Defects in Silicon Carbide as Quantum Qubits: Recent Advances in Defect Engineering
Abstract
1. Introduction
- Defect Concentration and Spatial Control: Achieving a high density of optically active defects while maintaining spatial precision is crucial for scaling quantum devices;
- Charge State Stability: The performance of defect-based qubits depends on stable charge states, and only specific charged states of color centers are suitable for quantum applications;
- High-purity material: Impurities and unintentionally introduced defects create local strain and electric field variations, leading to the inhomogeneous broadening of optical and spin transition lines.
- Quantum Computing: Defect-based qubits can serve as scalable quantum information processors, leveraging SiC’s mature fabrication ecosystem;
- Quantum Sensing: The spin properties of SiC color centers enable the ultrasensitive detection of magnetic, electric, and thermal fields;
- Quantum Communication: Color centers in SiC, particularly those operating at telecom wavelengths, offer pathways for secure quantum information transfer over fiber-optic networks.
- Zhang et al. [22], “Material Platforms for Defect Qubits and Single-Photon Emitters”: This review provides a broad overview of the solid-state systems pivotal for spin-based quantum technologies. It discusses advancements in solid-state spins and single-photon emitters across multiple host materials, including diamond, silicon carbide (SiC), hexagonal boron nitride (hBN), silicon, and two-dimensional semiconductors. The authors also emphasize the role of theoretical and computational methods in guiding experimental progress in defect-based quantum technologies;
- Chatterjee et al. [23], “Semiconductor Qubits in Practice”: This paper provides a detailed analysis of semiconductor-based qubits, covering their implementation in quantum computing, quantum simulation, quantum sensing, and quantum networking. The review highlights the key challenges and progress in integrating these systems into scalable quantum architectures;
- Wolfowicz et al. [24], “Quantum Guidelines for Solid-State Spin Defects”: This review offers a set of broad guidelines for the development and application of solid-state spin defects in quantum information processing. The authors discuss defect properties, host material characteristics, engineering opportunities, and potential pathways for improving coherence times, optical properties, and scalability.
2. Quantum Qubits
- Superconducting Qubits: Superconducting qubits are one of the most developed and widely used platforms for quantum computing. These qubits are based on superconducting circuits that exhibit quantum behavior. Materials like niobium and aluminum are commonly used in these circuits due to their low resistance at cryogenic temperatures. Superconducting qubits offer fast operation and scalability, but they are sensitive to noise and require ultra-low temperatures for operation, typically in the millikelvin range [31,32];
- Trapped Ions: Trapped ion qubits are individual ions confined by electromagnetic fields and controlled using laser-based techniques. Commonly used materials include calcium ions (Ca+), barium ions (Ba+), and ytterbium ions (Yb+). The internal states of these ions, such as electronic or hyperfine states, serve as qubits. Trapped ion qubits are known for their long coherence times and high-fidelity gate operations. They are ideal for quantum simulations and algorithms, but the main challenge is scalability, due to the need for precise laser control and individual ion manipulation [33,34];
- Defect-Based Qubits: Defect-based qubits are based on point defects in solid-state materials, where the electronic spin states of defects are used to encode information. Examples include the NV center in diamond and VSi or VC-VSi centers in SiC. These defects can operate at room temperature, making them attractive for practical quantum applications. However, challenges remain in defect creation and control, as well as in improving coherence times and gate fidelity [9,12,21]. For instance, NV centers in diamond are well-established for quantum sensing and communication applications, while SiC is gaining attention for scalable quantum computing [8,23];
- Spin-Based Qubits: Spin-based qubits utilize the spin states of electrons or nuclei in materials like silicon and gallium arsenide (GaAs). Quantum dots, such as semiconductor quantum dots made from InAs/GaAs or Si/SiGe systems, are also commonly used. The qubit states are represented by spin-up or spin-down orientations. Spin-based qubits offer long coherence times and are compatible with existing semiconductor technology, making them attractive for scalable quantum computing. However, challenges remain in improving coupling efficiency and achieving high-fidelity gate operations [35,36];
- Topological Qubits: Topological qubits are based on anyonic excitations in topologically ordered materials, such as Majorana fermions in topological superconductors. The materials under investigation include superconducting nanowires made of InAs or MoTe2. These qubits are robust to local noise and decoherence due to their topological nature, offering the potential for long-lived qubits. However, this platform is still experimental, and significant challenges remain in achieving reliable and scalable topological qubit systems [37,38].
