Modulated Degradation of Polylactic Acid Electrospun Coating on WE43 Stents
Abstract
:1. Introduction
Substrate Magnesium Alloy | Substrate Geometry | Additional Pre-Treatment Coating Material | Polymer Coating Method | Application | Ref. |
---|---|---|---|---|---|
AZ91 | - | - PLA | Spin coating | Orthopedic | [21] |
AM50 | Disks | - PLA | Dip coating and Electrospinning | Orthopedic and cardiovascular | [16] |
AZ31 | Plates | Micro-arc oxidation (MAO) PLA | Dip coating | Orthopedic | [22] |
AZ31 | Disks | Electro-deposition, alkali-heat-treatment and sol-gel (TiO3) HA, HA/PLA, and HA/CaTiO3/TiO2/PLA | Dip coating | Orthopedic | [23] |
Mg−Nd−Zn−Zr (JDBM) | Disks | Conversion coating (hydrofluoric acid) PLA and dicalcium phosphate dihydrate (brushite, DCPD) | Dip coating | Orthopedic | [24] |
Pure Mg | Rods | - PLLA | Dip coating | Orthopedic | [25] |
Mg-Ca | Squares | - Poly-L-lactic acid (PLLA), åkermanite (AKT; Ca2MgSi2O7) and doxycycline (DOXY) | Electrospinning | Orthopedic | [26] |
AZ31 | Squares | - PLA | Electrospinning | Cardiovascular | [27] |
AZ31 | Squares | Fluorine conversion coating PLLA | Ultrasonic atomization | Cardiovascular stent | [17] |
AZ31B and AZ31 | Disks and stents | Hydrofluoric acid (HA), poly(butyl acrylate (PBA), and poly(d,L-lactide) PDLLA | Dip coating and Ultrasonic atomization | Coronary stent | [28] |
AM50 | Plates | - PLA | Fused Deposition Modeling (FDM) | Orthopedic | [29] |
Mg–Zn–Mn | Squares | Alkali solution (NaOH) PLA | Sol-gel | Orthopedic | [18] |
Mg–2.2Zn–0.3Ca | Wires | Fluoride passivation (MgF2) PLA | Dip coating | General implants | [20] |
AM60 | Plates | Glue stick of cyanoacrylate PLA | Fused filament fabrication modeling (FFF) | General implants | [19] |
WE43 | Squares | CaP coating PLA | Dip coating | Orthopedic | [30] |
WE43 | Coronary stents | Acid pickling PLA | Electrospinning | Coronary stent | This study |
2. Materials and Methods
2.1. Materials and Samples Geometry
2.2. Acid Pickling
2.3. Electrospinning
2.4. Immersion Test
2.5. In Vitro Biocompatibility
3. Results and Discussion
3.1. Stent Surface Preparation
3.2. Electropun Fibers Production
3.3. Degradation Test
3.4. In Vitro Cell Testing
4. Conclusions
- Stents coated with PLA fibers via electrospinning showed an average fiber diameter of 0.841 ± 0.333 μm and a coating thickness of approximately 23 μm.
- Data on corrosion behavior and magnesium ion release indicated a significant reduction in the degradation rate in coated stents compared to uncoated ones.
- Morphological and chemical composition analyses confirmed the stability of the PLA coating during the immersion period.
- The PLA coating modulates the degradation behavior of the magnesium by regulating the release of Mg2+ ions, minimizing drastic pH changes that could compromise cell viability.
