Effect of Farming System and Irrigation on Physicochemical and Biological Properties of Soil Under Spring Wheat Crops
Abstract
1. Introduction
2. Materials and Methods
2.1. Experiment Design and Field Management
- a.
- double irrigation:
- 250,000 L water/ha (2020); 240,000 L water/ha (2021); 260,000 L water/ha (2022)
- 200,000 L water/ha (2020); 190,000 L water/ha (2021); 210,000 L water/ha (2022)
- b.
- multiple irrigation:
- 1.
- 250,000 L water/ha (2020); 230,000 L water/ha (2021); 250,000 L water/ha (2022)
- 2.
- 100,000 L water/ha (2020); 110,000 L water/ha (2021); 110,000 L water/ha (2022)
- 3.
- 200,000 L water/ha (2020); 190,000 L water/ha (2021); 210,000 L water/ha (2022)
- 4.
- 250,000 L water/ha (2020); 240,000 L water/ha (2021); 260,000 L water/ha (2022)
- 5.
- 150,000 L water/ha (2020); 140,000 L water/ha (2021); 160,000 L water/ha (2022)
2.2. Cost Estimate for Irrigation, Fertilization and Chemical Protection of Spring Wheat
- I.
- Spring wheat irrigation costs (average from the study period in each farming system):Cost of 1 m3 water = 1000 L water = USD 0.62
- a.
- double irrigation:
- 250,000 L water/ha
- 200,000 L water/ha
- Total: 450,000 L water/ha = USD 281.2
- b.
- multiple irrigation:
- 1.
- 243,000 L water/ha
- 2.
- 107,000 L water/ha
- 3.
- 200,000 L water/ha
- 4.
- 250,000 L water/ha
- 5.
- 150,000 L water/ha
- Total: 950,000 L water/ha = USD 593.7
- II.
- Spring wheat fertilization costs (mean for the study period):Conventional system (100% NPK doses):ammonium nitrate − 80 kg ha−1 − cost = USD 154.0/hagranulated triple superphosphate − 60 kg ha−1 − cost = USD 95.0/hapotassium salt − 100 kg ha−1 − cost = USD 169.0/haTotal fertilization cost in conventional system = USD 418.0/haIntegrated (economical) system (50% NPK doses):ammonium nitrate − 40 kg ha−1 − cost = USD 77.0/hagranulated triple superphosphate − 30 kg ha−1 − cost = USD 47.5/hapotassium salt − 50 kg ha−1 − cost = USD 84.5/haTotal fertilization cost in integrated (economical) system = USD 209.0/haOrganic system (control) (without NPK fertilization):Total fertilization cost in organic system (control) = USD 0.0/ha
- III.
- Costs of chemical protection of spring wheat (mean for the study period):Conventional system (100% of pesticide doses)Omnix 025 FS seed dressing 200 mL 100 kg−1 of grain − cost = USD 22.5/haChwastox Trio 390 SL herbicide 3 L ha−1 − cost = USD 28.5/haPuma Universal 69 EW herbicide 1 L ha−1 − cost = USD 32.0/haGlora 633 EC fungicide 1 L ha−1 − cost = USD 25.5/haDecis Mega 50 EW insecticide 1 L ha−1 − cost = USD 41.0/haTotal cost of chemical protection in conventional system = USD 149.5/haIntegrated (economical) system (50% of pesticide doses)Omnix 025 FS seed dressing 100 mL 100 kg−1 of grain − cost = USD 11.2/haChwastox Trio 390 SL herbicide 1.5 L ha−1 − cost = USD 14.2/haPuma Universal 69 EW herbicide 0.5 L ha−1 − cost = USD 16.0/haGlora 633 EC fungicide 0.5 L ha−1 − cost = USD 12.8/haDecis Mega 50 EW insecticide 0.5 L ha−1 − cost = USD 20.5/haTotal cost of chemical protection in an integrated (economical) system = USD 74.8/haOrganic system (control) (without using pesticides)Total cost of chemical protection in organic system (control) = USD 0.0/ha
2.3. Analyses of Soil
2.4. Chemical Properties of Soil
2.5. Physical Properties of Soil
2.6. Enzymatic Activity of Soil
2.7. Biological Properties of Soil
2.8. Statistical Analysis
3. Results
3.1. Chemical Properties of Soil
3.2. Physical Properties of Soil
3.3. Enzymatic Activity and Biological Properties of Soil
4. Discussion
4.1. Chemical Properties of Soil
4.2. Physical Properties of Soil
4.3. Biological Properties and Enzymatic Activity of Soil
4.4. Profitability of Irrigation in the Context of Farming Systems—Summary
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Uhlmann, N.K.; Beckles, D.M. Storage products and transcriptional analysis of the endosperm of cultivated wheat and two wild wheat species. J. Appl. Genet. 2010, 51, 431–447. [Google Scholar] [CrossRef] [PubMed]
- Bastida, F.; Moreno, J.L.; Hernandez, T.; Garcia, C. Microbiological degradation index of soils in a semiarid climate. Soil Biol. Biochem. 2006, 38, 3463–3473. [Google Scholar] [CrossRef]
- Cooper, J. Soil Structure, Management and Effect on Nutrient Availability and Crop Production. In Proceedings of the Organic Producer Conference, Facing Current and Future Challenges, Newcastle University, Newcastle upon Tyne, UK, 17 January 2011; Available online: https://www.organicresearchcentre.com/manage/authincludes/article_uploads/Julia%20Cooper%20-%20Soil%20structure.pdf (accessed on 10 June 2025).