3. Defects in Silicon Carbide
3.1. Silicon Vacancies (Vₛᵢ)
3.2. Divacancies (Vₛᵢ-Vc)
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Awschalom, D.D.; Bassett, L.C.; Dzurak, A.S.; Hu, E.L.; Petta, J.R. Quantum spintronics: Engineering and manipulating atom-like spins in semiconductors. Science 2013, 339, 1174–1179. [Google Scholar] [CrossRef] [PubMed]
- Ladd, T.D.; Jelezko, F.; Laflamme, R.; Nakamura, Y.; Monroe, C.; O’Brien, J.L. Quantum computers. Nature 2010, 464, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Weber, J.R.; Koehl, W.F.; Varley, J.B.; Janotti, A.; Buckley, B.B.; van de Walle, C.G.; Awschalom, D.D. Quantum computing with defects. Proc. Natl. Acad. Sci. USA 2010, 107, 8513–8518. [Google Scholar] [CrossRef]
- Simpson, D.A.; Tetienne, J.P.; Healey, A.J.; Schröder, T.; Maletinsky, P.; Hollenberg, L.C.L. Electron paramagnetic resonance microscopy using single nitrogen-vacancy centers in diamond. Nat. Commun. 2017, 8, 458. [Google Scholar] [CrossRef]
- Fuchs, G.D.; Burkard, G.; Klimov, P.V.; Awschalom, D.D. Engineering silicon-vacancy color centers in diamond. Nano Lett. 2015, 15, 6892–6897. [Google Scholar]
- Bracher, D.O.; Hu, E.L. Selective implantation of nitrogen vacancy centers in diamond using focused ion beams. New J. Phys. 2017, 19, 063023. [Google Scholar]
- Gulka, M.; Wirtitsch, D.; Ivády, V.; Vodnik, J.; Hruby, J.; Magchiels, G.; Bourgeois, E.; Gali, A.; Trupke, M.; Nesladek, M. Room-Temperature Control and Electrical Readout of Individual Nitrogen-Vacancy Nuclear Spins. Nat. Commun. 2021, 12, 4421. [Google Scholar] [CrossRef] [PubMed]
- Castelletto, S.; Johnson, B.C.; Ivády, V.; Stavrias, N.; Umeda, T.; Gali, A.; Aharonovich, I. A silicon carbide room-temperature single-photon source. Nat. Mater. 2014, 13, 151–156. [Google Scholar] [CrossRef]
- Christle, D.J.; Klimov, P.V.; de las Casas, C.F.; Szász, K.; Ivádý, V.; Jokubavicius, V.; Ul-Hassan, J.; Syväjärvi, M.; Koehl, W.F.; Ohshima, T.; et al. Isolated electron spins in silicon carbide with millisecond coherence times. Nat. Mater. 2017, 14, 160–163. [Google Scholar] [CrossRef]
- Koehl, W.F.; Buckley, B.B.; Heremans, F.J.; Calusine, G.; Awschalom, D.D. Room temperature coherent control of defect spin qubits in silicon carbide. Nature 2011, 479, 84–87. [Google Scholar] [CrossRef]
- Anderson, C.P.; Bourassa, A.; Miao, K.C.; Wolfowicz, G.; Mintun, P.J.; Crook, A.L.; Abe, H.; Ul Hassan, J.; Son, N.T.; Ohshima, T.; et al. Electrical and Optical Control of Single Spins Integrated in Scalable Semiconductor Devices. Science 2019, 366, 1225–1230. [Google Scholar] [CrossRef] [PubMed]
- Son, N.T.; Joseph, J.; Davidsson, S.; Magnusson, B.; Ivádý, V.; Ohshima, T.; Gali, A. Spin properties of silicon vacancies in silicon carbide. Appl. Phys. Lett. 2020, 116, 190501. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Salter, P.S.; Niethammer, M.; Widmann, M.; Kaiser, F.; Nagy, R.; Morioka, N.; Babin, C.; Erlekampf, J.; Berwian, P.; et al. Laser Writing of Scalable Single Color Centers in Silicon Carbide. Nano Lett. 2019, 19, 2377–2383. [Google Scholar] [CrossRef] [PubMed]