- In vitro biocompatibility confirmed that PLA-coated stents are non-toxic, promoting cell adhesion and proliferation, supporting a more favorable environment for vascular healing.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Mg | Magnesium |
PLA | Polylactic acid |
CLF | Chloroform |
AC | Acetone |
SEM | Scanning electron microscope |
EDS | Energy-dispersive spectrometer |
HDFa | Human dermal fibroblasts |
DMEM | Dulbecco’s Modified Eagle’s Medium |
FBS | Fetal bovine serum |
PBS | Phosphate-buffered saline |
CR | Corrosion rate |
References
- Huang, W.; Huo, M.; Cheng, N.; Wang, R. New Forms of Electrospun Nanofibers Applied in Cardiovascular Field. Front. Cardiovasc. Med. 2022, 8, 801077. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Song, J.; Peng, Y. New insights and perspectives into biodegradable metals in cardiovascular stents: A mini review. J. Alloys Compd. 2024, 1002, 175313. [Google Scholar] [CrossRef]
- Zhang, Z.-Q.; Li, B.-Z.; Tong, P.-D.; Guan, S.-K.; Wang, L.; Qiu, Z.-H.; Lin, C.-G.; Zeng, R.-C. Degradation and biocompatibility of one-step electrodeposited magnesium thioctic acid/magnesium hydroxide hybrid coatings on ZE21B alloys for cardiovascular stents. J. Magnes. Alloys 2024, 12, 120–138. [Google Scholar] [CrossRef]
- Patel, S.; Patel, K.B.; Patel, Z.; Konat, A.; Patel, A.; Doshi, J.S.; Chokshi, P.; Sharma, K.; Amdani, M.M.; Shah, D.B.; et al. Evolving Coronary Stent Technologies—A Glimpse into the Future. Cureus 2023, 15, e35651. [Google Scholar] [CrossRef]
- Saberi, A.; Bakhsheshi-Rad, H.R.; Abazari, S.; Ismail, A.F.; Sharif, S.; Ramakrishna, S.; Daroonparvar, M.; Berto, F. A comprehensive review on surface modifications of biodegradable magnesium-based implant alloy: Polymer coatings opportunities and challenges. Coatings 2021, 11, 747. [Google Scholar] [CrossRef]
- Dinc, R.; Ekingen, E. Biodegradable Stents in the Treatment of Arterial Stenosis. J. Clin. Med. 2025, 14, 532. [Google Scholar] [CrossRef]
- Zhao, Z.; Zong, L.; Liu, C.; Wang, C.; Qi, C.; Wang, N.; Chen, H.; Wang, J.; Jian, X. Dual strengthened corrosion control of biodegradable coating on magnesium alloy for vascular stent application. Prog. Org. Coat. 2023, 174, 107297. [Google Scholar] [CrossRef]
- Staiger, M.P.; Pietak, A.M.; Huadmai, J.; Dias, G. Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials 2006, 27, 1728–1734. [Google Scholar] [CrossRef]
- Nachtsheim, J.; Burja, J.; Ma, S.; Markert, B. Long-Term in Vitro Corrosion of Biodegradable WE43 Magnesium Alloy in DMEM. Metals 2022, 12, 2062. [Google Scholar] [CrossRef]
- Zhou, X.; Jiang, L.; Wu, P.; Sun, Y.; Yu, Y.; Wei, G.; Ge, H. Effect of aggressive ions on degradation of WE43 magnesium alloy in physiological environment. Int. J. Electrochem. Sci. 2014, 9, 304–314. [Google Scholar] [CrossRef]
- Nachtsheim, J.; Ma, S.; Burja, J.; Kopp, A.; Seitz, J.M.; Markert, B. In vitro corrosion-fatigue behaviour of rare-earth containing magnesium WE43 in sterile complex cell culture medium. Int. J. Fatigue 2024, 188, 108531. [Google Scholar] [CrossRef]
- Loperena, A.P.; Saidman, S.B.; López, A.D.F.; Brugnoni, L.I.; Lehr, I.L. Corrosion protection and antibacterial performance of a chitosan/salicylate coating electrogenerated on a magnesium alloy. Results Surf. Interfaces 2024, 16, 100244. [Google Scholar] [CrossRef]
- Sivashanmugam, N.; Harikrishna, K.L. A Review on the Corrosion Performance of Magnesium Alloys in Biomedical Applications. Eng. Proc. 2024, 61, 19. [Google Scholar] [CrossRef]
- Udriște, A.S.; Burdușel, A.C.; Niculescu, A.G.; Rădulescu, M.; Grumezescu, A.M. Coatings for Cardiovascular Stents—An Up-to-Date Review. Int. J. Mol. Sci. 2024, 25, 1078. [Google Scholar] [CrossRef]
