Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (844)

Search Parameters:
Keywords = ion-implantation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3332 KiB  
Review
Nafion in Biomedicine and Healthcare
by Antonios Kelarakis
Polymers 2025, 17(15), 2054; https://doi.org/10.3390/polym17152054 - 28 Jul 2025
Viewed by 370
Abstract
Nafion has long been recognized as the gold standard for proton exchange membranes, due to its exceptional ion exchange capacity and its advanced performance in chemically aggressive environments. In recent years, a growing body of evidence has demonstrated that Nafion is equally well-suited [...] Read more.
Nafion has long been recognized as the gold standard for proton exchange membranes, due to its exceptional ion exchange capacity and its advanced performance in chemically aggressive environments. In recent years, a growing body of evidence has demonstrated that Nafion is equally well-suited in complex biological conditions owing to its structural robustness, responsive functionality and intrinsic biocompatibility. These characteristics have enabled its transition into the biomedical and healthcare sectors, where it is currently being explored for a diverse and expanding range of applications. To that end, Nafion has been systematically investigated as a key component in bioelectronic systems for energy harvest, sensors, wearable electronics, tissue engineering, lab-on-a-chip platforms, implants, controlled drug delivery systems and antimicrobial surface coatings. This review examines the distinctive structural and electrochemical characteristics that underpin Nafion’s performance in these biomedical contexts, provides an overview of recent advancements, emphasizes critical performance metrics and highlights the material’s growing potential to shape the future of biomedical technology. Full article
(This article belongs to the Section Smart and Functional Polymers)
Show Figures

Figure 1

14 pages, 4696 KiB  
Article
Effects of Ultrasonic Nanocrystal Surface Modification on the Formation of a Nitride Layer in Ti-6Al-4V Alloy
by Bauyrzhan Rakhadilov, Nurtoleu Magazov, Zarina Aringozhina, Gulzhaz Uazyrkhanova, Zhuldyz Uazyrkhanova and Auezhan Amanov
Materials 2025, 18(15), 3487; https://doi.org/10.3390/ma18153487 - 25 Jul 2025
Viewed by 247
Abstract
This study investigates the effects of ultrasonic nanocrystalline surface modification (UNSM) on the formation of nitride layers in Ti-6Al-4V alloy during ion-plasma nitriding (IPN). Various UNSM parameters, including vibration amplitude, static load, and processing temperature, were systematically varied to evaluate their influence on [...] Read more.
This study investigates the effects of ultrasonic nanocrystalline surface modification (UNSM) on the formation of nitride layers in Ti-6Al-4V alloy during ion-plasma nitriding (IPN). Various UNSM parameters, including vibration amplitude, static load, and processing temperature, were systematically varied to evaluate their influence on microstructure, hardness, elastic modulus, and tribological behavior. The results reveal that pre-treatment with optimized UNSM conditions significantly enhances nitrogen diffusion, leading to the formation of dense and uniform TiN/Ti2N layers. Samples pre-treated under high-load and elevated-temperature UNSM exhibited the greatest improvements in surface hardness (up to 25%), elastic modulus (up to 18%), and wear resistance, with a reduced and stabilized friction coefficient (~0.55). Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses confirmed microstructural densification, grain refinement, and increased nitride phase intensity. These findings demonstrate not only the scientific relevance but also the practical potential of UNSM as an effective surface activation technique. The hybrid UNSM + IPN approach may serve as a promising method for extending the service life of load-bearing biomedical implants and engineering components subjected to intensive wear. Full article
Show Figures

