Effects of Ultrasonic Nanocrystal Surface Modification on the Formation of a Nitride Layer in Ti-6Al-4V Alloy
Highlights
- UNSM enhanced nitrogen diffusion kinetics during the nitriding of Ti-6Al-4V alloy.
- UNSM pre-treatment led to an up to 25% increase in surface hardness.
- The combined UNSM-nitriding process reduced the friction coefficient.
- SEM and XRD analyses confirmed the formation of a dense and uniform nitride layer.
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Research Methods
3. Research Results and Discussion
3.1. Tribology Evaluation Results
3.2. Results of SEM (Scanning Electron Microscopy)
3.3. X-Ray Phase Analysis
3.4. Hardness
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Titanium Alloys for Aerospace Applications—Peters—2003—Advanced Engineering Materials—Wiley Online Library. Available online: https://advanced.onlinelibrary.wiley.com/doi/10.1002/adem.200310095 (accessed on 23 June 2025).
- Geetha, M.; Singh, A.K.; Asokamani, R.; Gogia, A.K. Ti Based Biomaterials, the Ultimate Choice for Orthopaedic Implants—A Review. Prog. Mater. Sci. 2009, 54, 397–425. [Google Scholar] [CrossRef]
- Niinomi, M. Mechanical Biocompatibilities of Titanium Alloys for Biomedical Applications. J. Mech. Behav. Biomed. Mater. 2008, 1, 30–42. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Shao, M.; Zhang, Z.; Yi, X.; Yan, J.; Zhou, Z.; Fang, D.; He, Y.; Li, Y. Corrosion Behavior of Nitrided Layer of Ti6Al4V Titanium Alloy by Hollow Cathodic Plasma Source Nitriding. Materials 2023, 16, 2961. [Google Scholar] [CrossRef] [PubMed]
- She, D.; Yue, W.; Fu, Z.; Gu, Y.; Wang, C.; Liu, J. The Effect of Nitriding Temperature on Hardness and Microstructure of Die Steel Pre-Treated by Ultrasonic Cold Forging Technology. Mater. Des. 2013, 49, 392–399. [Google Scholar] [CrossRef]
- Samanta, A.; Bhattacharya, M.; Ratha, I.; Chakraborty, H.; Datta, S.; Ghosh, J.; Bysakh, S.; Sreemany, M.; Rane, R.; Joseph, A.; et al. Nano- and Micro-Tribological Behaviours of Plasma Nitrided Ti6Al4V Alloys. J. Mech. Behav. Biomed. Mater. 2018, 77, 267–294. [Google Scholar] [CrossRef] [PubMed]
- Farè, S.; Lecis, N.; Vedani, M.; Silipigni, A.; Favoino, P. Properties of Nitrided Layers Formed during Plasma Nitriding of Commercially Pure Ti and Ti-6Al-4V Alloy. Surf. Coat. Technol. 2012, 206, 2287–2292. [Google Scholar] [CrossRef]
- Wang, N.; Zhu, J.; Liu, B.; Zhang, X.; Zhang, J.; Tu, S. Influence of Ultrasonic Surface Rolling Process and Shot Peening on Fretting Fatigue Performance of Ti-6Al-4V. Chin. J. Mech. Eng. 2021, 34, 90. [Google Scholar] [CrossRef]
- Amanov, A.; Karimbaev, R.; Li, C.; Wahab, M.A. Effect of Surface Modification Technology on Mechanical Properties and Dry Fretting Wear Behavior of Inconel 718 Alloy Fabricated by Laser Powder-Based Direct Energy Deposition. Surf. Coat. Technol. 2023, 454, 12917. [Google Scholar] [CrossRef]
- Ozturk, M.; Husem, F.; Karademir, I.; Maleki, E.; Amanov, A.; Unal, O. Fatigue Crack Growth Rate of AISI 4140 Low Alloy Steel Treated via Shot Peening and Plasma Nitriding. Vacuum 2023, 207, 111552. [Google Scholar] [CrossRef]
- The Effect of Ultrasonic Nanocrystal Surface Modification on Low Temperature Nitriding of Ultra-High Strength Steel|Request PDF. Available online: https://www.researchgate.net/publication/334252382_The_effect_of_ultrasonic_nanocrystal_surface_modification_on_low_temperature_nitriding_of_ultra-high_strength_steel (accessed on 30 May 2025).