- Bathen, M.E.; Galeckas, A.; Müting, J.; Ayedh, H.M.; Grossner, U.; Coutinho, J.; Frodason, Y.K.; Vines, L. Electrical charge state identification and control for the silicon vacancy in 4H-SiC. NPJ Quantum Inf. 2019, 5, 111. [Google Scholar] [CrossRef]
- Morioka, N.; Babin, C.; Nagy, R.; Gediz, I.; Hesselmeier, E.; Liu, D.; Joliffe, M.; Niethammer, M.; Dasari, D.; Vorobyov, V.; et al. Spin Manipulation of Silicon Vacancies in Silicon Carbide. Nat. Commun. 2020, 11, 2516. [Google Scholar] [CrossRef] [PubMed]
- Kraus, H.; Simin, D.; Kasper, C.; Suda, Y.; Kawabata, S.; Kada, W.; Honda, T.; Hijikata, Y.; Ohshima, T.; Dyakonov, V.; et al. Room-Temperature Quantum Microwave Emitters Based on Spin Defects in Silicon Carbide. Nano Lett. 2017, 17, 2865–2870. [Google Scholar] [CrossRef]
- Pavunny, S.P.; Yeats, A.L.; Banks, H.B.; Bielejec, E.; Myers-Ward, R.L.; DeJarld, M.T.; Bracker, A.S.; Gaskill, D.K.; Carter, S.G. Arrays of Si Vacancies in 4H-SiC Produced by Focused Li Ion Beam Implantation. Sci. Rep. 2021, 11, 3561. [Google Scholar] [CrossRef]
- Widmann, M.; Lee, S.-Y.; Rendler, T.; Son, N.T.; Fedder, H.; Paik, S.; Yang, L.-P.; Zhao, N.; Yang, S.; Booker, I.; et al. Coherent control of single spins in silicon carbide at room temperature. Nat. Mater. 2015, 14, 164–168. [Google Scholar] [CrossRef]
- Awschalom, D.D.; Hanson, R.; Wrachtrup, J.; Zhou, B.B. Quantum technologies with optically interfaced solid-state spins. Nat. Photonics 2018, 12, 516–527. [Google Scholar] [CrossRef]
- Castelletto, S. Silicon Carbide Single-Photon Sources: Challenges and Prospects. Mater. Quantum Technol. 2021, 1, 023001. [Google Scholar] [CrossRef]
- Zhang, G.; Cheng, Y.; Chou, J.-P.; Gali, A. Material Platforms for Defect Qubits and Single-Photon Emitters. Appl. Phys. Rev. 2020, 7, 031308. [Google Scholar] [CrossRef]
- Chatterjee, A.; Stevenson, P.; Dehollain, J.P.; Morello, A.; Dzurak, A.S.; Flentje, H.; Ginzel, F.; Hensen, B.; Laucht, A.; Muhonen, J.T.; et al. Semiconductor Qubits in Practice. Nat. Rev. Phys. 2021, 3, 157–177. [Google Scholar] [CrossRef]
- Wolfowicz, G.; Heremans, F.J.; Anderson, C.P.; Kanai, S.; Seo, H.; Gali, A.; Galli, G.; Awschalom, D.D. Quantum Guidelines for Solid-State Spin Defects. Nat. Rev. Mater. 2021, 6, 906–925. [Google Scholar] [CrossRef]
- Chandrasekaran, V.; Titze, M.; Flores, A.R.; Campbell, D.; Henshaw, J.; Jones, A.C.; Bielejec, E.S.; Htoon, H. High-Yield Deterministic Focused Ion Beam Implantation of Quantum Defects Enabled by In Situ Photoluminescence Feedback. Adv. Sci. 2023, 10, 2300190. [Google Scholar] [CrossRef]
- Wang, J.-F.; Li, Q.; Yan, F.-F.; Liu, H.; Guo, G.-P.; Zhang, W.-P.; Zhou, X.; Guo, L.-P.; Lin, Z.-H.; Cui, J.-M.; et al. On-Demand Generation of Single Silicon Vacancy Defects in Silicon Carbide. ACS Photonics 2019, 6, 1736–1743. [Google Scholar] [CrossRef]