- Biswas, J.C.; Naveen, K.; Maniruzzaman, M.; Naher, U.A.; Haque, M.M. Soil Health Assessment Methods and Relationship with Wheat Yield. Open J. Soil Sci. 2019, 9, 189–205. [Google Scholar] [CrossRef]
- El-Hassanin, A.S.; Samak, M.R.; Atta, Y.; Labib, S.M. Controlled Drainage and Irrigation Regime for Improving Some Soil Properties and Wheat Production, Sahl El-Tina, Sinai Peninsula, Egypt. Water Conserv. Sci. Eng. 2022, 7, 375–388. [Google Scholar] [CrossRef]
- Gruver, J.B.; Weil, R.R. Farmer Perceptions of Soil Quality and Their Relationship to Management-Sensitive Soil Parameters. Renew. Agric. Food Syst. 2007, 22, 271–281. [Google Scholar] [CrossRef]
- Loganathan, M.; Narendiran, J. Pollution of Soil Due To Leather Factory Near Ranipet, Tamil Nadu (India). Int. J. Emerg. Trends Sci. Technol. 2014, 01, 86–90. Available online: https://journals.indexcopernicus.com/api/file/viewByFileId/149571 (accessed on 10 June 2025).
- Franchini, J.C.; Crispino, C.C.; Souza, R.A.; Torres, E.; Hungria, M. Microbiological parameters as indicators of soil quality under various soil management and crop rotation systems in southern Brazil. Soil Tillage Res. 2007, 92, 18–29. [Google Scholar] [CrossRef]
- Shukla, M.K.; Lal, R.; Ebinger, M. Determining soil quality indicators by factor analysis. Soil Tillage Res. 2006, 87, 194–204. [Google Scholar] [CrossRef]
- Parr, J.F.; Papendick, R.I.; Hornick, S.B.; Meyer, R.E. Soil quality: Attributes and relationship to alternative and sustainable agriculture. Am. J. Altern. Agric. 1992, 7, 5–11. [Google Scholar] [CrossRef]
- Laishram, J.; Saxena, K.G.; Maikhuri, R.K.; Rao, K.S. Soil quality and soil health: A review. Int. J. Ecol. Environ. Sci. 2012, 38, 19–37. Available online: https://www.researchgate.net/publication/232237296_Soil_quality_and_soil_health_A_review#fullTextFileContent (accessed on 10 June 2025).
- Terashima, M.; Mihara, M. Interactions among soil physical, chemical and biological properties under different farming systems. Int. J. Environ. Rural Develop. 2022, 13, 1–6. Available online: https://iserd.net/ijerd131/13-1-1.pdf (accessed on 5 June 2025).
- Medan, D.; Torretta, J.P.; Hodara, K.; de la Fuente, E.B.; Montaldo, N.H. Effects of agriculture expansion and intensification on the vertebrate and invertebrate diversity in the Pampas of Argentina. Biodivers. Conserv. 2011, 20, 3077–3100. [Google Scholar] [CrossRef]
- Komatsuzaki, M.; Ohta, H. Soil Management Practices for Sustainable Agro-Ecosystems. Sustain. Sci. 2007, 2, 103–120. [Google Scholar] [CrossRef]
- Ouda, S.; Noreldin, T.; Alarcón, J.J.; Ragab, R.; Caruso, G.; Sekara, A.; Abdelhamid, M.T. Response of Spring Wheat (Triticum aestivum) to Deficit Irrigation Management under the Semi-Arid Environment of Egypt: Field and Modeling Study. Agriculture 2021, 11, 90. [Google Scholar] [CrossRef]
- Carvalho, M.; Carvalho, S.; Rodrigues, G.; Ferreira, L. Efeito do estresse hídrico na fisiologia e no crescimento inicial de plantas de batata. Rev. Bras. Eng. Agríc. Ambient. 2018, 22, 38–44. [Google Scholar] [CrossRef]
- Calow, R.C.; Howarth, S.E.; Wang, J. Irrigation Development and Water Rights Reform in China. Int. J. Water Resour. Dev. 2009, 25, 227. [Google Scholar] [CrossRef]
- Ranjbar, A.; Sepaskhah, A.R.; Emadi, S. Relationships between wheat yield, yield components and physico-chemical properties of soil under rain-fed conditions. Int. J. Plant Prod. 2015, 9, 433–466. Available online: https://www.researchgate.net/publication/282315376_Relationships_between_wheat_yield_yield_components_and_physico-chemical_properties_of_soil_under_rain-fed_conditions (accessed on 5 June 2025).