Figure 1

50 pages, 4603 KiB  
Review
Polymeric Composite Thin Films Deposited by Laser Techniques for Antimicrobial Applications—A Short Overview
by Anita Ioana Visan and Irina Negut
Polymers 2025, 17(15), 2020; https://doi.org/10.3390/polym17152020 - 24 Jul 2025
Viewed by 419
Abstract
Polymeric composite thin films have emerged as promising antimicrobial materials, particularly in response to rising antibiotic resistance. This review highlights the development and application of such films produced by laser-based deposition techniques, notably pulsed laser deposition and matrix-assisted pulsed laser evaporation. These methods [...] Read more.
Polymeric composite thin films have emerged as promising antimicrobial materials, particularly in response to rising antibiotic resistance. This review highlights the development and application of such films produced by laser-based deposition techniques, notably pulsed laser deposition and matrix-assisted pulsed laser evaporation. These methods offer precise control over film composition, structure, and thickness, making them ideal for embedding antimicrobial agents such as metal nanoparticles, antibiotics, and natural compounds into polymeric matrices. The resulting composite coatings exhibit enhanced antimicrobial properties against a wide range of pathogens, including antibiotic-resistant strains, by leveraging mechanisms such as ion release, reactive oxygen species generation, and membrane disruption. The review also discusses critical parameters influencing antimicrobial efficacy, including film morphology, composition, and substrate interactions. Applications include biomedical devices, implants, wound dressings, and surfaces in the healthcare and food industries. Full article
(This article belongs to the Special Issue Polymer Thin Films and Their Applications)
Show Figures

Figure 1

9 pages, 953 KiB  
Article
Yttrium Ion Release and Phase Transformation in Yttria-Stabilized Zirconia Under Acidic Conditions: Implications for Dental Implant Durability
by Haochen Zhu, Chao-Ching Chiang, Valentin Craciun, Griffin M. Deane, Fan Ren and Josephine F. Esquivel-Upshaw
Materials 2025, 18(14), 3311; https://doi.org/10.3390/ma18143311 - 14 Jul 2025
Cited by 1 | Viewed by 273
Abstract
The stability of yttria-stabilized zirconia (YSZ) as a dental implant material is highly dependent on its resistance to low-temperature degradation (LTD) and surface dissolution, particularly in acidic oral environments. This study investigates the effects of yttrium ion (Y3+) release on the [...] Read more.
The stability of yttria-stabilized zirconia (YSZ) as a dental implant material is highly dependent on its resistance to low-temperature degradation (LTD) and surface dissolution, particularly in acidic oral environments. This study investigates the effects of yttrium ion (Y3+) release on the phase stability of zirconia during constant immersion and pH cycling tests, simulating oral conditions. Zirconia disks were immersed in acidic (pH 2), neutral (pH 7), and basic (pH 10) solutions over a 27-day period. Inductively coupled plasma (ICP) analysis revealed significant yttrium ion release during acidic phases, while zirconium ion (Zr4+) release remained minimal. X-ray photoelectron spectroscopy (XPS) showed a shift in zirconium 3d binding energies, indicating a transformation from the tetragonal to the monoclinic phase, driven by yttrium leaching. X-ray diffraction (XRD) confirmed this phase change, with the appearance of the monoclinic (111) peak after exposure to acidic conditions. This study concludes that yttrium ion depletion under acidic conditions destabilizes the tetragonal phase, promoting LTD and compromising the material’s long-term performance as a dental implant or restorative material. Full article
Show Figures