- Castelletto, S.; Almutairi, A.F.M.; Kumagai, K.; Katkus, T.; Hayasaki, Y.; Johnson, B.C.; Juodkazis, S. Photoluminescence in Hexagonal Silicon Carbide by Direct Femtosecond Laser Writing. Opt. Lett. 2018, 43, 6077–6080. [Google Scholar] [CrossRef] [PubMed]
- He, Z.-X.; Zhou, J.-Y.; Li, Q.; Lin, W.-X.; Liang, R.-J.; Wang, J.-F.; Wen, X.-L.; Hao, Z.-H.; Liu, W.; Ren, S.; et al. Robust Single Modified Divacancy Color Centers in 4H-SiC under Resonant Excitation. Nat. Commun. 2024, 15, 10146. [Google Scholar] [CrossRef]
- Feynman, R.P. Simulating Physics with Computers. Int. J. Theor. Phys. 1981, 21, 467–488. [Google Scholar] [CrossRef]
- Schlosshauer, M. Decoherence and the Quantum-to-Classical Transition; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- You, J.Q.; Nori, F. Superconducting Qubits and Quantum Optics. Nature 2011, 474, 453–457. [Google Scholar] [CrossRef]
- Wendin, G. Quantum Information Processing with Superconducting Circuits. Phys. Rep. 2017, 667, 1–107. [Google Scholar] [CrossRef]
- Blatt, R.; Roos, C.F. Quantum Simulations with Trapped Ions. Nat. Phys. 2012, 8, 277–284. [Google Scholar] [CrossRef]
- Häffner, H.; Roos, C.F.; Blatt, R. Quantum Computing with Trapped Ions. Phys. Rep. 2008, 468, 159–237. [Google Scholar] [CrossRef]
- Kane, B.E. A Silicon-Based Quantum Computer. Nature 1998, 393, 133–137. [Google Scholar] [CrossRef]
- Zwanenburg, F.A.; Dzurak, A.S.; Morello, A.; Simmons, M.Y.; Hollenberg, L.C.L.; Klimeck, G.; Rogge, S.; Coppersmith, S.N.; Eriksson, M.A. Silicon Quantum Dots. Rev. Mod. Phys. 2013, 85, 961–1019. [Google Scholar] [CrossRef]
- Alicea, J. New Directions in the Study of Majorana Fermions in Solid-State Systems. Rep. Prog. Phys. 2012, 75, 076501. [Google Scholar] [CrossRef]
- Das Sarma, S.; Freedman, M.; Nayak, C. Topologically Protected Qubits from the Quantum Hall Edge States. Phys. Rev. Lett. 2005, 94, 036802. [Google Scholar] [CrossRef]
- Cheng, B.; Deng, X.-H.; Gu, X.; He, Y.; Hu, G.; Huang, P.; Li, J.; Lin, B.-C.; Lu, D.; Lu, Y.; et al. Noisy Intermediate-Scale Quantum Computers. Front. Phys. 2023, 18, 21308. [Google Scholar]
- O’Brien, J.L.; Furusawa, A.; Vučković, J. Photonic Quantum Information Processing. Nat. Photonics 2009, 3, 687–695. [Google Scholar]
- Kimoto, T.; Cooper, J.A. Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices, and Applications; John Wiley & Sons Singapore Pte. Ltd.: Hoboken, NJ, USA, 2014. [Google Scholar]
- Matsunami, H. Fundamental research on semiconductor SiC and its applications to power electronics. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2020, 96, 235–254. [Google Scholar] [CrossRef]
- Coutinho, J.; Torres, V.J.B.; Capan, I.; Brodar, T.; Ereš, Z.; Bernat, R.; Radulović, V. Silicon carbide diodes for neutron detection. Nucl. Inst. Methods Phys. Res. A 2020, 986, 164793. [Google Scholar] [CrossRef]