- Gong, F. The Role of Water in Soil Formation and Development. J. Soil Sci. Plant Nutr. 2023, 7, 3. [Google Scholar]
- Fadl, M.E.; Sayed, Y.A.; El-Desoky, A.I.; Shams, E.M.; Zekari, M.; Abdelsamie, E.A.; Drosos, M.; Scopa, A. Irrigation Practices and Their Effects on Soil Quality and Soil Characteristics in Arid Lands: A Comprehensive Geomatic Analysis. Soil Syst. 2024, 8, 52. [Google Scholar] [CrossRef]
- Thalmann, A. Zur Methodik der Bestimmung der Dehydrogenase Aktivität in Boden mittels Triphenyl tetrazolium chlorid (TTC). Landwirtsch. Forsch. 1968, 21, 249–258. [Google Scholar]
- Tabatabai, M.A.; Bremner, J.M. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1969, 1, 301–307. [Google Scholar] [CrossRef]
- Zantua, M.I.; Bremner, J.M. Comparison of methods of assaying urease activity in soils. Soil Biol. Biochem. 1975, 7, 291–295. [Google Scholar] [CrossRef]
- Ladd, N.; Butler, J.H.A. Short-term assays of soil proteolytic enzyme activities using proteins and dipeptide derivatives as substrates. Soil Biol. Biochem. 1972, 4, 19–30. [Google Scholar] [CrossRef]
- Foght, J.; Aislabie, J. Enumeration of Soil Microorganisms. In Monitoring and Assessing Soil Bioremediation. Soil Biology Part 5; Margesin, R., Schinner, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 261–280. [Google Scholar] [CrossRef]
- Martin, J.P. Use of acid rose bengal and streptomycin in the plate method for estimating soil fungi. Soil Sci. 1950, 69, 215–232. [Google Scholar] [CrossRef]
- Choi, Y.W.; Hyde, K.D.; Ho, W.W.H. Single spore isolation of fungi. Fungal Divers. 1999, 3, 29–38. Available online: https://www.researchgate.net/publication/228482364_Single_spore_isolation_of_fungi (accessed on 10 June 2025).
- Seifert, K.A. Compendium of soil fungi𠀔by K.H. Domsch, W. Gams & T.-H. Anderson. Eur. J. Soil Sci. 1980, 59, 1007. [Google Scholar] [CrossRef]
- Wallace, R.; Lochhead, A. Qualitative studies of soil microorganisms IX. Amino acid requirements of rhizosphere bacteria. Can. J. Res. Sect. C Bot. Sci. 1950, 28, 1–6. [Google Scholar] [CrossRef]
- Badura, L.; Smyłła, A. Wybrane Metody Izolowania Promieniowców Z Gleby [Selected Methods Of Isolating Actinomycetes From Soil]; Prace Komisji Naukowych: Warszawa, Poland, 1979; p. 15. (In Polish) [Google Scholar]
- Wang, Y.; Tu, C.; Cheng, L.; Li, C.; Gentry, L.F.; Hoyt, G.D.; Zhang, X.; Hu, S. Long-term impact of farming practices on soil organic carbon and nitrogen pools and microbial biomass and activity. Soil Till. Res. 2011, 117, 8–16. [Google Scholar] [CrossRef]
- Lal, R. Challenges and opportunities in soil organic matter research. Eur. J. Soil Sci. 2009, 60, 158–169. [Google Scholar] [CrossRef]
- Maucieri, C.; Tolomio, M.; Raimondi, G.; Toffanin, A.; Morari, F.; Berti, A.; Borin, M. Organic versus conventional farming: Medium-term evaluation of soil chemical properties. Ital. J. Agron. 2022, 17, 2114. [Google Scholar] [CrossRef]
- Fließbach, A.; Oberholzer, H.R.; Gunst, L.; Mäder, P. Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agric. Ecosyst. Environ. 2007, 118, 273–284. [Google Scholar] [CrossRef]
- Joergensen, R.G.; Mader, P.; Fließbach, A. Long-term effects of organic farming on fungal and bacterial residues in relation to microbial energy metabolism. Biol. Fertil. Soils 2010, 46, 303–307. [Google Scholar] [CrossRef]
- Askegaard, M.; Eriksen, J.; Olesen, J.E. Exchangeable potassium and potassium balances in organic crop rotations on a coarse sand. Soil Use Manag. 2003, 19, 96–103. [Google Scholar] [CrossRef]
- Gosling, P.; Shepherd, M. Long-term changes in soil fertility in organic arable farming systems in England. with particular reference to phosphorus and potassium. Agric. Ecosyst. Environ. 2005, 105, 425–432. [Google Scholar] [CrossRef]
- Kwiatkowski, C.A.; Harasim, E.; Feledyn-Szewczyk, B.; Antonkiewicz, J. Enzymatic Activity of Loess Soil in Organic and Conventional Farming Systems. Agriculture 2020, 10, 135. [Google Scholar] [CrossRef]
- Kwiatkowski, C.A.; Harasim, E. Chemical Properties of Soil in Four-Field Crop Rotations under Organic and Conventional Farming Systems. Agronomy 2020, 10, 1045. [Google Scholar] [CrossRef]
- Wesołowska, S.; Futa, B.; Myszura, M.; Kobyłka, A. Residual Effects of Different Cropping Systems on Physicochemical Properties and the Activity of Phosphatases of Soil. Agriculture 2022, 12, 693. [Google Scholar] [CrossRef]
- Al-Busaidi, W.; Janke, R.; Menezes-Blackburn, D.; Khan, M.M. Impact of long-term agricultural farming on soil and water chemical properties: A case study from Batinah regions (Oman). J. Saudi Soc. Agric. Sci. 2022, 21, 397–403. [Google Scholar] [CrossRef]
- Marinari, S.; Mancinelli, R.; Campiglia, E.; Grego, S. Chemical and biological indicators of soil quality in organic and conventional farming systems in Central Italy. Ecol. Indic. 2006, 6, 701–711. [Google Scholar] [CrossRef]