Figure 1

25 pages, 4204 KiB  
Article
Electrochemical Evaluation of New Ti-Based High-Entropy Alloys in Artificial Saliva with Fluoride: Implications for Dental Implant Applications
by Hanine Slama, Qanita Tayyaba, Mariya Kadiri and Hendra Hermawan
Materials 2025, 18(13), 2973; https://doi.org/10.3390/ma18132973 - 23 Jun 2025
Viewed by 481
Abstract
Based on their high mechanical strength, Ti-based high-entropy alloys (HEAs) are of great potential as materials for high-performance reduced-diameter dental implants. Despite previous studies demonstrating their corrosion resistance in various simulated body fluids, their resistance in simulated buccal conditions has yet to be [...] Read more.
Based on their high mechanical strength, Ti-based high-entropy alloys (HEAs) are of great potential as materials for high-performance reduced-diameter dental implants. Despite previous studies demonstrating their corrosion resistance in various simulated body fluids, their resistance in simulated buccal conditions has yet to be confirmed. In this work, the corrosion behavior of two Ti-based HEAs, TiZrHfNb, and TiZrHfNbTa was evaluated in comparison to CP-Ti and Ti-6Al-4V in artificial saliva (AS) solution and in AS with fluoride ion content (ASF). A set of electrochemical tests (electrochemical impedance spectroscopy, cyclic polarization, and Mott–Schottky) was employed and complemented with surface characterization analyses (scanning electron microscopy and atomic force microscopy) to determine dissolution and passivation mechanisms of the alloys. In general, the HEAs exhibited a far superior corrosion resistance compared to CP-Ti and Ti-6Al-4V alloys in both solutions. In the AS solution, the TiZrHfNb exhibited the highest polarization resistance and pitting potential, indicating a high corrosion resistance due to the formation of a robust passive layer. Whilst in the ASF solution, the TiZrHfNbTa showed a greater corrosion resistance due to the synergistic effect of Nb and Ta oxides that enhanced passive film stability. This finding emphasizes the role of Ta in elevating the corrosion resistance of Ti-based HEAs in the presence of fluoride ions and confirms the importance of chemical composition optimization in the development of next-generation dental alloys. Based on its electrochemical corrosion behavior, TiZrHfNbTa HEAs are promising new materials for high-performance reduced-diameter dental implants. Full article
(This article belongs to the Special Issue Novel Dental Materials Design and Application)
Show Figures

Figure 1

12 pages, 8480 KiB  
Article
Chemical and Biological Properties of C-Point Obturation Cones
by Marina Angélica Marciano, Paulo Jorge Palma, Ana Cristina Padilha Janini, Brenda Fornazaro Moraes, Thiago Bessa Marconato Antunes, Ribamar Lazanha Lucateli, Bruno Martini Guimarães, Mariza Akemi Matsumoto, Diana Bela Sequeira, Talita Tartari, Brenda Paula Figueiredo Almeida Gomes and Marco Antonio Hungaro Duarte
Biomimetics 2025, 10(6), 409; https://doi.org/10.3390/biomimetics10060409 - 18 Jun 2025
Viewed by 390
Abstract
This study evaluated the chemical composition and subcutaneous tissue biocompatibility of C-Point, a root canal filling material, compared to ProTaper gutta-percha cones (control). Material characterization was conducted using scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS). For biocompatibility assessment, both materials were implanted subcutaneously [...] Read more.
This study evaluated the chemical composition and subcutaneous tissue biocompatibility of C-Point, a root canal filling material, compared to ProTaper gutta-percha cones (control). Material characterization was conducted using scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS). For biocompatibility assessment, both materials were implanted subcutaneously in the dorsal connective tissue of sixteen albino rats (n = 8 per group). Histological evaluation of inflammatory infiltrate intensity was performed at 30 and 60 days post-implantation, with statistical analysis (significance set at p < 0.05). SEM-EDS analysis revealed distinct elemental compositions: C-Point primarily contained zirconium and cobalt ions, while gutta-percha cones demonstrated a strong zinc signature with trace amounts of barium, aluminum, and sulfur. Both materials exhibited similar particulate morphology with radiopaque inclusions. Histologically, no significant difference in inflammatory response was observed between C-Point and gutta-percha at any time point (p > 0.05). All specimens developed a fibrous encapsulation. The inflammatory profile showed temporal dynamics, with lymphocyte predominance during early stages that progressively diminished by the study endpoint. These findings demonstrate that while C-Point possesses a unique elemental profile dominated by zirconium, its tissue biocompatibility parallels that of conventional gutta-percha obturation materials. However, due to the absence of mechanical testing and the limited in vivo follow-up period, the long-term stability of the material remains uncertain. Full article
(This article belongs to the Section Biomimetics of Materials and Structures)
Show Figures

