Hayward’). In view of the fact that there are significant differences in growth characteristics among kiwifruit varieties, future research should focus on overcoming this shortcoming. Full article
Show Figures

Figure 1

24 pages, 836 KiB  
Article
Effect of Farming System and Irrigation on Physicochemical and Biological Properties of Soil Under Spring Wheat Crops
by Elżbieta Harasim and Cezary A. Kwiatkowski
Sustainability 2025, 17(14), 6473; https://doi.org/10.3390/su17146473 - 15 Jul 2025
Viewed by 325
Abstract
A field experiment in growing spring wheat (Triticum aestivum L.—cv. ‘Monsun’) under organic, integrated and conventional farming systems was conducted over the period of 2020–2022 at the Czesławice Experimental Farm (Lubelskie Voivodeship, Poland). The first experimental factor analyzed was the farming system: [...] Read more.
A field experiment in growing spring wheat (Triticum aestivum L.—cv. ‘Monsun’) under organic, integrated and conventional farming systems was conducted over the period of 2020–2022 at the Czesławice Experimental Farm (Lubelskie Voivodeship, Poland). The first experimental factor analyzed was the farming system: A. organic system (control)—without the use of chemical plant protection products and NPK mineral fertilization; B. conventional system—the use of plant protection products and NPK fertilization in the range and doses recommended for spring wheat; C. integrated system—use of plant protection products and NPK fertilization in an “economical” way—doses reduced by 50%. The second experimental factor was irrigation strategy: 1. no irrigation—control; 2. double irrigation; 3. multiple irrigation The aim of the research was to determine the physical, chemical, and enzymatic properties of loess soil under spring wheat crops as influenced by the factors listed above. The highest organic C content of the soil (1.11%) was determined in the integrated system with multiple irrigation of spring wheat, whereas the lowest one (0.77%)—in the conventional system without irrigation. In the conventional system, the highest contents of total N (0.15%), P (131.4 mg kg−1), and K (269.6 mg kg−1) in the soil were determined under conditions of multiple irrigation. In turn, the organic system facilitated the highest contents of Mg, B, Cu, Mn, and Zn in the soil, especially upon multiple irrigation of crops. It also had the most beneficial effect on the evaluated physical parameters of the soil. In each farming system, the multiple irrigation of spring wheat significantly increased moisture content, density, and compaction of the soil and also improved its total sorption capacity (particularly in the integrated system). The highest count of beneficial fungi, the lowest population number of pathogenic fungi, and the highest count of actinobacteria were recorded in the soil from the organic system. Activity of soil enzymes was the highest in the integrated system, followed by the organic system—particularly upon multiple irrigation of crops. Summing up, the present study results demonstrate varied effects of the farming systems on the quality and health of loess soil. From a scientific point of view, the integrated farming system ensures the most stable and balanced physicochemical and biological parameters of the soil due to the sufficient amount of nutrients supplied to the soil and the minimized impact of chemical plant protection products on the soil. The multiple irrigation of crops resulting from indications of soil moisture sensors mounted on plots (indicating the real need for irrigation) contributed to the improvement of almost all analyzed soil quality indices. Multiple irrigation generated high costs, but in combination with fertilization and chemical crop protection (conventional and integrated system), it influenced the high productivity of spring wheat and compensated for the incurred costs (the greatest profit). Full article
(This article belongs to the Special Issue Soil Fertility and Plant Nutrition for Sustainable Cropping Systems)
Show Figures

Figure 1

17 pages, 1394 KiB  
Article
Water Quality and Biological Response in the Deschutes River, Oregon, Following the Installation of a Selective Water Withdrawal
by Joseph M. Eilers, Tim Nightengale and Kellie B. Vache
Water 2025, 17(14), 2091; https://doi.org/10.3390/w17142091 - 13 Jul 2025
Viewed by 441
Abstract
Selective water withdrawals (SWWs) are frequently used to minimize the downstream effects of dams by blending water from different depths to achieve a desired temperature regime in the river. In 2010, an SWW was installed on the outlet structure of the primary hydropower [...] Read more.
Selective water withdrawals (SWWs) are frequently used to minimize the downstream effects of dams by blending water from different depths to achieve a desired temperature regime in the river. In 2010, an SWW was installed on the outlet structure of the primary hydropower reservoir on the Deschutes River (Oregon, USA) to increase spring temperatures by releasing a combination of surface water and bottom waters from a dam that formerly only had a hypolimnetic outlet. The objective of increasing spring river temperatures was to recreate pre-dam river temperatures and optimize conditions for the spawning and rearing of anadromous fish. The operation of the SWW achieved the target temperature regime, but the release of surface water from a hypereutrophic impoundment resulted in a number of unintended consequences. These changes included significant increases in river pH and dissolved oxygen saturation. Inorganic nitrogen releases decreased in spring but increased in summer. The release of surface water from the reservoir increased levels of plankton in the river resulting in changes to the macroinvertebrates such as increases in filter feeders and a greater percentage of taxa tolerant to reduced water quality. No significant increase in anadromous fish was observed. The presence of large irrigation diversions upstream of the reservoir was not accounted for in the temperature analysis that led to the construction of the SWW. This complicating factor would have reduced flow in the river leading to increased river temperatures at the hydropower site during the measurement period used to develop representations of historical temperature. The analysis supports the use of numerical models to assist in forecast changes associated with SWWs, but the results from this project illustrate the need for greater consideration of complex responses of aquatic communities caused by structural modifications to dams. Full article
(This article belongs to the Section Hydrology)
Show Figures