- Capan, I. Electrically Active Defects in 3C, 4H, and 6H Silicon Carbide Polytypes: A Review. Crystals 2025, 15, 255. [Google Scholar] [CrossRef]
- Calusine, G.; Politi, A.; Awschalom, D.D. Silicon Carbide Photonic Crystal Cavities with Integrated Color Centers. Appl. Phys. Lett. 2014, 105, 011123. [Google Scholar] [CrossRef]
- Gordon, L.; Janotti, A.; Van de Walle, C.G. Defects as qubits in 3C- and 4H-SiC. Phys. Rev. B 2015, 92, 045208. [Google Scholar] [CrossRef]
- Guidi, M.C.; Son, N.T.; Tidemand-Lichtenberg, P.; Hansen, A.D.; Stepniewski, R.; Giacomini, M.; Puglisi, R.A.; Capellini, G.; Ferrari, C.; Wagner, J. Single-Crystal 3C-SiC-on-Insulator Platform for Integrated Quantum Photonics. Opt. Express 2021, 29, 1011–1022. [Google Scholar]
- Ousdal, E.L.; Bathen, M.E.; Galeckas, A.; Kuznetsov, A.; Vines, L. Formation and Stability of Point Defect Color Centers in 6H Silicon Carbide. J. Appl. Phys. 2024, 135, 225701. [Google Scholar] [CrossRef]
- Bathen, M.E.; Lew, C.T.-K.; Woerle, J.; Dorfer, C.; Grossner, U.; Castelletto, S.; Johnson, B.C. Characterization Methods for Defects and Devices in Silicon Carbide. J. Appl. Phys. 2022, 131, 145702. [Google Scholar] [CrossRef]
- Bathen, M.E.; Galeckas, A.; Karsthof, R.; Delteil, A.; Sallet, V.; Kuznetsov, A.Y.; Vines, L. Resolving Jahn–Teller Induced Vibronic Fine Structure of Silicon Vacancy Quantum Emission in Silicon Carbide. Phys. Rev. B 2021, 104, 045120. [Google Scholar] [CrossRef]
- Žalandauskas, V.; Silkinis, R.; Vines, L.; Razinkovas, L.; Bathen, M.E. Theory of the Divacancy in 4H-SiC: Impact of Jahn–Teller Effect on Optical Properties. arXiv 2024, arXiv:2412.01390. [Google Scholar]
- Janzén, E.; Gali, A.; Carlsson, P.; Gällström, A.; Magnusson, B.; Son, N.T. The silicon vacancy in SiC. Phys. B Condens. Matter 2009, 404, 4354–4358. [Google Scholar] [CrossRef]
- Davidsson, J.; Ivády, V.; Armiento, R.; Son, N.T.; Gali, A.; Abrikosov, I.A. First Principles Predictions of Magneto-Optical Data for Semiconductor Point Defect Identification: The Case of Divacancy Defects in 4H–SiC. New J. Phys. 2018, 20, 023035. [Google Scholar] [CrossRef]
- Lukin, D.M.; Guidry, M.A.; Vučković, J. Integrated Quantum Photonics with Silicon Carbide: Challenges and Prospects. PRX Quantum 2020, 1, 020102. [Google Scholar] [CrossRef]
- Bathen, M.E.; Selnesaunet, G.M.; Enga, M.J.; Kjeldby, S.B.; Müting, J.; Vines, L.; Grossner, U. Charge State Control over Point Defects in SiC Devices. Defect Diffus. Forum 2023, 425, 35–42. [Google Scholar] [CrossRef]
- Son, N.T.; Ivanov, I.G. Charge state control of the silicon vacancy and divacancy in silicon carbide. J. Appl. Phys. 2021, 129, 215702. [Google Scholar] [CrossRef]
- Ziegler, J.F.; Ziegler, M.D.; Biersack, J.P. SRIM—The stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 2010, 268, 1818–1823. [Google Scholar] [CrossRef]