Figure 1

19 pages, 2700 KiB  
Article
The Influence of the Machining Drill and Direction of Rotation on the Surfaces of Ti6Al4V Dental Implants Subjected to Implantoplasty
by Esteban Padullés-Gaspar, Francisco Real-Voltas, Esteban Padullés-Roig, Miguel Punset, Guillermo Cabanes, Pablo Fernández and Javier Gil
J. Funct. Biomater. 2025, 16(6), 224; https://doi.org/10.3390/jfb16060224 - 16 Jun 2025
Viewed by 1105
Abstract
Implantoplasty is widely used to treat peri-implantitis by removing biofilms from Ti6Al4V dental implants using rotating drills. This study examined the effects of diamond and tungsten carbide drills, and rotation direction (clockwise/counterclockwise), on surface modification, corrosion behavior, and cytotoxicity. Machining was performed for [...] Read more.
Implantoplasty is widely used to treat peri-implantitis by removing biofilms from Ti6Al4V dental implants using rotating drills. This study examined the effects of diamond and tungsten carbide drills, and rotation direction (clockwise/counterclockwise), on surface modification, corrosion behavior, and cytotoxicity. Machining was performed for one minute under a controlled load. Surface roughness, nanohardness, compressive residual stress, and wettability were evaluated, along with SEM and EDX microanalyses of the residues. Corrosion behavior was evaluated using potentiostatic and potentiodynamic tests in Hank’s solution. Ion release was monitored over time, and fibroblast viability was tested using extracts at various dilutions. The higher abrasiveness of diamond drills leads to increases roughness from 0.22 mm (control) to 0.73 and 0.59 for diamond and tungsten carbide drills, respectively; in hardness from 2.2 GPa for the control to 4.8 and 3.9 GPa; and in residual compressive stress from −26 to −125 and −111 MPa, with diamond drills inducing more significant changes and producing more hydrophilic surfaces with contact angles around 54° in relation to 80° and 62° for the control and tungsten carbide, respectively. Tungsten carbide drills caused lower corrosion rates (0.0323 mm/year) than diamond drills (0.052 mm/year). In addition, we observed the presence of tungsten ion release. Cytotoxic effects on human fibroblasts were observed with both bur types, and were more pronounced with tungsten carbide, especially at lower dilutions. Only 1:10 dilutions maintained consistent cytocompatibility. The rotation direction showed no significant impact. These findings emphasize the critical influence of bur selection in implantoplasty on the biological response of surrounding tissues. Full article
Show Figures

Figure 1

26 pages, 9313 KiB  
Article
Investigating Resulting Surface Topography and Residual Stresses in Bending DC01 Sheet Under Tension Friction Test
by Krzysztof Szwajka, Tomasz Trzepieciński, Marek Szewczyk, Joanna Zielińska-Szwajka and Marek Barlak
Lubricants 2025, 13(6), 255; https://doi.org/10.3390/lubricants13060255 - 9 Jun 2025
Viewed by 472
Abstract
This article presents the results of experimental studies aimed at determining the values of residual stresses and coefficient of friction (CoF) in bending under tension friction test, which simulates friction conditions in sheet metal forming. The influence of surface modification of the countersample [...] Read more.
This article presents the results of experimental studies aimed at determining the values of residual stresses and coefficient of friction (CoF) in bending under tension friction test, which simulates friction conditions in sheet metal forming. The influence of surface modification of the countersample and CoFs between the countersample and DC01 steel sheet on the residual stress were analysed. This study also focused on the influence of surface modification of countersamples on the change of the main parameters of DC01 steel sheets. The hole-drilling method was used to determine residual stresses. Electron beam melting, lead-ion implantation and a combination of these two techniques were used to modify the surface layer of 145Cr6 steel countersamples. The maximum value of the CoF, about 0.31, was found for the electron beam melted countersample. As a result of the surface modification process, this countersample was characterised by the lowest value of average roughness, which directly influenced the increase in the real contact area. The occurrence of residual tensile stresses was observed near the surface layer of the sheet strip in contact with the countersample. With the increase of the considered depth of residual stress measurement, the residual tensile stresses were transformed into compressive residual stresses with a value between −75 and −50 MPa, depending on the type of friction pair. SEM analyses allowed us to identify two main friction mechanisms for all friction pairs: adhesion and abrasive wear. Full article
Show Figures