- Rahmani, H.; Rastegari, S.; Mirdamadi, S. Effective Parameters on Microstructure and Properties of EB-PVD NiCrAlY Coating. Surf. Eng. 2015, 31, 156–165. [Google Scholar] [CrossRef]
- Umemoto, M. Nanocrystallization of Steels by Severe Plastic Deformation. Mater. Trans. 2003, 44, 1900–1911. [Google Scholar] [CrossRef]
- Smyslova, M.K.; Valiev, R.R.; Smyslov, A.M.; Modina, I.M.; Sitdikov, V.D.; Semenova, I.P. Microstructural Features and Surface Hardening of Ultrafine-Grained Ti-6Al-4V Alloy through Plasma Electrolytic Polishing and Nitrogen Ion Implantation. Metals 2021, 11, 696. [Google Scholar] [CrossRef]
- Laser Shock Peening: Fundamentals and Mechanisms of Metallic Material Wear Resistance Improvement. Available online: https://www.mdpi.com/1996-1944/17/4/909?utm_source=chatgpt.com (accessed on 21 June 2025).
- Liu, Z.; Ren, S.; Li, T.; Chen, P.; Hu, L.; Wu, W.; Li, S.; Liu, H.; Li, R.; Zhang, Y. A Comparison Study on the Microstructure, Mechanical Features, and Tribological Characteristics of TiN Coatings on Ti6Al4V Using Different Deposition Techniques. Coatings 2024, 14, 156. [Google Scholar] [CrossRef]
- Farokhzadeh, K.; Qian, J.; Edrisy, A. Effect of SPD Surface Layer on Plasma Nitriding of Ti-6Al-4V Alloy. Mater. Sci. Eng. A 2014, 589, 199–208. [Google Scholar] [CrossRef]
- Liu, G.; Leng, K.; He, X.; Tang, L.; Gao, W.; Fu, Y. Microstructure Evolution of Ti-6Al-4V under Cold Rolling + Low Temperature Nitriding Process. Prog. Nat. Sci. Mater. Int. 2022, 32, 424–432. [Google Scholar] [CrossRef]
- Zha, X.; Yuan, Z.; Qin, H.; Xi, L.; Guo, Y.; Xu, Z.; Dai, X.; Jiang, F. Investigating the Dynamic Mechanical Properties and Strengthening Mechanisms of Ti-6Al-4V Alloy by Using the Ultrasonic Surface Rolling Process. Materials 2024, 17, 1382. [Google Scholar] [CrossRef] [PubMed]
- Aringozhina, Z.; Magazov, N.; Rakhadilov, B.; Uazyrkhanova, G.; Amanov, A. Effect of Ultrasonic Nanocrystalline Surface Modification on Hardness and Elastic Modulus of Ti-6Al-4V Alloy. AIMS Mater. Sci. 2025, 12, 101–117. [Google Scholar] [CrossRef]
- Sun, W.; Song, Z.; Liu, H.; Wang, J.; Liu, C.; Si, C. Effect of Surface Nanocrystallization Pretreatment on the Microstructure and Fretting Wear of Ti-6Al-4V Titanium Alloy Plasma Nitrided Layer. Mater. Charact. 2025, 223, 114884. [Google Scholar] [CrossRef]
- Mogucheva, A.; Yuzbekova, D.; Lebedkina, T.; Lebyodkin, M.; Kaibyshev, R. Influence of Severe Plastic Deformation on Mechanical Properties of an AA5024 Alloy. Mater. Sci. Forum 2017, 879, 1317–1322. [Google Scholar] [CrossRef]
- Vasylyev, M.A.; Chenakin, S.P.; Yatsenko, L.F. Nitridation of Ti6Al4V Alloy under Ultrasonic Impact Treatment in Liquid Nitrogen. Acta Mater. 2012, 60, 6223–6233. [Google Scholar] [CrossRef]
- Amanov, A. Advancement of Tribological Properties of Ti-6Al-4V Alloy Fabricated by Selective Laser Melting. Tribol. Int. 2021, 155, 106806. [Google Scholar] [CrossRef]
- Reshadi, F.; Faraji, G.; Baniassadi, M.; Tajeddini, M. Surface Modification of Severe Plastically Deformed Ultrafine Grained Pure Titanium by Plasma Electrolytic Oxidation. Surf. Coat. Technol. 2017, 316, 113–121. [Google Scholar] [CrossRef]
- Ongtrakulkij, G.; Kajornchaiyakul, J.; Kondoh, K.; Khantachawana, A. Investigation of Microstructure, Residual Stress, and Hardness of Ti-6Al-4V after Plasma Nitriding Process with Different Times and Temperatures. Coatings 2022, 12, 1932. [Google Scholar] [CrossRef]
- Hsu, H.-C.; Lin, Y.-C.; Chen, J.-X. Wear and Corrosion Performance of Ti-6Al-4V Alloy Arc-Coated TiN/CrN Nano-Multilayer Film. Metals 2023, 13, 907. [Google Scholar] [CrossRef]
Source | Method | Key Parameters | Surface Hardness (HV) | Elastic Modulus (GPa) | Wear/Corrosion/Fatigue Resistance | Key Findings |