- Battistoni, G.; Cerutti, F.; Fassò, A.; Ferrari, A.; Muraro, S.; Ranft, J.; Roesler, S.; Sala, P.R. The FLUKA code: Description and benchmarking. AIP Conf. Proc. 2007, 896, 31–49. [Google Scholar]
- Brodar, T.; Bakrač, L.; Capan, I.; Ohshima, T.; Snoj, L.; Radulović, V.; Pastuović, Ž. Depth Profile Analysis of Deep Level Defects in 4H-SiC Introduced by Radiation. Crystals 2020, 10, 845. [Google Scholar] [CrossRef]
- Fuchs, F.; Stender, B.; Trupke, M.; Simin, D.; Pflaum, J.; Dyakonov, V.; Astakhov, G.V. Engineering near-infrared single-photon emitters with optically active spins in ultrapure silicon carbide. Nat. Commun. 2015, 6, 7578. [Google Scholar] [CrossRef]
- Babin, C.; Stohr, R.; Morioka, N.; Linkewitz, T.; Steidl, T.; Wornle, R.; Liu, D.; Hesselmeier, E.; Vorobyov, V.; Denisenko, A.; et al. Robust Color Centers in SiC: Engineering and Control. Nat. Mater. 2022, 21, 67. [Google Scholar] [CrossRef]
- He, Z.-X.; Li, Q.; Wen, X.-L.; Zhou, J.-Y.; Lin, W.-X.; Hao, Z.-H.; Xu, J.-S.; Li, C.-F.; Guo, G.-C. Maskless Generation of Single Silicon Vacancy Arrays in Silicon Carbide by a Focused He+ Ion Beam. ACS Photonics 2022, 10, 2827–2834. [Google Scholar] [CrossRef]
- Ohshima, T.; Satoh, T.; Kraus, H.; Astakhov, G.V.; Dyakonov, V.; Baranov, P.G. Creation of silicon vacancy in silicon carbide by proton beam writing toward quantum sensing applications. J. Phys. D Appl. Phys. 2018, 51, 333002. [Google Scholar] [CrossRef]
- Castelletto, S.; Boretti, A. Silicon Carbide Color Centers for Quantum Applications. J. Phys. Photonics 2020, 2, 022001. [Google Scholar] [CrossRef]
- Zhou, Z.; Xu, Z.; Song, Y.; Shi, C.; Zhang, K.; Dong, B. Silicon Vacancy Color Centers in 6H-SiC Fabricated by Femtosecond Laser Direct Writing. Nanomanuf. Metrol. 2023, 6, 7. [Google Scholar] [CrossRef]
- David, M.L.; Alfieri, G.; Monakhov, E.M.; Hallén, A.; Blanchard, C.; Svensson, B.G.; Barbot, J.F. Electrically active defects in irradiated 4H-SiC. J. Appl. Phys. 2004, 95, 4728–4733. [Google Scholar] [CrossRef]
- Capan, I.; Brodar, T.; Bernat, R.; Pastuović, Ž.; Makino, T.; Ohshima, T.; Gouveia, J.D.; Coutinho, J. M-center in 4H-SiC: Isothermal DLTS and first principles modeling studies. J. Appl. Phys. 2021, 130, 125703. [Google Scholar] [CrossRef]
- Baranov, P.G.; Bundakova, A.P.; Soltamova, A.A.; Orlinskii, S.B.; Borovykh, I.V.; Zondervan, R.; Verberk, R.; Schmidt, J. Silicon Vacancy in SiC as a Promising Quantum System for Single-Defect and Single-Photon Spectroscopy. Phys. Rev. B 2011, 83, 125203. [Google Scholar] [CrossRef]
- Shafizadeh, D.; Davidsson, J.; Ohshima, T.; Abrikosov, I.A.; Son, N.T.; Ivanov, I.G. Selection Rules in the Excitation of the Divacancy and the Nitrogen-Vacancy Pair in 4H- and 6H-SiC. Phys. Rev. B 2024, 109, 235203. [Google Scholar] [CrossRef]