- Keerthiga, G.; Prasad, M.J.N.V.; Vijayshankar, D.; Raman, R.K.S. Polymeric Coatings for Magnesium Alloys for Biodegradable Implant Application: A Review. Materials 2023, 16, 4700. [Google Scholar] [CrossRef]
- Abdal-hay, A.; Barakat, N.A.M.; Lim, J.K. Influence of electrospinning and dip-coating techniques on the degradation and cytocompatibility of Mg-based alloy. Colloids Surf. A Physicochem. Eng. Asp. 2013, 420, 37–45. [Google Scholar] [CrossRef]
- Peng, W.; Chen, Y.; Fan, H.; Chen, S.; Wang, H.; Song, X. A Novel PLLA/MgF2 Coating on Mg Alloy by Ultrasonic Atomization Spraying for Controlling Degradation and Improving Biocompatibility. Materials 2023, 16, 682. [Google Scholar] [CrossRef]
- Kumar, P.; Anne, G.; Ramesh, M.R.; Doddamani, M.; Prabhu, A. Enhancing the functionality of biodegradable Mg–Zn–Mn alloys using poly(lactic) acid (PLA) coating for temporary implants. J. Coat. Technol. Res. 2024, 21, 1525–1537. [Google Scholar] [CrossRef]
- Mardani, N.; Tajally, M.; Azadi, M.; Azadi, M. Electrochemical investigations of PLA coatings deposited by fused filament fabrication on magnesium alloy in Ringer’s solution. Int. J. Electrochem. Sci. 2024, 19, 100578. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, H.; Chen, S.; Zhu, C.; Wang, M.; Chen, K. Comparative investigation on corrosion resistance of MgF2 coated, PLA coated and composite coated biodegradable magnesium alloy wires for medical application. Vacuum 2024, 222, 113021. [Google Scholar] [CrossRef]
- Alabbasi, A.; Liyanaarachchi, S.; Kannan, M.B. Polylactic acid coating on a biodegradable magnesium alloy: An in vitro degradation study by electrochemical impedance spectroscopy. Thin Solid Films 2012, 520, 6841–6844. [Google Scholar] [CrossRef]
- Shi, P.; Niu, B.; Shanshan, E.; Chen, Y.; Li, Q. Preparation and characterization of PLA coating and PLA/MAO composite coatings on AZ31 magnesium alloy for improvement of corrosion resistance. Surf. Coat. Technol. 2015, 262, 26–32. [Google Scholar] [CrossRef]
- Li, B.; Zhang, K.; Yang, W.; Yin, X.; Liu, Y. Enhanced corrosion resistance of HA/CaTiO3/TiO2/PLA coated AZ31 alloy. J. Taiwan Inst. Chem. Eng. 2016, 59, 465–473. [Google Scholar] [CrossRef]
- Zhang, L.; Pei, J.; Wang, H.; Shi, Y.; Niu, J.; Yuan, F.; Huang, H.; Zhang, H.; Yuan, G. Facile Preparation of Poly(lactic acid)/Brushite Bilayer Coating on Biodegradable Magnesium Alloys with Multiple Functionalities for Orthopedic Application. ACS Appl. Mater. Interfaces 2017, 9, 9437–9448. [Google Scholar] [CrossRef]
- Sheng, Y.; Tian, L.; Wu, C.; Qin, L.; Ngai, T. Biodegradable Poly(l-lactic acid) (PLLA) Coatings Fabricated from Nonsolvent Induced Phase Separation for Improving Corrosion Resistance of Magnesium Rods in Biological Fluids. Langmuir 2018, 34, 10684–10693. [Google Scholar] [CrossRef]
- Bakhsheshi-Rad, H.R.; Akbari, M.; Ismail, A.F.; Aziz, M.; Hadisi, Z.; Pagan, E.; Daroonparvar, M.; Chen, X. Coating biodegradable magnesium alloys with electrospun poly-L-lactic acid-åkermanite-doxycycline nanofibers for enhanced biocompatibility, antibacterial activity, and corrosion resistance. Surf. Coat. Technol. 2019, 377, 124898. [Google Scholar] [CrossRef]
- Voicu, M.E.; Demetrescu, I.; Dorobantu, A.; Enachescu, M.; Buica, G.O.; Ionita, D. Interaction of Mg Alloy with PLA Electrospun Nanofibers Coating in Understanding Changes of Corrosion, Wettability, and pH. Nanomaterials 2022, 12, 1369. [Google Scholar] [CrossRef]
- Shi, L.; Chen, S.; Zheng, F.; Liu, M.; Yang, H.; Zhang, B. Corrosion resistance evaluation of biodegradable magnesium alloy vascular stents optimized by mechanical adapted polymer coating strategy. Colloids Surf. A Physicochem. Eng. Asp. 2023, 658, 130664. [Google Scholar] [CrossRef]