Graphical abstract

27 pages, 50073 KiB  
Article
A Spatiotemporal Analysis of Drought Conditions Framework in Vast Paddy Cultivation Areas of Thung Kula Ronghai, Thailand
by Pariwate Varnakovida, Nathapat Punturasan, Usa Humphries, Anisara Tibkaew and Sornkitja Boonprong
Agriculture 2025, 15(14), 1503; https://doi.org/10.3390/agriculture15141503 - 12 Jul 2025
Viewed by 402
Abstract
This study presents an integrated spatiotemporal assessment of drought conditions in the Thung Kula Ronghai region of Northeastern Thailand from 2001 to 2023. Multiple satellite-derived drought indices, including SPI, SPEI, RDI, and AI, together with NDVI anomalies, were used to detect seasonal and [...] Read more.
This study presents an integrated spatiotemporal assessment of drought conditions in the Thung Kula Ronghai region of Northeastern Thailand from 2001 to 2023. Multiple satellite-derived drought indices, including SPI, SPEI, RDI, and AI, together with NDVI anomalies, were used to detect seasonal and long-term drought dynamics affecting rainfed Hom Mali rice production. The results show that dry season droughts now affect up to 17 percent of the region’s agricultural land in some years, while severe drought zones persist across more than 2.5 million hectares over the 20-year period. In the most recent 5 years, approximately 50 percent of cultivated areas experienced moderate to severe drought conditions. The RDI showed the strongest correlation with NDVI anomalies (r = 0.22), indicating its relative value for assessing vegetation response to moisture deficits. The combined index approach delineated high-risk sub-regions, particularly in central Thung Kula Ronghai and lower Surin, where drought frequency and severity have intensified. These findings underscore the region’s increasing exposure to dry-season water stress and highlight the need for site-specific irrigation development and adaptive cropping strategies. The methodological framework demonstrated here provides a practical basis for improving drought monitoring and early warning systems to support the resilience of Thailand’s high-value rice production under changing climate conditions. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Figure 1

18 pages, 1291 KiB  
Article
Effect of Calcium Addition on Extracellular Enzymes and Soil Organic Carbon in Maize Rhizosphere Soils
by Zhaoquan He, Xue Shang and Xiaoze Jin
Agronomy 2025, 15(7), 1680; https://doi.org/10.3390/agronomy15071680 - 11 Jul 2025
Viewed by 360
Abstract
This study examined the regulatory mechanism of calcium (Ca) amendment on the dynamics of soil organic carbon (SOC) fractions and extracellular enzyme activities, elucidating the role of Ca in soil carbon cycling processes. A field experiment with maize was conducted, comparing treatments of [...] Read more.
This study examined the regulatory mechanism of calcium (Ca) amendment on the dynamics of soil organic carbon (SOC) fractions and extracellular enzyme activities, elucidating the role of Ca in soil carbon cycling processes. A field experiment with maize was conducted, comparing treatments of low calcium (T1), high calcium (T2), and a calcium-free control (CK). Measurements included inter-root SOC fractions—soluble organic carbon (DOC), microbial biomass carbon (MBC), and readily oxidizable organic carbon (ROC)—and the activities of the following extracellular enzymes: β-xylanase, β-glucosidase (β-glu), phenol oxidase (Phox), peroxidase (Pero), phosphatase (Phos), acetylaminoglucosidase (NAG), and urease. The main findings indicated the following: (1) Calcium addition significantly increased SOC content (115.04% and 99.22% higher in T1 and T2, respectively, than CK during the entire reproductive period) and enhanced microbial activity (elevated DOC and MBC). However, SOC decreased by 8.44% (T1) and 16.38% (T2) relative to CK in the late reproductive stage (irrigation–ripening), potentially reflecting microbial utilization (supported by the inverse correlation between SOC and MBC/DOC), and maize carbon reallocation during grain filling. (2) Calcium activated β-glu, Phox, Phos, NAG, and urease (p < 0.05), with pronounced increases in Phox (241.13 IU·L−1) and Phos (1126.65 U·L−1), indicating enhanced organic matter mineralization and phosphorus availability. (3) Calcium-driven MBC and ROC accumulation was associated with the positive regulation of Phox (path coefficient > 0.8) and the negative regulation of Phos. SOC was co-regulated by β-glu and Phos (R2 = 0.753). (4) Calcium dynamically optimized the short-term carbon distribution through enzyme activity while promoting long-term sequestration. Our study provides new evidence supporting multi-pathway interactions through which calcium mediates enzyme networks to influence the soil carbon cycle. The findings provide a theoretical foundation for calcium fertilizer management and soil carbon sequestration strategies in agriculture, advancing academic and practical goals for sustainable development and carbon neutrality. Full article
Show Figures