- Sun, T.; Xu, Z.; Wu, J.; Fan, Y.; Ren, F.; Song, Y.; Yang, L.; Tan, P. Divacancy and Silicon Vacancy Color Centers in 4H-SiC Fabricated by Hydrogen and Dual Ions Implantation and Annealing. Ceram. Int. 2023, 49, 7452–7465. [Google Scholar] [CrossRef]
- Almutairi, A.F.M.; Partridge, J.G.; Xu, C.; Cole, I.S.; Holland, A.S. Direct Writing of Divacancy Centers in Silicon Carbide by Femtosecond Laser Irradiation and Subsequent Thermal Annealing. Appl. Phys. Lett. 2022, 120, 014003. [Google Scholar] [CrossRef]
- Wolfowicz, G.; Anderson, C.P.; Yeats, A.L.; Whiteley, S.J.; Niklas, J.; Poluektov, O.G.; Heremans, F.J.; Awschalom, D.D. Optical charge state control of spin defects in 4H-SiC. Nat. Commun. 2017, 8, 1876. [Google Scholar] [CrossRef]
- Bathen, M.E.; Vines, L. Manipulating Single-Photon Emission from Point Defects in Diamond and Silicon Carbide. Quantum Technol. 2021, 2, 202100003. [Google Scholar] [CrossRef]
- Wang, J.-F.; Yan, F.-F.; Li, Q.; Liu, Z.-H.; Liu, H.; Guo, G.-P.; Guo, L.-P.; Zhou, X.; Cui, J.-M.; Wang, J.; et al. Coherent Control of Nitrogen-Vacancy Center Spins in Silicon Carbide at Room Temperature. Phys. Rev. Lett. 2020, 124, 223601. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Cai, H.; Cernansky, R.; Liu, X.; Gao, W. Quantum sensing of radio-frequency signal with NV centers in SiC. Sci. Adv. 2023, 9, eadg2080. [Google Scholar] [CrossRef] [PubMed]
- Bardeleben, H.J.; Cantin, J.L.; Csóré, A.; Gali, A.; Rauls, E.; Gerstmann, U. NV centers in 3C, 4H, and 6H silicon carbide: A variable platform for solid-state qubits and nanosensors. Phys. Rev. B 2016, 94, 121202. [Google Scholar] [CrossRef]
- Karsthof, R.; Bathen, M.E.; Galeckas, A.; Vines, L. Conversion pathways of primary defects by annealing in proton-irradiated n-type 4H-SiC. Phys. Rev. B 2020, 102, 184111. [Google Scholar] [CrossRef]
- Nakane, H.; Kato, M.; Ohkouchi, Y.; Trinh, X.T.; Ivanov, I.G.; Ohshima, T.; Son, N.T. Deep levels related to the carbon antisite–vacancy pair in 4H-SiC. J. Appl. Phys. 2021, 130, 065703. [Google Scholar] [CrossRef]
- Diler, B.; Whiteley, S.J.; Anderson, C.P.; Wolfowicz, G.; Wesson, M.E.; Bielejec, E.S.; Heremans, F.J.; Awschalom, D.D. Coherent control and high-fidelity readout of chromium ions in commercial silicon carbide. NPJ Quantum Inf. 2020, 6, 11. [Google Scholar] [CrossRef]
Type | Advantages | Challenges |
---|---|---|
Superconducting qubits | Well-established fabrication processes, strong control and readout capabilities, and compatibility with microwave technology. | Short coherence times (microseconds) and require cryogenic cooling. |
Trapped ions | Long coherence times (seconds) and high-fidelity gate operations. | Slow gate speeds, complex laser-based control, and scalability challenges. |
Spin-based qubits (Quantum dots) | Compatible with CMOS technology and long coherence times in isotopically purified materials. | Requires precise nanofabrication and challenging control of qubit interactions. |