- Bhanuvally, M.; Sunitha, N.H.; Sharanabasava; Ravi, S.; Mahadevaswamy. Effect of Organic Farming Practices on Soil Chemical Properties. Int. J. Environ. Clim. Change 2024, 14, 470–481. [Google Scholar] [CrossRef]
- Dhaliwal, S.S.; Naresh, R.K.; Mandal, A.; Singh, R.; Dhaliwal, M.K. Dynamics and transformations of micronutrients in agricultural soils as influenced by organic matter build-up: A review. Environ. Sustain. Indic. 2019, 1–2, 100007. [Google Scholar] [CrossRef]
- Wang, H.; Huo, Q.; Wang, T.; Lv, G.; Li, W.; Ren, J.; Zhang, S.; Li, J. Effects of Combination of Water-Retaining Agent and Nitrogen Fertilizer on Soil Characteristics and Growth of Winter Wheat under Subsoiling Tillage in South Loess Plateau of China. Agronomy 2024, 14, 1287. [Google Scholar] [CrossRef]
- D’Odorico, P.; Chiarelli, D.D.; Rosa, L.; Bini, A.; Zilberman, D.; Rulli, M.C. The Global Value of Water in Agriculture. Proc. Natl. Acad. Sci. USA 2020, 117, 21985–21993. [Google Scholar] [CrossRef] [PubMed]
- Slaboch, J.; Malý, M. Land Valuation Systems in Relation to Water Retention. Agronomy 2023, 13, 2978. [Google Scholar] [CrossRef]
- Bondarovich, A.; Illiger, P.; Schmidt, G.; Ponkina, E.; Nugumanova, A.; Maulit, A.; Sutula, M. Effects of Agricultural Cropping Systems on Soil Water Capacity: The Case in Cross-Border Altai. Span. J. Soil Sci. 2023, 13, 11493. [Google Scholar] [CrossRef]
- Leogrande, R.; Pedrero, F.; Nicolas, E.; Vitti, C.; Lacolla, G.; Stellacci, A.M. Reclaimed Water Use in Agriculture: Effects on Soil Chemical and Biological Properties in a Long-Term Irrigated Citrus Farm. Agronomy 2022, 12, 1317. [Google Scholar] [CrossRef]
- Woldeyohannis, Y.S.; Hiremath, S.S.; Tola, S.; Wako, A. Influence of soil physical and chemical characteristics on soil compaction in farm field. Heliyon 2024, 10, e25140. [Google Scholar] [CrossRef] [PubMed]
- Gajda, A.M.; Czyż, E.A.; Dexter, A.R. Effects of long-term use of different farming systems on some physical, chemical and microbiological parameters of soil quality. Int. Agrophys. 2016, 30, 165–172. [Google Scholar] [CrossRef]
- Sainju, U.M.; Liptzin, D.; Jabro, J.D. Relating soil physical properties to other soil properties and crop yields. Sci. Rep. 2022, 12, 22025. [Google Scholar] [CrossRef] [PubMed]
- de Cima, D.S.; Luik, A.; Reintam, E. Organic farming andcover crops as an alternative to mineral fertilizers to improvesoil physical properties. Int. Agroph. 2015, 29, 405–412. [Google Scholar] [CrossRef]
- Williams, D.M.; Blanco-Canqui, H.; Francis, C.A.; Galusha, T.D. Organic farming and soil physical properties: An assessment after 40 years. Agron. J. 2017, 109, 600–609. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Ruis, S.J.; Francis, C.A. Do organic farming practices improve soil physical properties? Soil Use Manag. 2024, 40, e12999. [Google Scholar] [CrossRef]
- Hu, W.; Shao, M.A.; Si, B.C. Seasonal changes in surface bulk density and saturated hydraulic conductivity of natural landscapes. Eur. J. Soil Sci. 2012, 63, 820–830. [Google Scholar] [CrossRef]
- Papadopoulos, A.; Bird, N.R.A.; Whitmore, A.P.; Mooney, S.J. Does organic management lead to enhanced soil physical quality? Geoderma 2014, 213, 435–443. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A.B. Limited effect of organicmatter on soil available water capacity. Eur. J. Soil Sci. 2018, 69, 39–47. [Google Scholar] [CrossRef]
- Bagnall, D.K.; Morgan, C.L.S.; Cope, M.; Bean, G.M.; Cappellazzi, S.; Greub, K.; Liptzin, D.; Norris, C.L.; Rieke, E.; Tracy, P.; et al. Carbon-sensitive pedotransfer functions for plant available water. Soil Sci. Soc. Am. J. 2022, 86, 612–629. [Google Scholar] [CrossRef]
- Furtak, K.; Gałązka, A. Effect of organic farming on soil microbiological parameters. Pol. J. Soil Sci. 2019, 52, 259. [Google Scholar] [CrossRef]
- Liu, L.; Kong, J.; Cui, H.; Zhang, J.; Wang, F.; Cai, Z.; Huang, X. Relationships of decomposability and C/N ratio in different types of organic matter with suppression of Fusarium oxysporum and microbial communities during reductive soil disinfestation. Biol. Control 2016, 101, 103–113. [Google Scholar] [CrossRef]
- Nannipieri, P.; Ascher, J.; Ceccherini, M.T.; Landi, L.; Pietramellara, G.; Renella, G. Microbial diversity and soil functions. Eur. J. Soil Sci. 2003, 54, 655–670. [Google Scholar] [CrossRef]
- Gianfreda, L.; Rao, A.M.; Piotrowska, A.; Palumbo, G.; Colombo, C. Soil enzyme activities as affected by anthropogenic alterations: Intensive agricultural practices and organic pollution. Sci. Total Environ. 2005, 341, 265–279. [Google Scholar] [CrossRef] [PubMed]
- Bielińska, E.J.; Pranagal, J. Enzymatic activity of soil contaminated with triazine herbicides. Pol. J. Environ. Stud. 2007, 16, 295–300. Available online: https://www.pjoes.com/pdf-87989-21848?filename=21848.pdf (accessed on 5 June 2025).