---|---|---|---|---|---|---|
Aringozhina et al. (2025) [20] | EA-UNSM | Amplitude 30 µm, Load 40–60 N | 394 → 475 (+20%) | ~156 | ↑ fatigue strength (~8%), ↑ wear resistance | Grain refinement, improved mechanical properties |
Zha et al. (2024) [19] | Ultrasonic Surface Rolling | 32 kHz, Load ~400 N | 325 → 451 | 124 → 139 | Better dynamic mechanical behavior | Nanocrystallization, work hardening |
Wang et al. (2021) [8] | Shot Peening + Gas Nitriding | Pre-shot peening, 700–800 °C | Up to 1100 (on steel) | — | ↑ wear resistance | Shot peening aids nitriding depth |
Zhang et al. (2023) [4] | HCPSN Nitriding | 510 °C, 1–4 h | — | — | ↑ corrosion resistance (Hank’s solution) | TiN/Ti2N + α-Ti(N), stable in solution |
Ongtrakulkij et al. (2022) [26] | Plasma Ion Nitriding | 750–800 °C, 5–10 h | Up to 643 | — | ↑ compressive stress, ↑ fatigue resistance | Dense nitrided layer, better stability |
Hsu et al. (2023) [27] | CAD-PVD (TiN/CrN Multilayer) | Bias −150 V | 3–5× increase | — | Excellent wear and corrosion resistance | Multilayers enhance protective properties |
Element | Ti | Al | V | Fe | O | C | N | H |
---|---|---|---|---|---|---|---|---|
Content (wt.%) | bal. | 5.5–6.75 | 3.5–4.5 | ≤0.30 | ≤0.20 | ≤0.08 | ≤0.05 | ≤0.015 |
Samples | Sample Designation | Processing Conditions |
---|---|---|
S0 | initial | initial |
S1 | UNSM-only | UNSM (20 μm, 30 N, RT) |
S2 | UNSM-only | UNSM (30 μm, 30 N, RT) |
S3 | UNSM-only | UNSM (30 μm, 50 N, 400 °C) |
S4 | UNSM-only | UNSM (30 μm, 60 N, 400 °C) |
S0N | nitrided | nitrided |
S1N | Combined | S1+ nitrided |
S2N | Combined | S2+ nitrided |
S3N | Combined | S3+ nitrided |
S4N | Combined | S4+ nitrided |
Source | Method | Surface Hardness (HV) | Elastic Modulus (GPa) | Wear Resistance | Key Findings |
---|---|---|---|---|---|
This work (S4N) | UNSM + IPN | 475 HV | 156 GPa | High | Stable friction (0.55), dense TiN layer |
Aringozhina et al. [20] | EA-UNSM | 475 HV | 156 GPa | Improved | Fatigue ↑8%, grain refinement |
Zha et al. (2024) [19] | USRP | 451 HV | 139 GPa | Improved | Nanocrystallization |
Wang et al. (2021) [8] | Shot Peening + Gas Nitriding | 1100 HV (on steel) | — | Improved | Shot peening aids nitriding depth |
Zhang et al. (2023) [4] | HCPSN Nitriding | — | — | Corrosion resistance ↑ | TiN/Ti2N + α-Ti(N), stable |
Hsu et al. (2023) [27] | TiN/CrN Multilayer PVD | 3–5× increase | — | Excellent | Multilayers improve protection |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rakhadilov, B.; Magazov, N.; Aringozhina, Z.; Uazyrkhanova, G.; Uazyrkhanova, Z.; Amanov, A. Effects of Ultrasonic Nanocrystal Surface Modification on the Formation of a Nitride Layer in Ti-6Al-4V Alloy. Materials 2025, 18, 3487. https://doi.org/10.3390/ma18153487
Rakhadilov B, Magazov N, Aringozhina Z, Uazyrkhanova G, Uazyrkhanova Z, Amanov A. Effects of Ultrasonic Nanocrystal Surface Modification on the Formation of a Nitride Layer in Ti-6Al-4V Alloy. Materials. 2025; 18(15):3487. https://doi.org/10.3390/ma18153487
Chicago/Turabian StyleRakhadilov, Bauyrzhan, Nurtoleu Magazov, Zarina Aringozhina, Gulzhaz Uazyrkhanova, Zhuldyz Uazyrkhanova, and Auezhan Amanov. 2025. "Effects of Ultrasonic Nanocrystal Surface Modification on the Formation of a Nitride Layer in Ti-6Al-4V Alloy" Materials 18, no. 15: 3487. https://doi.org/10.3390/ma18153487
APA StyleRakhadilov, B., Magazov, N., Aringozhina, Z., Uazyrkhanova, G., Uazyrkhanova, Z., & Amanov, A. (2025). Effects of Ultrasonic Nanocrystal Surface Modification on the Formation of a Nitride Layer in Ti-6Al-4V Alloy. Materials, 18(15), 3487. https://doi.org/10.3390/ma18153487