Topological qubits | Theoretically fault tolerant and protected from decoherence. | Experimentally unconfirmed and complex fabrication requirements. |
Defect-based qubits (Solid-state qubits) | Optical addressability, long coherence times, and potential for room-temperature operation. | Difficult to create and control defects with high precision. |
Defect Properties | Host Material Properties |
---|---|
The defect must have a paramagnetic, long-lived bound state with an energy splitting suitable for manipulation via electron spin resonance. | Wide bandgap: allows for deep defect levels that satisfy the requirement for optical transitions. |
The defect should have an optical cycle that allows spin initialization via spin-selective decay. | Low spin–orbit coupling: minimizes unwanted spin flips and decoherence. |
The defect’s fluorescence must change depending on the qubit state, enabling efficient optical readout. | High-quality crystals: availability of bulk or thin-film single crystals to reduce imperfections and impurities. |
Optical transitions should not be affected by interference from the host material’s electronic states. | Nuclear spin-free isotopes: constituent elements should have isotopes with zero nuclear spin to minimize decoherence effects. |
Energy separations between defect states must be large enough to prevent thermal excitations that could destroy spin coherence. |
Method | Source | Energy | Reference |
---|---|---|---|
Electron irradiation | e− | 2 MeV | [16] |
Neutron irradiation (reactor) | n0 | 0.18–2.5 MeV | [50] |
Ion implantation | He+ He+, C+ | 6 keV 20 keV | [61] [26] |
Focused ion beam | Li+ Li+ He+ | 80 keV 100 keV 30 keV | [25] [18] [62] |
Focused proton beam | H+ | 2 MeV | [17,63] |
Laser writing | -- | -- | [14,64,65] |
Defect | Method | Source | Energy | Reference |
---|---|---|---|---|
VV | Electron irradiation | e− | 2 MeV | [69] |
VV | Femtosecund laser writing | -- | -- | [70] |
VV | Focused ion beam | He+ | 30 keV | [28] |
VV | Ion implantation | H+ | 250 keV | [71] |
NV | Electron irradiation | e− | >MeV | [76] |
NV | Proton irradiation | H+ | 12 MeV | [75] |
NV | Ion implantation | N+ | 30 keV | [74] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capan, I. Defects in Silicon Carbide as Quantum Qubits: Recent Advances in Defect Engineering. Appl. Sci. 2025, 15, 5606. https://doi.org/10.3390/app15105606
Capan I. Defects in Silicon Carbide as Quantum Qubits: Recent Advances in Defect Engineering. Applied Sciences. 2025; 15(10):5606. https://doi.org/10.3390/app15105606
Chicago/Turabian StyleCapan, Ivana. 2025. "Defects in Silicon Carbide as Quantum Qubits: Recent Advances in Defect Engineering" Applied Sciences 15, no. 10: 5606. https://doi.org/10.3390/app15105606
APA StyleCapan, I. (2025). Defects in Silicon Carbide as Quantum Qubits: Recent Advances in Defect Engineering. Applied Sciences, 15(10), 5606. https://doi.org/10.3390/app15105606