Effects of Ultrasonic Nanocrystal Surface Modification on the Formation of a Nitride Layer in Ti-6Al-4V Alloy
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Research Methods
3. Research Results and Discussion
3.1. Tribology Evaluation Results
3.2. Results of SEM (Scanning Electron Microscopy)
3.3. X-Ray Phase Analysis
3.4. Hardness
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Titanium Alloys for Aerospace Applications—Peters—2003—Advanced Engineering Materials—Wiley Online Library. Available online: https://advanced.onlinelibrary.wiley.com/doi/10.1002/adem.200310095 (accessed on 23 June 2025).
- Geetha, M.; Singh, A.K.; Asokamani, R.; Gogia, A.K. Ti Based Biomaterials, the Ultimate Choice for Orthopaedic Implants—A Review. Prog. Mater. Sci. 2009, 54, 397–425. [Google Scholar] [CrossRef]
- Niinomi, M. Mechanical Biocompatibilities of Titanium Alloys for Biomedical Applications. J. Mech. Behav. Biomed. Mater. 2008, 1, 30–42. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Shao, M.; Zhang, Z.; Yi, X.; Yan, J.; Zhou, Z.; Fang, D.; He, Y.; Li, Y. Corrosion Behavior of Nitrided Layer of Ti6Al4V Titanium Alloy by Hollow Cathodic Plasma Source Nitriding. Materials 2023, 16, 2961. [Google Scholar] [CrossRef] [PubMed]
- She, D.; Yue, W.; Fu, Z.; Gu, Y.; Wang, C.; Liu, J. The Effect of Nitriding Temperature on Hardness and Microstructure of Die Steel Pre-Treated by Ultrasonic Cold Forging Technology. Mater. Des. 2013, 49, 392–399. [Google Scholar] [CrossRef]
- Samanta, A.; Bhattacharya, M.; Ratha, I.; Chakraborty, H.; Datta, S.; Ghosh, J.; Bysakh, S.; Sreemany, M.; Rane, R.; Joseph, A.; et al. Nano- and Micro-Tribological Behaviours of Plasma Nitrided Ti6Al4V Alloys. J. Mech. Behav. Biomed. Mater. 2018, 77, 267–294. [Google Scholar] [CrossRef] [PubMed]
- Farè, S.; Lecis, N.; Vedani, M.; Silipigni, A.; Favoino, P. Properties of Nitrided Layers Formed during Plasma Nitriding of Commercially Pure Ti and Ti-6Al-4V Alloy. Surf. Coat. Technol. 2012, 206, 2287–2292. [Google Scholar] [CrossRef]
- Wang, N.; Zhu, J.; Liu, B.; Zhang, X.; Zhang, J.; Tu, S. Influence of Ultrasonic Surface Rolling Process and Shot Peening on Fretting Fatigue Performance of Ti-6Al-4V. Chin. J. Mech. Eng. 2021, 34, 90. [Google Scholar] [CrossRef]
- Amanov, A.; Karimbaev, R.; Li, C.; Wahab, M.A. Effect of Surface Modification Technology on Mechanical Properties and Dry Fretting Wear Behavior of Inconel 718 Alloy Fabricated by Laser Powder-Based Direct Energy Deposition. Surf. Coat. Technol. 2023, 454, 12917. [Google Scholar] [CrossRef]
- Ozturk, M.; Husem, F.; Karademir, I.; Maleki, E.; Amanov, A.; Unal, O. Fatigue Crack Growth Rate of AISI 4140 Low Alloy Steel Treated via Shot Peening and Plasma Nitriding. Vacuum 2023, 207, 111552. [Google Scholar] [CrossRef]
- The Effect of Ultrasonic Nanocrystal Surface Modification on Low Temperature Nitriding of Ultra-High Strength Steel|Request PDF. Available online: https://www.researchgate.net/publication/334252382_The_effect_of_ultrasonic_nanocrystal_surface_modification_on_low_temperature_nitriding_of_ultra-high_strength_steel (accessed on 30 May 2025).
- Rahmani, H.; Rastegari, S.; Mirdamadi, S. Effective Parameters on Microstructure and Properties of EB-PVD NiCrAlY Coating. Surf. Eng. 2015, 31, 156–165. [Google Scholar] [CrossRef]
- Umemoto, M. Nanocrystallization of Steels by Severe Plastic Deformation. Mater. Trans. 2003, 44, 1900–1911. [Google Scholar] [CrossRef]
- Smyslova, M.K.; Valiev, R.R.; Smyslov, A.M.; Modina, I.M.; Sitdikov, V.D.; Semenova, I.P. Microstructural Features and Surface Hardening of Ultrafine-Grained Ti-6Al-4V Alloy through Plasma Electrolytic Polishing and Nitrogen Ion Implantation. Metals 2021, 11, 696. [Google Scholar] [CrossRef]
- Laser Shock Peening: Fundamentals and Mechanisms of Metallic Material Wear Resistance Improvement. Available online: https://www.mdpi.com/1996-1944/17/4/909?utm_source=chatgpt.com (accessed on 21 June 2025).