Figure 1

18 pages, 2276 KiB  
Article
Surface Water Runoff Estimation of a Continuously Flooded Rice Field Using a Daily Water Balance Approach—An Irrigation Assessment
by Diego Rivero, Guillermina Cantou, Raquel Hayashi, Jimena Alonso, Matías Oxley, Agustín Menta, Pablo González-Barrios and Álvaro Roel
Water 2025, 17(14), 2069; https://doi.org/10.3390/w17142069 - 10 Jul 2025
Viewed by 480
Abstract
The high water demand of rice cultivation is mainly due to flood irrigation, which requires large volumes not only to meet evapotranspiration needs, but also due to losses from percolation, lateral seepage, and surface runoff. In addition to lowering water use efficiency, surface [...] Read more.
The high water demand of rice cultivation is mainly due to flood irrigation, which requires large volumes not only to meet evapotranspiration needs, but also due to losses from percolation, lateral seepage, and surface runoff. In addition to lowering water use efficiency, surface runoff may transport nutrients. This study aimed to calibrate and validate a daily water balance model to estimate surface runoff losses across three rice-growing seasons. During the first two seasons, different model components were calibrated by comparing simulated and observed water depths. In the final season, the calibrated model was validated using direct runoff measurements obtained from weirs and flowmeters. Results showed strong agreement between model estimates and direct measurements of water depth and surface runoff. Linear regression models showed good fit, with coefficients of determination (R2) above 0.80 for water depth and 0.79 for runoff. A validated daily water balance model, combined with periodic monitoring of water depth, proved to be a reliable tool for estimating surface runoff during the rice-growing season. Total runoff—from irrigation, rainfall, and final drainage—represented between 7.5% and 18% of the total water input. This approach offers a practical tool for improving irrigation water management and understanding runoff-driven nutrient transport. Full article
(This article belongs to the Section Water, Agriculture and Aquaculture)
Show Figures

Figure 1

13 pages, 523 KiB  
Article
The Impact of Rainwater Quality Harvested from Asbestos Cement Roofs on Leaf Temperature in Solanum lycopersicum as a Plant Water Stress Indicator
by Gergely Zoltán Macher
Water 2025, 17(14), 2070; https://doi.org/10.3390/w17142070 - 10 Jul 2025
Viewed by 376
Abstract
Rainwater harvesting (abbreviation: RWH) presents a valuable alternative water source for agriculture, particularly in regions facing water scarcity. However, contaminants leaching from roofing materials, such as asbestos cement (abbreviation: AC), may compromise water quality and affect plant physiological responses. This paper aimed to [...] Read more.
Rainwater harvesting (abbreviation: RWH) presents a valuable alternative water source for agriculture, particularly in regions facing water scarcity. However, contaminants leaching from roofing materials, such as asbestos cement (abbreviation: AC), may compromise water quality and affect plant physiological responses. This paper aimed to assess how simulated rainwater, reflecting the different levels of contamination (1, 2, 5, 10, and 20 mg/L), influences leaf temperature in tomato plants (Solanum lycopersicum), a known non-invasive indicator of plant water stress. The treatments were applied over a four-week period under controlled greenhouse conditions. Leaf temperature was monitored using infrared thermography. Results showed that higher treatment concentrations led to a significant increase in leaf temperature, indicating elevated water stress. These findings suggest that even low levels of contaminants originating from roofing materials can induce detectable physiological stress in plants. Monitoring leaf temperature offers a rapid and non-destructive method for assessing environmental water quality impacts on crops. The outcomes of this research have direct applicability in the safer design of RWH systems and in evaluating the suitability of collected rainwater for irrigation use. Full article
(This article belongs to the Section Water, Agriculture and Aquaculture)
Show Figures

Figure 1

Back to TopTop