Figure 1

15 pages, 3831 KiB  
Article
Formation and Bioactivity of Composite Structure with Sr-HA Phase and H2Ti5O11·H2O Nanorods on Ti Surface via Ultrasonic-Assisted Micro-Arc Oxidation and Heat Treatment
by Qing Du, Qiang Zhai, Su Cheng, Yudong Lin, Daqing Wei, Yaming Wang and Yu Zhou
Coatings 2025, 15(6), 666; https://doi.org/10.3390/coatings15060666 - 30 May 2025
Viewed by 631
Abstract
To address the biological inertness of pure titanium implants, a composite coating with a strontium-doped hydroxyapatite (Sr-HA) phase and H2Ti5O11·H2O nanorods was engineered via ultrasonic-assisted micro-arc oxidation (UMAO) with hydrothermal treatment (HT). The ultrasonic field [...] Read more.
To address the biological inertness of pure titanium implants, a composite coating with a strontium-doped hydroxyapatite (Sr-HA) phase and H2Ti5O11·H2O nanorods was engineered via ultrasonic-assisted micro-arc oxidation (UMAO) with hydrothermal treatment (HT). The ultrasonic field was applied to modulate the MAO discharge behavior, enhancing ion transport and coating formation. Structural characterization revealed that UMAO-HT coatings exhibited a lower anatase/rutile ratio and higher Sr-HA crystallinity, as compared to MAO-HT. In vitro simulated body immersion studies showed that UMAO-HT induced rapid apatite formation within 24 h, with a better apatite-inducing ability than the conventional MAO-HT. Density functional theory (DFT) simulations demonstrated that Sr substitution in HA lowered the (001) surface work function, enhancing Ca2⁺ adsorption energy and promoting apatite phase nucleation. This work reported the synergistic effects of ultrasonic-induced microstructure optimization and Sr-HA higher bioactivity, providing a mechanistic framework for designing next-generation bioactive coatings with enhanced osseointegration potential. Full article
Show Figures

Figure 1

21 pages, 9131 KiB  
Article
Modulated Degradation of Polylactic Acid Electrospun Coating on WE43 Stents
by Mariana Macías-Naranjo, Marilena Antunes-Ricardo, Christopher Moreno González, Andrea Noelia De la Peña Aguirre, Ciro A. Rodríguez, Erika García-López and Elisa Vazquez-Lepe
Polymers 2025, 17(11), 1510; https://doi.org/10.3390/polym17111510 - 28 May 2025
Viewed by 500
Abstract
Magnesium-based coronary stents have gained significant interest due to their excellent biocompatibility, biodegradability, and mechanical properties. However, a key limitation of magnesium in biomedical applications is its low corrosion resistance, which compromises its structural integrity and mechanical strength over time. Polymeric coatings can [...] Read more.
Magnesium-based coronary stents have gained significant interest due to their excellent biocompatibility, biodegradability, and mechanical properties. However, a key limitation of magnesium in biomedical applications is its low corrosion resistance, which compromises its structural integrity and mechanical strength over time. Polymeric coatings can overcome this challenge, enhancing magnesium-based implants’ corrosion resistance and overall performance. This study applied a polylactic acid (PLA) nanofiber coating to WE43 magnesium (Mg) stents via electrospinning to reduce their corrosion rate. Both uncoated and coated stents underwent in vitro immersion tests in Hank’s solution for 1, 3, 7, and 14 days. The effectiveness of the PLA coating was evaluated through morphological analysis, chemical composition assessment, corrosion behavior (weight change), magnesium ion release, and in vitro biocompatibility. The corrosion observed in the uncoated WE43 stents indicates that protective coatings are necessary to regulate degradation rates over extended implantation periods. The results demonstrated that coated stents exhibited improved performance, maintaining the integrity of the PLA coating for up to 14 days. The coated stents demonstrated reduced surface damage and lower weight loss resulting from lower magnesium release. In our study, the coated stents demonstrated a reduced corrosion rate (0.216 ± 0.013 mm/year) compared with the uncoated stents (0.312 ± 0.010 mm/year), both after 14 days. Additionally, in vitro biocompatibility results confirmed the non-toxic nature of PLA-coated stents, which enhances cellular proliferation and contributes to a more favorable environment for vascular healing. These findings suggest that PLA coatings can effectively prolong the functional durability of WE43 Mg stents, offering a promising solution for enhancing the performance of biodegradable stents in cardiovascular applications. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