- Tian, Y.; Zhang, X.; Liu, J.; Chen, Q.; Gao, L. Microbial properties of rhizosphere soils as affected by rotation, grafting, and soil sterilization in intensive vegetable production systems. Sci. Hortic. 2009, 123, 139–147. [Google Scholar] [CrossRef]
- Niewiadomska, A.; Sulewska, H.; Wolna-Maruwka, A.; Klama, J. Effect of organic fertilization on development of proteolytic bacteria and activity of proteases in the soil for cultivation of maize (Zea mays L.). Arch. Environ. Prot. 2010, 36, 47–56. Available online: https://www.researchgate.net/publication/289068590_Effect_of_organic_fertilization_on_development_of_proteolytic_bacteria_and_activity_of_proteases_in_the_soil_for_cultivation_of_maize_ZEA_MAYS_L (accessed on 10 June 2025).
- Wallenstein, M.D.; Haddix, M.L.; Lee, D.D.; Conant, R.T.; Paul, E.A. A litter-slurry technique elucidates the key role of enzyme production and microbial dynamics in temperature sensitivity of organic matter decomposition. Soil Biol. Biochem. 2012, 47, 18–26. [Google Scholar] [CrossRef]
- Brzostek, E.R.; Finzi, A.C. Seasonal variation in the temperature sensitivity of proteolytic enzyme activity in temperate forest soils. J. Geophys. Res. 2012, 117, G01018. [Google Scholar] [CrossRef]
- Tolimir, M.; Kresović, B.; Gajić, K.; Anđelković, V.; Brankov, M.; Dugalić, M.; Gajić, B. Integrated effect of irrigation rate and plant density on yield, yield components and water use efficiency of maize. Plant Soil Environ. 2024, 70, 475–482. [Google Scholar] [CrossRef]
- Özocak, M. The Effect of Irrigation on Crop Yield Change in Some Cereals in Drought Conditions Determined Using SPI and PNI: Ankara Province Example. Turk. J. Agric.-Food Sci. Technol. 2024, 12, 2579–2589. [Google Scholar] [CrossRef]
- Gavrilescu, M. Water, Soil, and Plants Interactions in a Threatened Environment. Water 2021, 13, 2746. [Google Scholar] [CrossRef]
- Liu, W.Z.; Hunsaker, D.J.; Li, Y.S.; Xie, X.Q.; Wall, G.W. Interrelations of yield, evapotranspiration, and water use efficiency formmarginal analysis of water production functions. Agric. Water Manag. 2002, 56, 142–151. [Google Scholar] [CrossRef]
- Zuber, M.; Kalauni, N.; Shrestha, N.; Pandey, V.P.; Pokharel, B. Cereal yield and water requirements in response to irrigation and soil fertility management in a changing climate: A case of Tulsipur, Western Nepal. J. Water Clim. Change 2025, 16, 837–859. [Google Scholar] [CrossRef]
- Mu, L.; Su, K.; Zhou, T.; Yang, H. Yield performance, land and water use, economic profit of irrigated spring wheat/alfalfa intercropping in the inland arid area of northwestern China. Field Crops Res. 2023, 303, 109116. [Google Scholar] [CrossRef]
- Harasim, E.; Kwiatkowski, C.A.; Buczek, J. Effect of Farming System and Irrigation on Nutrient Content and Health-Promoting Properties of Carrot Roots. Agronomy 2025, 15, 1289. [Google Scholar] [CrossRef]
- Ali, A.; Xia, C.; Jia, C.; Faisal, M. Investment profitability and economic efficiency of the drip irrigation system: Evidence from Egypt. Irrig. Drain. 2020, 69, 1033–1050. [Google Scholar] [CrossRef]