- Cesarz-Andraczke, K.; Pałka, K.; Skonieczna, M. A new method of applying PLA coatings on the surface of magnesium alloy using the FDM technique. Surf. Coat. Technol. 2024, 479, 130462. [Google Scholar] [CrossRef]
- Paspelau, A.V.; Kasach, A.A.; Gurgul, J.; Mordarski, G.; Skowron, K.; Kurilo, I.I.; Kharytonau, D.S. Deposition and corrosion performance of phosphate-polylactic acid composite coatings on WE43 magnesium alloy. Surf. Coat. Technol. 2024, 478, 130419. [Google Scholar] [CrossRef]
- Fotovvati, B.; Namdari, N.; Dehghanghadikolaei, A. On coating techniques for surface protection: A review. J. Manuf. Mater. Process. 2019, 3, 28. [Google Scholar] [CrossRef]
- Macías-Naranjo, M.; Sánchez-Domínguez, M.; Rubio-Valle, J.F.; Rodríguez, C.A.; Martín-Alfonso, J.E.; García-López, E.; Vazquez-Lepe, E. A Study of PLA Thin Film on SS 316L Coronary Stents Using a Dip Coating Technique. Polymers 2024, 16, 284. [Google Scholar] [CrossRef] [PubMed]
- Macías-Naranjo, M.; García-López, E.; Segura-Ibarra, V.; Rodriguez, C.A.; Vázquez-Lepe, E. A novel low-cost spray coating machine for PLA solution on tubular metallic geometries. Procedia CIRP 2024, 125, 72–77. [Google Scholar] [CrossRef]
- Macías-Naranjo, M.; Sánchez-Domínguez, M.; Rodríguez, C.A.; García-López, E.; Vazquez-Lepe, E. Electrospinning of PLA Nanofibers for Coronary Stents: Influence of Solution Properties and Process Parameters. J. Appl. Polym. Sci. 2025, 142, e57064. [Google Scholar] [CrossRef]
- Nwaogu, U.C.; Blawert, C.; Scharnagl, N.; Dietzel, W.; Kainer, K.U. Effects of organic acid pickling on the corrosion resistance of magnesium alloy AZ31 sheet. Corros. Sci. 2010, 52, 2143–2154. [Google Scholar] [CrossRef]
- Nwaogu, U.C.; Blawert, C.; Scharnagl, N.; Dietzel, W.; Kainer, K.U. Influence of inorganic acid pickling on the corrosion resistance of magnesium alloy AZ31 sheet. Corros. Sci. 2009, 51, 2544–2556. [Google Scholar] [CrossRef]
- Milleret, V.; Hefti, T.; Hall, H.; Vogel, V.; Eberli, D. Influence of the fiber diameter and surface roughness of electrospun vascular grafts on blood activation. Acta Biomater. 2012, 8, 4349–4356. [Google Scholar] [CrossRef]
- Liu, C.; Xin, Y.; Tang, G.; Chu, P.K. Influence of heat treatment on degradation behavior of bio-degradable die-cast AZ63 magnesium alloy in simulated body fluid. Mater. Sci. Eng. A 2007, 456, 350–357. [Google Scholar] [CrossRef]
- Nachtsheim, J.; Ma, S.; Burja, J.; Batič, B.Š.; Markert, B. Tuning the long-term corrosion behaviour of biodegradable WE43 magnesium alloy by PEO coating. Surf. Coat. Technol. 2023, 474, 130115. [Google Scholar] [CrossRef]
- Ascencio, M.; Pekguleryuz, M.; Omanovic, S. An investigation of the corrosion mechanisms of WE43 Mg alloy in a modified simulated body fluid solution: The influence of immersion time. Corros. Sci. 2014, 87, 489–503. [Google Scholar] [CrossRef]
- Xue, D.; Yun, Y.; Tan, Z.; Dong, Z.; Schulz, M.J. In Vivo and In Vitro Degradation Behavior of Magnesium Alloys as Biomaterials. J. Mater. Sci. Technol. 2012, 28, 261–267. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Z.; Wang, Y.; Sun, T.; Ba, Z. Corrosion Resistance of Mg(OH)2/Mn(OH)2 Hydroxide Film on ZK60 Mg Alloy. Metals 2022, 12, 1760. [Google Scholar] [CrossRef]
- Ahmadi, H.; Haddadi-Asl, V.; Mohammadloo, H.E. Advancing anticorrosion and antibacterial performance of mg AZ31 implants using novel pH-responsive polymeric surfactant for preparing PLGA nanoparticles. Surf. Coat. Technol. 2024, 482, 130738. [Google Scholar] [CrossRef]