21 pages, 4466 KiB  
Article
Quality and Lifetime of Thin Parylene F-VT4 Coatings for Hermetic Encapsulation of Implantable Medical Devices
by Esmaeil Afshari, Rik Verplancke, Maarten Cauwe and Maaike Op de Beeck
Coatings 2025, 15(6), 648; https://doi.org/10.3390/coatings15060648 - 28 May 2025
Cited by 1 | Viewed by 2749
Abstract
This study comprehensively examines the barrier properties, aging behavior, and failure mechanisms of Parylene F-VT4 films, applied at four distinct thicknesses (0.3 µm, 0.6 µm, 0.9 µm, and 1.2 µm), as encapsulation layers for implantable medical devices. Parylene F-VT4, a fluorinated polymer known [...] Read more.
This study comprehensively examines the barrier properties, aging behavior, and failure mechanisms of Parylene F-VT4 films, applied at four distinct thicknesses (0.3 µm, 0.6 µm, 0.9 µm, and 1.2 µm), as encapsulation layers for implantable medical devices. Parylene F-VT4, a fluorinated polymer known for its mechanical flexibility, thermal stability, and chemical inertness, is a promising candidate for long-term hermetic encapsulation. Parylene F-VT4 was uniformly deposited via a dedicated chemical vapor deposition (CVD) process typically used for Parylene depositions. The investigation of the Parylene F-VT4 films included pinhole density characterization, electrochemical impedance spectroscopy (EIS), and testing of coating lifetime based on the resistance of Cu meanders protected by Parylene F-VT4 when immersed in phosphate-buffered saline (PBS) under accelerated aging conditions (PBS at 60 °C) over 550 days. The EIS results demonstrated that thicker coatings (1.2 µm) exhibited excellent barrier properties and resistance to electrolyte penetration, whereas thinner coatings (0.3 µm and 0.6 µm) showed more rapid degradation due to microvoids and pinholes. The temporal evaluation of EIS spectra highlighted the gradual decrease in impedance magnitude, indicating the ingress of ions and water into the coating. The lifetime in PBS at 60 °C was determined by resistance-based lifetime measurements on Cu meander structures coated with Parylene F-VT4 coatings. The lifetime at 37 °C was calculated, assuming an acceleration factor of 2 per 10 °C increase in temperature, yielding lifetimes of approximately 25 days, 6.4 months, 2.3 years, and 4.5 years for 0.3 µm, 0.6 µm, 0.9 µm, and 1.2 µm coatings, respectively. These findings highlight the critical relationship between thickness and durability, providing valuable insights into the long-term performance of thin Parylene F-VT4 films for implantable devices. Full article
(This article belongs to the Special Issue Thin Film Coatings for Medical Biosensing Applications)
Show Figures