- Liu, Z.; Ren, S.; Li, T.; Chen, P.; Hu, L.; Wu, W.; Li, S.; Liu, H.; Li, R.; Zhang, Y. A Comparison Study on the Microstructure, Mechanical Features, and Tribological Characteristics of TiN Coatings on Ti6Al4V Using Different Deposition Techniques. Coatings 2024, 14, 156. [Google Scholar] [CrossRef]
- Farokhzadeh, K.; Qian, J.; Edrisy, A. Effect of SPD Surface Layer on Plasma Nitriding of Ti-6Al-4V Alloy. Mater. Sci. Eng. A 2014, 589, 199–208. [Google Scholar] [CrossRef]
- Liu, G.; Leng, K.; He, X.; Tang, L.; Gao, W.; Fu, Y. Microstructure Evolution of Ti-6Al-4V under Cold Rolling + Low Temperature Nitriding Process. Prog. Nat. Sci. Mater. Int. 2022, 32, 424–432. [Google Scholar] [CrossRef]
- Zha, X.; Yuan, Z.; Qin, H.; Xi, L.; Guo, Y.; Xu, Z.; Dai, X.; Jiang, F. Investigating the Dynamic Mechanical Properties and Strengthening Mechanisms of Ti-6Al-4V Alloy by Using the Ultrasonic Surface Rolling Process. Materials 2024, 17, 1382. [Google Scholar] [CrossRef] [PubMed]
- Aringozhina, Z.; Magazov, N.; Rakhadilov, B.; Uazyrkhanova, G.; Amanov, A. Effect of Ultrasonic Nanocrystalline Surface Modification on Hardness and Elastic Modulus of Ti-6Al-4V Alloy. AIMS Mater. Sci. 2025, 12, 101–117. [Google Scholar] [CrossRef]
- Sun, W.; Song, Z.; Liu, H.; Wang, J.; Liu, C.; Si, C. Effect of Surface Nanocrystallization Pretreatment on the Microstructure and Fretting Wear of Ti-6Al-4V Titanium Alloy Plasma Nitrided Layer. Mater. Charact. 2025, 223, 114884. [Google Scholar] [CrossRef]
- Mogucheva, A.; Yuzbekova, D.; Lebedkina, T.; Lebyodkin, M.; Kaibyshev, R. Influence of Severe Plastic Deformation on Mechanical Properties of an AA5024 Alloy. Mater. Sci. Forum 2017, 879, 1317–1322. [Google Scholar] [CrossRef]
- Vasylyev, M.A.; Chenakin, S.P.; Yatsenko, L.F. Nitridation of Ti6Al4V Alloy under Ultrasonic Impact Treatment in Liquid Nitrogen. Acta Mater. 2012, 60, 6223–6233. [Google Scholar] [CrossRef]
- Amanov, A. Advancement of Tribological Properties of Ti-6Al-4V Alloy Fabricated by Selective Laser Melting. Tribol. Int. 2021, 155, 106806. [Google Scholar] [CrossRef]
- Reshadi, F.; Faraji, G.; Baniassadi, M.; Tajeddini, M. Surface Modification of Severe Plastically Deformed Ultrafine Grained Pure Titanium by Plasma Electrolytic Oxidation. Surf. Coat. Technol. 2017, 316, 113–121. [Google Scholar] [CrossRef]
- Ongtrakulkij, G.; Kajornchaiyakul, J.; Kondoh, K.; Khantachawana, A. Investigation of Microstructure, Residual Stress, and Hardness of Ti-6Al-4V after Plasma Nitriding Process with Different Times and Temperatures. Coatings 2022, 12, 1932. [Google Scholar] [CrossRef]
- Hsu, H.-C.; Lin, Y.-C.; Chen, J.-X. Wear and Corrosion Performance of Ti-6Al-4V Alloy Arc-Coated TiN/CrN Nano-Multilayer Film. Metals 2023, 13, 907. [Google Scholar] [CrossRef]
Source | Method | Key Parameters | Surface Hardness (HV) | Elastic Modulus (GPa) | Wear/Corrosion/Fatigue Resistance | Key Findings |
---|---|---|---|---|---|---|
Aringozhina et al. (2025) [20] | EA-UNSM | Amplitude 30 µm, Load 40–60 N | 394 → 475 (+20%) | ~156 | ↑ fatigue strength (~8%), ↑ wear resistance | Grain refinement, improved mechanical properties |
Zha et al. (2024) [19] | Ultrasonic Surface Rolling | 32 kHz, Load ~400 N | 325 → 451 | 124 → 139 | Better dynamic mechanical behavior | Nanocrystallization, work hardening |