- ASTM International. Guide for Laboratory Immersion Corrosion Testing of Metals; ASTM International: West Conshohocken, PA, USA, 1 July 2012. [Google Scholar] [CrossRef]
- Kumar, G.; Preetam, S.; Pandey, A.; Birbilis, N.; Al-Saadi, S.; Pasbakhsh, P.; Zheludkevich, M.; Balan, P. Advances in magnesium-based bioresorbable cardiovascular stents: Surface engineering and clinical prospects. J. Magnes. Alloys 2025, 13, 948–981. [Google Scholar] [CrossRef]
- Mao, L.; Shen, L.; Chen, J.; Wu, Y.; Kwak, M.; Lu, Y.; Xue, Q.; Pei, J.; Zhang, L.; Yuan, G.; et al. Enhanced bioactivity of Mg-Nd-Zn-Zr alloy achieved with nanoscale MgF2 surface for vascular stent application. ACS Appl. Mater. Interfaces 2015, 7, 5320–5330. [Google Scholar] [CrossRef]
- Lewis, G. Reduction in the Corrosion Rate of Magnesium and Magnesium Alloy Specimens and Implications for Plain Fully Bioresorbable Coronary Artery Stents: A Review. World J. Eng. Technol. 2016, 4, 572–597. [Google Scholar] [CrossRef]
- Diez, M.; Kang, M.H.; Kim, S.M.; Kim, H.E.; Song, J. Hydroxyapatite (HA)/poly-l-lactic acid (PLLA) dual coating on magnesium alloy under deformation for biomedical applications. J. Mater. Sci. Mater. Med. 2016, 27, 1–9. [Google Scholar] [CrossRef]
- Uscátegui, Y.L.; Díaz, L.E.; Valero, M.F. In vitro and in vivo biocompatibility of polyurethanes synthesized with castor oil polyols for biomedical devices. J. Mater. Res. 2019, 34, 519–531. [Google Scholar] [CrossRef]
- Dohle, E.; Fecht, T.; Wolfram, T.; Reinauer, F.; Wunder, A.; Heppe, K.; Sader, R.; Kirkpatrick, C.J.; Ghanaati, S. In Vitro Coculture of Primary Human Cells to Analyze Angiogenesis, Osteogenesis, and the Inflammatory Response to Newly Developed Osteosynthesis Material for Pediatric Maxillofacial Traumatology: A Potential Pretesting Model before In Vivo Experiments. J. Tissue Eng. Regen. Med. 2023, 2023, 4040504. [Google Scholar] [CrossRef]
- Morozov, A.G.; Razborov, D.A.; Egiazaryan, T.A.; Baten’kin, M.A.; Aleynik, D.Y.; Egorikhina, M.N.; Rubtsova, Y.P.; Charikova, I.N.; Chesnokov, S.A.; Fedushkin, I.L. In Vitro Study of Degradation Behavior, Cytotoxicity, and Cell Adhesion of the Atactic Polylactic Acid for Biomedical Purposes. J. Polym. Environ. 2020, 28, 2652–2660. [Google Scholar] [CrossRef]
- Lampe, K.J.; Bjugstad, K.B.; Mahoney, M.J. Impact of Degradable Macromer Content in a Poly(Ethylene Glycol) Hydrogel on Neural Cell Metabolic Activity, Redox State, Proliferation, and Differentiation. Tissue Eng. Part A 2010, 16, 1857–1866. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macías-Naranjo, M.; Antunes-Ricardo, M.; Moreno González, C.; De la Peña Aguirre, A.N.; Rodríguez, C.A.; García-López, E.; Vazquez-Lepe, E. Modulated Degradation of Polylactic Acid Electrospun Coating on WE43 Stents. Polymers 2025, 17, 1510. https://doi.org/10.3390/polym17111510
Macías-Naranjo M, Antunes-Ricardo M, Moreno González C, De la Peña Aguirre AN, Rodríguez CA, García-López E, Vazquez-Lepe E. Modulated Degradation of Polylactic Acid Electrospun Coating on WE43 Stents. Polymers. 2025; 17(11):1510. https://doi.org/10.3390/polym17111510
Chicago/Turabian StyleMacías-Naranjo, Mariana, Marilena Antunes-Ricardo, Christopher Moreno González, Andrea Noelia De la Peña Aguirre, Ciro A. Rodríguez, Erika García-López, and Elisa Vazquez-Lepe. 2025. "Modulated Degradation of Polylactic Acid Electrospun Coating on WE43 Stents" Polymers 17, no. 11: 1510. https://doi.org/10.3390/polym17111510
APA StyleMacías-Naranjo, M., Antunes-Ricardo, M., Moreno González, C., De la Peña Aguirre, A. N., Rodríguez, C. A., García-López, E., & Vazquez-Lepe, E. (2025). Modulated Degradation of Polylactic Acid Electrospun Coating on WE43 Stents. Polymers, 17(11), 1510. https://doi.org/10.3390/polym17111510