Graphical abstract

20 pages, 7633 KiB  
Article
Corrosion Performance of Chemically Passivated and Ion Beam-Treated Austenitic–Martensitic Steel in the Marine Environment
by Viktor Semin, Alexander Cherkasov, Konstantin Savkin, Maxim Shandrikov and Evgeniya Khabibova
J. Manuf. Mater. Process. 2025, 9(5), 167; https://doi.org/10.3390/jmmp9050167 - 20 May 2025
Viewed by 691
Abstract
In the present work, chemical and ion beam surface treatments were performed in order to modify the electrochemical behavior of industrial austenitic–martensitic steel VNS-5 in 3.5 wt. % NaCl. Immersion for 140 h in a solution containing 0.05 M potassium dichromate and 10% [...] Read more.
In the present work, chemical and ion beam surface treatments were performed in order to modify the electrochemical behavior of industrial austenitic–martensitic steel VNS-5 in 3.5 wt. % NaCl. Immersion for 140 h in a solution containing 0.05 M potassium dichromate and 10% phosphoric acid promotes formation of chromium hydroxides in the outer surface layer. By means of a new type of ion source, based on a high-current pulsed magnetron discharge with injection of electrons from vacuum arc plasma, ion implantation with Ar+ and Cr+ ions of the VNS-5 steel was performed. It has been found that the ion implantation leads to formation of an Fe- and Cr-bearing oxide layer with advanced passivation ability. Moreover, the ion beam-treated steel exhibits a lower corrosion rate (by ~7.8 times) and higher charge transfer resistance in comparison with an initial (mechanically polished) substrate. Comprehensive electrochemical and XPS analysis has shown that a Cr2O3-rich oxide film is able to provide an improved corrosion performance of the steel, while the chromium hydroxides may increase the specific conductivity of the surface layer. A scheme of a charge transfer between the microgalvanic elements was proposed. Full article
Show Figures

Figure 1

23 pages, 5205 KiB  
Article
Femtosecond Laser-Engineered β-TCP Scaffolds: A Comparative Study of Green-Synthesized AgNPs vs. Ion Doping Against S. aureus for Bone Regeneration
by Marco Oliveira, Liliya Angelova, Georgi Avdeev, Liliana Grenho, Maria Helena Fernandes and Albena Daskalova
Int. J. Mol. Sci. 2025, 26(10), 4888; https://doi.org/10.3390/ijms26104888 - 20 May 2025
Viewed by 581
Abstract
Implant-associated infections, particularly those linked to Staphylococcus aureus (S. aureus), continue to compromise the clinical success of β-tricalcium phosphate (β-TCP) implants despite their excellent biocompatibility and osteoconductivity. This investigation aims to tackle these challenges by integrating femtosecond (fs)-laser surface processing with [...] Read more.
Implant-associated infections, particularly those linked to Staphylococcus aureus (S. aureus), continue to compromise the clinical success of β-tricalcium phosphate (β-TCP) implants despite their excellent biocompatibility and osteoconductivity. This investigation aims to tackle these challenges by integrating femtosecond (fs)-laser surface processing with two complementary strategies: ion doping and functionalization with green-synthesized silver nanoparticles (AgNPs). AgNPs were produced via fs-laser photoreduction using green tea leaf extract (GTLE), noted for its anti-inflammatory and antioxidant properties. Fs-laser processing was applied to modify β-TCP scaffolds by systematically varying scanning velocities, fluences, and patterns. Lower scanning velocities generated organized nanostructures with enhanced roughness and wettability, as confirmed by scanning electron microscopy (SEM), optical profilometry, and contact angle measurements, whereas higher laser energies induced significant phase transitions between hydroxyapatite (HA) and α-tricalcium phosphate (α-TCP), as revealed by X-ray diffraction (XRD). AgNP-functionalized scaffolds demonstrated markedly superior antibacterial activity against S. aureus compared to the ion-doped variants, attributed to the synergistic interplay of nanostructure-mediated surface disruption and AgNP-induced bactericidal mechanisms. Although ion-doped scaffolds exhibited limited direct antibacterial effects, they showed concentration-dependent activity in indirect assays, likely due to controlled ion release. Both strategies promoted osteogenic differentiation of human bone marrow mesenchymal stem cells (hBM-MSCs) under defined conditions, albeit with transient cytotoxicity at higher fluences and excessive ion doping. Overall, this approach holds promise for markedly improving antibacterial efficacy and osteogenic compatibility, potentially transforming bone regeneration therapies. Full article
(This article belongs to the Special Issue Recent Research of Nanomaterials in Molecular Science: 2nd Edition)
Show Figures