- Sdiri, W.; AlSalem, H.S.; Al-Goul, S.T.; Binkadem, M.S.; Ben Mansour, H. Assessing the Effects of Treated Wastewater Irrigation on Soil Physico-Chemical Properties. Sustainability 2023, 15, 5793. [Google Scholar] [CrossRef]
- Wang, H.; Fan, J.; Fu, W. Effect of Activated Water Irrigation on the Yield and Water Use Efficiency of Winter Wheat under Irrigation Deficit. Agronomy 2022, 12, 1315. [Google Scholar] [CrossRef]
- Basukala, A.K.; Rasche, L. Model-based yield gap assessment in Nepal’s diverse agricultural landscape. Land 2022, 11, 1355. [Google Scholar] [CrossRef]
Specification | Organic System (Control) | Integrated System | Conventional System |
---|---|---|---|
Organic C (%) | 0.95–0.97 | 0.94–0.96 | 0.95–0.96 |
Total N (%) | 0.08–0.09 | 0.08–0.09 | 0.08–0.09 |
P (mg kg−1) | 128.2–129.3 | 127.4–129.1 | 127.5–128.8 |
K (mg kg−1) | 215.4–217.6 | 217.5–218.1 | 216.7–218.5 |
Mg (mg kg−1) | 68.8–69.2 | 68.7–69.1 | 68.6–68.9 |
Soil pH (1M KCl) | 6.5 | 6.5 | 6.5 |
Irrigation | Organic System (Control) | Integrated (Economical) System | Conventional System | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Grain Yield (t ha−1) | Grain Yield Value (USD/ha) * | Total Costs Incurred (USD/ha) | Profit (USD/ha) | Grain Yield (t ha−1) | Grain Yield Value (USD/ha) * | Total Costs Incurred (USD/ha) | Profit (USD/ha) | Grain Yield (t ha−1) | Grain Yield Value (USD/ha) * | Total Costs Incurred (USD/ha) | Profit (USD/ha) | |
NI | 2.1 | 630.0 | 0.0 | +630.0 | 4.5 | 1352.0 | 283.8 | +1066.0 | 6.0 | 1800.0 | 567.5 | +1232.0 |
2I | 3.0 | 900.0 | 281.2 | +618.8 | 6.3 | 1890.0 | 565.0 | +1325.0 | 7.6 | 2280.0 | 848.8 | +1431.0 |
MI | 4.1 | 1230.0 | 593.7 | +636.2 | 7.5 | 2250.0 | 877.5 | +1372.0 | 8.8 | 2640.0 | 1161.0 | +1478.0 |
Farming System | Wheat Irrigation | Total N (%) | P (mg kg−1) | K (mg kg−1) | Mg (mg kg−1) | C-Organic (%) |
---|---|---|---|---|---|---|
Organic | NI | 0.06 ±0.004 | 121.5 ±0.9 | 201.8 ±1.0 | 63.5 ±0.4 | 0.80 ±0.013 |
2I | 0.07 ±0.002 | 121.7 ±1.0 | 203.2 ±1.1 | 70.1 ±0.4 | 0.87 ±0.023 | |
MI | 0.09 ±0.002 | 122.2 ±1.1 | 209.3 ±1.3 | 71.3 ±0.6 | 0.95 ±0.033 | |
Mean | 0.07 | 121.8 | 204.8 | 68.3 | 0.87 | |
Integrated | NI | 0.07 ±0.001 | 124.4 ±1.2 | 212.2 ±1.4 | 56.8 ±0.3 | 0.83 ±0.031 |
2I | 0.09 ±0.002 | 125.6 ±0.8 | 216.3 ±1.4 | 65.7 ±0.4 | 0.98 ±0.02 | |
MI | 0.10 ±0.002 | 126.0 ±0.9 | 223.1 ±1.5 | 71.0 ±0.5 | 1.11 ±0.036 | |
Mean | 0.09 | 125.3 | 217.2 | 64.5 | 0.97 | |
Conventional | NI | 0.08 ±0.003 | 127.1 ±1.2 | 244.3 ±1.6 | 52.2 ±0.5 | 0.77 ±0.014 |
2I | 0.11 ±0.005 | 128.3 ±1.4 | 258.9 ±1.7 | 60.3 ±0.6 | 0.80 ±0.022 | |
MI | 0.15 ±0.006 | 131.4 ±1.3 | 269.6 ±1.9 | 70.4 ±0.7 | 0.91 ±0.037 | |
Mean | 0.11 | 128.9 | 257.6 | 61.0 | 0.83 | |
HSD (p ≥ 0.05) for farming system (A) | 0.016 | 7.06 | 12.11 | 3.67 | 0.095 | |
HSD (p ≥ 0.05) for wheat irrigation (B) | 0.017 | n.s. | 14.38 | 3.79 | 0.098 | |
HSD (p ≥ 0.05) for (A × B) interaction | 0.023 | n.s. | 19.37 | 4.53 | 0.124 |
Farming System | Wheat Irrigation | B (mg kg−1) | Cu (mg kg−1) | Mn (mg kg−1) | Zn (mg kg−1) | Total Sorption Capacity of Soil (cmol (+) kg−1) |
---|---|---|---|---|---|---|
Organic | NI | 2.36 ±0.04 | 6.86 ±0.08 | 201 ±2.7 | 8.44 ±0.08 | 33.5 ±0.6 |