Wang et al. (2021) [8] | Shot Peening + Gas Nitriding | Pre-shot peening, 700–800 °C | Up to 1100 (on steel) | — | ↑ wear resistance | Shot peening aids nitriding depth |
Zhang et al. (2023) [4] | HCPSN Nitriding | 510 °C, 1–4 h | — | — | ↑ corrosion resistance (Hank’s solution) | TiN/Ti2N + α-Ti(N), stable in solution |
Ongtrakulkij et al. (2022) [26] | Plasma Ion Nitriding | 750–800 °C, 5–10 h | Up to 643 | — | ↑ compressive stress, ↑ fatigue resistance | Dense nitrided layer, better stability |
Hsu et al. (2023) [27] | CAD-PVD (TiN/CrN Multilayer) | Bias −150 V | 3–5× increase | — | Excellent wear and corrosion resistance | Multilayers enhance protective properties |
Element | Ti | Al | V | Fe | O | C | N | H |
---|---|---|---|---|---|---|---|---|
Content (wt.%) | bal. | 5.5–6.75 | 3.5–4.5 | ≤0.30 | ≤0.20 | ≤0.08 | ≤0.05 | ≤0.015 |
Samples | Sample Designation | Processing Conditions |
---|---|---|
S0 | initial | initial |
S1 | UNSM-only | UNSM (20 μm, 30 N, RT) |
S2 | UNSM-only | UNSM (30 μm, 30 N, RT) |
S3 | UNSM-only | UNSM (30 μm, 50 N, 400 °C) |
S4 | UNSM-only | UNSM (30 μm, 60 N, 400 °C) |
S0N | nitrided | nitrided |
S1N | Combined | S1+ nitrided |
S2N | Combined | S2+ nitrided |
S3N | Combined | S3+ nitrided |
S4N | Combined | S4+ nitrided |
Source | Method | Surface Hardness (HV) | Elastic Modulus (GPa) | Wear Resistance | Key Findings |
---|---|---|---|---|---|
This work (S4N) | UNSM + IPN | 475 HV | 156 GPa | High | Stable friction (0.55), dense TiN layer |
Aringozhina et al. [20] | EA-UNSM | 475 HV | 156 GPa | Improved | Fatigue ↑8%, grain refinement |
Zha et al. (2024) [19] | USRP | 451 HV | 139 GPa | Improved | Nanocrystallization |
Wang et al. (2021) [8] | Shot Peening + Gas Nitriding | 1100 HV (on steel) | — | Improved | Shot peening aids nitriding depth |
Zhang et al. (2023) [4] | HCPSN Nitriding | — | — | Corrosion resistance ↑ | TiN/Ti2N + α-Ti(N), stable |
Hsu et al. (2023) [27] | TiN/CrN Multilayer PVD | 3–5× increase | — | Excellent | Multilayers improve protection |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rakhadilov, B.; Magazov, N.; Aringozhina, Z.; Uazyrkhanova, G.; Uazyrkhanova, Z.; Amanov, A. Effects of Ultrasonic Nanocrystal Surface Modification on the Formation of a Nitride Layer in Ti-6Al-4V Alloy. Materials 2025, 18, 3487. https://doi.org/10.3390/ma18153487
Rakhadilov B, Magazov N, Aringozhina Z, Uazyrkhanova G, Uazyrkhanova Z, Amanov A. Effects of Ultrasonic Nanocrystal Surface Modification on the Formation of a Nitride Layer in Ti-6Al-4V Alloy. Materials. 2025; 18(15):3487. https://doi.org/10.3390/ma18153487
Chicago/Turabian StyleRakhadilov, Bauyrzhan, Nurtoleu Magazov, Zarina Aringozhina, Gulzhaz Uazyrkhanova, Zhuldyz Uazyrkhanova, and Auezhan Amanov. 2025. "Effects of Ultrasonic Nanocrystal Surface Modification on the Formation of a Nitride Layer in Ti-6Al-4V Alloy" Materials 18, no. 15: 3487. https://doi.org/10.3390/ma18153487
APA StyleRakhadilov, B., Magazov, N., Aringozhina, Z., Uazyrkhanova, G., Uazyrkhanova, Z., & Amanov, A. (2025). Effects of Ultrasonic Nanocrystal Surface Modification on the Formation of a Nitride Layer in Ti-6Al-4V Alloy. Materials, 18(15), 3487. https://doi.org/10.3390/ma18153487