Figure 1

35 pages, 9564 KiB  
Review
Research Progress of the Coatings Fabricated onto Titanium and/or Titanium Alloy Surfaces in Biomaterials for Medical Applications for Anticorrosive Applications
by Qin Rao, Jinshuang Zhang, Yaqing Chen, Yujin Yang, Xu Chen, Donghao Liu, Ruilu Zhu, Ang Li, Yanping Lv and Shunli Zheng
Coatings 2025, 15(5), 599; https://doi.org/10.3390/coatings15050599 - 17 May 2025
Viewed by 632
Abstract
Titanium (Ti) and its alloys have attracted more interest, as they are widely employed as biomaterials due to their great biocompatibility, excellent strength ratio, and lightweight. However, corrosion occurs slowly due to an electrochemical reaction once the Ti material has been placed in [...] Read more.
Titanium (Ti) and its alloys have attracted more interest, as they are widely employed as biomaterials due to their great biocompatibility, excellent strength ratio, and lightweight. However, corrosion occurs slowly due to an electrochemical reaction once the Ti material has been placed in the human body, contributing to infection and failure of implants in medical applications. Thus, the corrosion phenomenon has caused great concern in the biomedical field. It is desirable to make the surface modification to provide better corrosion resistance. The fabrication techniques of the coatings fabricated onto Ti and/or Ti alloy surfaces have been reported, including sol–gel, annealing, plasma spraying, plasma immersion ion implantation, physical vapor deposition, chemical vapor deposition, anodization, and micro-arc oxidation. This review first describes the corrosion types, including localized corrosion (both pitting and crevice corrosion), galvanic corrosion, selective leaching, stress corrosion cracking (SCC), corrosion fatigue (CF), and fretting corrosion. In the second part, the effects of corrosion on the human body were discussed, and the primary cause for clinical failure and allergies has been identified as the excessive release of poisonous and dangerous metal ions (Co, Ni, and Ti) from corroded implants into bodily fluids. The inclusion and exclusion criteria during the selection of literature are described in the third section. In the last section, we emphasized the current research progress of Ti alloy (particularly Ti6Al4V alloy) coatings in biomaterials for medical applications involving dental, orthopedic, and cardiovascular implants for anticorrosive applications. However, there are also several problems to explore and address in future studies, such as the release of excessive metal ions, etc. This review will draw attention to both researchers and clinicians, which could help to increase the coatings fabricated onto Ti and/or Ti alloy surfaces for anticorrosive applications in biomaterials for medical applications. Full article
(This article belongs to the Special Issue Innovative Coatings for Corrosion Protection of Alloy Surfaces)
Show Figures

Figure 1

18 pages, 3382 KiB  
Review
Defects in Silicon Carbide as Quantum Qubits: Recent Advances in Defect Engineering
by Ivana Capan
Appl. Sci. 2025, 15(10), 5606; https://doi.org/10.3390/app15105606 - 16 May 2025
Viewed by 891
Abstract
This review provides an overview of defects in silicon carbide (SiC) with potential applications as quantum qubits. It begins with a brief introduction to quantum qubits and existing qubit platforms, outlining the essential criteria a defect must meet to function as a viable [...] Read more.
This review provides an overview of defects in silicon carbide (SiC) with potential applications as quantum qubits. It begins with a brief introduction to quantum qubits and existing qubit platforms, outlining the essential criteria a defect must meet to function as a viable qubit. The focus then shifts to the most promising defects in SiC, notably the silicon vacancy (VSi) and divacancy (VC-VSi). A key challenge in utilizing these defects for quantum applications is their precise and controllable creation. Various fabrication techniques, including irradiation, ion implantation, femtosecond laser processing, and focused ion beam methods, have been explored to create these defects. Designed as a beginner-friendly resource, this review aims to support early-career experimental researchers entering the field of SiC-related quantum qubits. Providing an introduction to defect-based qubits in SiC offers valuable insights into fabrication strategies, recent progress, and the challenges that lie ahead. Full article
(This article belongs to the Special Issue Quantum Communication and Applications)
Show Figures

Figure 1

Back to TopTop