2I | 2.40 ±0.03 | 6.95 ±0.10 | 211 ±3.5 | 8.62 ±0.09 | 35.7 ±0.8 | |
MI | 2.56 ±0.05 | 7.27 ±0.11 | 218 ±4.2 | 8.91 ±0.08 | 36.9 ±1.0 | |
Mean | 2.44 | 7.03 | 210 | 8.66 | 35.3 | |
Integrated | NI | 2.30 ±0.04 | 6.64 ±0.08 | 184 ±2.5 | 8.14 ±0.04 | 33.4 ±0.9 |
2I | 2.33 ±0.04 | 6.72 ±0.09 | 188 ±2.2 | 8.26 ±0.05 | 38.0 ±1.1 | |
MI | 2.38 ±0.05 | 6.79 ±0.07 | 193 ±3.0 | 8.40 ±0.06 | 42.0 ±1.1 | |
Mean | 2.34 | 6.72 | 188 | 8.27 | 37.8 | |
Conventional | NI | 2.09 ±0.02 | 6.41 ±0.06 | 168 ±2.1 | 8.01 ±0.05 | 34.3 ±0.8 |
2I | 2.11 ±0.03 | 6.47 ±0.07 | 171 ±2.2 | 8.09 ±0.06 | 35.6 ±0.7 | |
MI | 2.16 ±0.03 | 6.54 ±0.08 | 177 ±2.4 | 8.11 ±0.07 | 39.3 ±1.2 | |
Mean | 2.12 | 6.47 | 172 | 8.07 | 36.4 | |
HSD (p ≥ 0.05) for farming system (A) | 0.199 | 0.515 | 14.4 | 0.563 | 2.46 | |
HSD (p ≥ 0.05) for wheat irrigation (B) | n.s. | n.s. | 8.9 | 0.461 | 2.17 | |
HSD (p ≥ 0.05) for interaction (A × B) | 0.154 | n.s. | n.s. | n.s. | 2.59 |
Farming System | Wheat Irrigation | Soil Moisture Content (%) | Total Soil Porosity (%) in the 0–25 cm Layer | Capillary Soil Porosity (%) in the 0–25 cm Layer | |
---|---|---|---|---|---|
0–20 cm | 20–35 cm | ||||
Organic | NI | 5.62 ±0.016 | 5.32 ±0.014 | 42.2 ±1.06 | 34.0 ±0.62 |
2I | 14.87 ±0.028 | 16.21 ±0.030 | 41.8 ±1.04 | 33.8 ±0.58 | |
MI | 15.56 ±0.034 | 19.32 ±0.039 | 41.1 ±1.01 | 33.0 ±0.54 | |
Mean | 12.01 | 13.61 | 41.7 | 33.6 | |
Integrated | NI | 5.43 ±0.018 | 5.15 ±0.015 | 40.6 ±0.94 | 31.3 ±0.49 |
2I | 14.65 ±0.037 | 16.05 ±0.039 | 39.7 ±0.97 | 30.7 ±0.47 | |
MI | 15.17 ±0.041 | 18.81 ±0.055 | 38.7 ±1.02 | 30.4 ±0.38 | |
Mean | 11.75 | 13.33 | 39.7 | 30.8 | |
Conventional | NI | 5.24 ±0.028 | 5.08 ±0.019 | 38.2 ±1.09 | 30.9 ±0.40 |
2I | 14.10 ±0.033 | 15.90 ±0.038 | 37.5 ±1.11 | 30.6 ±0.35 | |
MI | 14.98 ±0.041 | 17.79 ±0.052 | 36.5 ±1.10 | 30.0 ±0.29 | |
Mean | 11.44 | 12.92 | 37.4 | 30.5 | |
HSD (p ≥ 0.05) for farming system (A) | n.s. | 0.685 | 2.28 | 1.86 | |
HSD (p ≥ 0.05) for wheat irrigation (B) | 0.865 | 0.987 | n.s. | n.s. | |
HSD (p ≥ 0.05) for interaction (A × B) | n.s. | n.s. | n.s. | n.s. |
Farming System | Wheat Irrigation | Soil Density (g cm−3) in the 0–25 cm Layer | Soil Compaction (MPa) in the 0–25 cm Layer |
---|---|---|---|
Organic | NI | 1.41 ± 0.014 | 1.51 ± 0.017 |
2I | 1.58 ± 0.018 | 1.67 ± 0.022 | |
MI | 1.64 ± 0.026 | 1.97 ± 0.032 | |
Mean | 1.54 | 1.72 | |
Integrated | NI | 1.46 ± 0.013 | 1.54 ± 0.019 |
2I | 1.54 ± 0.022 | 1.75 ± 0.025 | |
MI | 1.65 ± 0.024 | 1.95 ± 0.027 | |
Mean | 1.55 | 1.75 | |
Conventional | NI | 1.51 ± 0.016 | 1.59 ± 0.019 |
2I | 1.61 ± 0.019 | 1.88 ± 0.032 | |
MI | 1.65 ± 0.021 | 2.09 ± 0.034 | |
Mean | 1.59 | 1.85 | |
HSD (p ≥ 0.05) for farming system (A) | n.s. | 0.096 | |
HSD (p ≥ 0.05) for wheat irrigation (B) | 0.095 | 0.142 | |
HSD (p ≥ 0.05) for interaction (A × B) | n.s. | 0.104 |
Farming System | Wheat Irrigation | Dehydrogenase (mg TPF kg−1 d.m.) | Acid Phosphatase(mg PNP kg−1 d.m.) | Alkaline Phosphatase(mg PNP kg−1 d.m.) | Urease (mg N-NH4 kg−1 d.m.) | Protease (mg Tyrosine kg−1 d.m.) |
---|---|---|---|---|---|---|
Organic | NI | 2.07 ± 0.029 | 61.07 ± 1.63 | 73.64 ± 2.19 | 35.32 ± 1.17 | 12.14 ± 0.08 |
2I | 2.49 ± 0.039 | 69.03 ± 1.66 | 75.85 ± 2.24 | 41.03 ± 1.45 | 14.80 ± 0.07 | |
MI | 2.60 ± 0.052 | 69.72 ± 1.72 | 78.05 ± 2.34 | 44.00 ± 1.52 | 13.40 ± 0.06 | |
Mean | 2.42 | 66.61 | 75.85 | 40.12 | 13.44 | |
Integrated | NI | 2.62 ± 0.038 | 64.63 ± 1.83 | 82.88 ± 2.19 | 56.00 ± 1.73 | 16.47 ± 0.09 |
2I | 2.87 ± 0.027 | 71.44 ± 1.88 | 84.10 ± 2.27 | 63.93 ± 1.81 | 19.64 ± 0.16 | |
MI | 3.25 ± 0.045 | 75.52 ± 1.91 | 85.10 ± 2.32 | 66.69 ± 1.87 | 17.42 ± 0.12 | |
Mean | 2.91 | 70.53 | 84.03 | 62.20 | 17.84 | |
Conventional | NI | 1.71 ± 0.026 | 55.18 ± 1.71 | 66.30 ± 1.99 | 24.74 ± 1.08 | 8.63 ± 0.06 |
2I | 2.28 ± 0.041 | 59.63 ± 1.75 | 67.77 ± 2.08 | 36.73 ± 1.12 | 10.74 ± 0.08 | |
MI | 2.63 ± 0.047 | 59.72 ± 1.78 | 68.69 ± 2.11 | 31.72 ± 1.09 | 9.23 ± 0.07 | |
Mean | 2.21 | 58.18 | 67.59 | 31.06 | 9.53 | |
HSD (p ≥ 0.05) for farming system (A) | 0.207 | 3.901 | 4.453 | 6.021 | 2.146 | |
HSD (p ≥ 0.05) for wheat irrigation (B) | 0.241 | 4.024 | 4.391 | 5.442 | 0.944 | |
HSD (p ≥ 0.05) for interaction (A × B) | 0.371 | 4.045 | n.s. | 5.981 | 2.189 |
Farming System | Wheat Irrigation | Count of Beneficial Fungi (Trichoderma ssp.) in 1 g of Soil from 0–25 cm Layer | Count of Pathogenic Fungi (Fusarium ssp.) in 1 g of Soil from 0–25 cm Layer | Count of Actinobacteria in 1 g of Soil from 0–25 cm Layer |
---|---|---|---|---|
Organic | NI | 17,142 ± 89 | 10,017 ± 52 | 47,495 ± 121 |
2I | 19,234 ± 94 | 9162 ± 49 | 48,377 ± 129 | |
MI | 20,144 ± 99 | 9058 ± 38 | 50,289 ± 135 | |
Mean | 18,840 | 9412 | 48,720 | |
Integrated | NI | 16,393 ± 84 | 11,237 ± 59 | 38,165 ± 104 |
2I | 18,344 ± 91 | 10,350 ± 51 | 38,790 ± 108 | |
MI | 19,424 ± 78 | 10,152 ± 55 | 39,254 ± 112 | |
Mean | 18,054 | 10,580 | 38,736 | |
Conventional | NI | 14,205 ± 69 | 12,071 ± 62 | 29,615 ± 86 |
2I | 15,368 ± 75 | 11,710 ± 58 | 31,316 ± 92 | |
MI | 16,337 ± 81 | 10,986 ± 54 | 33,452 ± 97 | |
Mean | 15,303 | 11,589 | 31,461 | |
HSD (p ≥ 0.05) for farming system (A) | 975.4 | 710.6 | 1712.4 | |
HSD (p ≥ 0.05) for wheat irrigation (B) | 961.5 | 709.4 | 1653.3 | |
HSD (p ≥ 0.05) for interaction (A × B) | 1144.2 | n.s. | 1699.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harasim, E.; Kwiatkowski, C.A. Effect of Farming System and Irrigation on Physicochemical and Biological Properties of Soil Under Spring Wheat Crops. Sustainability 2025, 17, 6473. https://doi.org/10.3390/su17146473
Harasim E, Kwiatkowski CA. Effect of Farming System and Irrigation on Physicochemical and Biological Properties of Soil Under Spring Wheat Crops. Sustainability. 2025; 17(14):6473. https://doi.org/10.3390/su17146473
Chicago/Turabian StyleHarasim, Elżbieta, and Cezary A. Kwiatkowski. 2025. "Effect of Farming System and Irrigation on Physicochemical and Biological Properties of Soil Under Spring Wheat Crops" Sustainability 17, no. 14: 6473. https://doi.org/10.3390/su17146473
APA StyleHarasim, E., & Kwiatkowski, C. A. (2025). Effect of Farming System and Irrigation on Physicochemical and Biological Properties of Soil Under Spring Wheat Crops. Sustainability, 17(14), 6473. https://doi.org/10.3390/su17146473