Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (594)

Search Parameters:
Keywords = intelligent electric vehicles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
51 pages, 4099 KiB  
Review
Artificial Intelligence and Digital Twin Technologies for Intelligent Lithium-Ion Battery Management Systems: A Comprehensive Review of State Estimation, Lifecycle Optimization, and Cloud-Edge Integration
by Seyed Saeed Madani, Yasmin Shabeer, Michael Fowler, Satyam Panchal, Hicham Chaoui, Saad Mekhilef, Shi Xue Dou and Khay See
Batteries 2025, 11(8), 298; https://doi.org/10.3390/batteries11080298 - 5 Aug 2025
Abstract
The rapid growth of electric vehicles (EVs) and new energy systems has put lithium-ion batteries at the center of the clean energy change. Nevertheless, to achieve the best battery performance, safety, and sustainability in many changing circumstances, major innovations are needed in Battery [...] Read more.
The rapid growth of electric vehicles (EVs) and new energy systems has put lithium-ion batteries at the center of the clean energy change. Nevertheless, to achieve the best battery performance, safety, and sustainability in many changing circumstances, major innovations are needed in Battery Management Systems (BMS). This review paper explores how artificial intelligence (AI) and digital twin (DT) technologies can be integrated to enable the intelligent BMS of the future. It investigates how powerful data approaches such as deep learning, ensembles, and models that rely on physics improve the accuracy of predicting state of charge (SOC), state of health (SOH), and remaining useful life (RUL). Additionally, the paper reviews progress in AI features for cooling, fast charging, fault detection, and intelligible AI models. Working together, cloud and edge computing technology with DTs means better diagnostics, predictive support, and improved management for any use of EVs, stored energy, and recycling. The review underlines recent successes in AI-driven material research, renewable battery production, and plans for used systems, along with new problems in cybersecurity, combining data and mass rollout. We spotlight important research themes, existing problems, and future drawbacks following careful analysis of different up-to-date approaches and systems. Uniting physical modeling with AI-based analytics on cloud-edge-DT platforms supports the development of tough, intelligent, and ecologically responsible batteries that line up with future mobility and wider use of renewable energy. Full article
Show Figures

Figure 1

19 pages, 3154 KiB  
Article
Optimizing the Operation of Local Energy Communities Based on Two-Stage Scheduling
by Ping He, Lei Zhou, Jingwen Wang, Zhuo Yang, Guozhao Lv, Can Cai and Hongbo Zou
Processes 2025, 13(8), 2449; https://doi.org/10.3390/pr13082449 - 2 Aug 2025
Viewed by 262
Abstract
Flexible energy sources such as electric vehicles and the battery energy storage systems of intelligent distribution systems can provide system-wide auxiliary services such as frequency regulation for power systems. This paper proposes an optimal method for operating the local energy community that is [...] Read more.
Flexible energy sources such as electric vehicles and the battery energy storage systems of intelligent distribution systems can provide system-wide auxiliary services such as frequency regulation for power systems. This paper proposes an optimal method for operating the local energy community that is based on two-stage scheduling. Firstly, the basic concepts of the local energy community and flexible service are introduced in detail. Taking LEC as the reserve unit of artificial frequency recovery, an energy information interaction model among LEC, balance service providers, and the power grid is established. Then, a two-stage scheduling framework is proposed to ensure the rationality and economy of community energy scheduling. In the first stage, day-ahead scheduling uses the energy community management center to predict the up/down flexibility capacity that LEC can provide by adjusting the BESS control parameters. In the second stage, real-time scheduling aims at maximizing community profits and scheduling LEC based on the allocation and activation of standby flexibility determined in real time. Finally, the correctness of the two-stage scheduling framework is verified through a case study. The results show that the control parameters used in the day-ahead stage can significantly affect the real-time profitability of LEC, and that LEC benefits more in the case of low BESS utilization than in the case of high BESS utilization and non-participation in frequency recovery reserve. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

22 pages, 16421 KiB  
Article
Deep Neural Network with Anomaly Detection for Single-Cycle Battery Lifetime Prediction
by Junghwan Lee, Longda Wang, Hoseok Jung, Bukyu Lim, Dael Kim, Jiaxin Liu and Jong Lim
Batteries 2025, 11(8), 288; https://doi.org/10.3390/batteries11080288 - 30 Jul 2025
Viewed by 525
Abstract
Large-scale battery datasets often contain anomalous data due to sensor noise, communication errors, and operational inconsistencies, which degrade the accuracy of data-driven prognostics. However, many existing studies overlook the impact of such anomalies or apply filtering heuristically without rigorous benchmarking, which can potentially [...] Read more.
Large-scale battery datasets often contain anomalous data due to sensor noise, communication errors, and operational inconsistencies, which degrade the accuracy of data-driven prognostics. However, many existing studies overlook the impact of such anomalies or apply filtering heuristically without rigorous benchmarking, which can potentially introduce biases into training and evaluation pipelines. This study presents a deep learning framework that integrates autoencoder-based anomaly detection with a residual neural network (ResNet) to achieve state-of-the-art prediction of remaining useful life at the cycle level using only a single-cycle input. The framework systematically filters out anomalous samples using multiple variants of convolutional and sequence-to-sequence autoencoders, thereby enhancing data integrity before optimizing and training the ResNet-based models. Benchmarking against existing deep learning approaches demonstrates a significant performance improvement, with the best model achieving a mean absolute percentage error of 2.85% and a root mean square error of 40.87 cycles, surpassing prior studies. These results indicate that autoencoder-based anomaly filtering significantly enhances prediction accuracy, reinforcing the importance of systematic anomaly detection in battery prognostics. The proposed method provides a scalable and interpretable solution for intelligent battery management in electric vehicles and energy storage systems. Full article
(This article belongs to the Special Issue Machine Learning for Advanced Battery Systems)
Show Figures

Figure 1

23 pages, 2295 KiB  
Article
A Two-Stage Sustainable Optimal Scheduling Strategy for Multi-Contract Collaborative Distributed Resource Aggregators
by Lei Su, Wanli Feng, Cao Kan, Mingjiang Wei, Rui Su, Pan Yu and Ning Zhang
Sustainability 2025, 17(15), 6767; https://doi.org/10.3390/su17156767 - 25 Jul 2025
Viewed by 266
Abstract
To address the challenges posed by the instability of renewable energy output and load fluctuations on grid operations and to support the low-carbon sustainable development of the energy system, this paper integrates artificial intelligence technology to establish an economic stability dispatch framework for [...] Read more.
To address the challenges posed by the instability of renewable energy output and load fluctuations on grid operations and to support the low-carbon sustainable development of the energy system, this paper integrates artificial intelligence technology to establish an economic stability dispatch framework for distributed resource aggregators. A phased multi-contract collaborative scheduling model oriented toward sustainable development is proposed. Through intelligent algorithms, the model dynamically optimises decisions across the day-ahead and intraday phases: During the day-ahead scheduling phase, intelligent algorithms predict load demand and energy output, and combine with elastic performance-based response contracts to construct a user-side electricity consumption behaviour intelligent control model. Under the premise of ensuring user comfort, the model generates a 24 h scheduling plan with the objectives of minimising operational costs and efficiently integrating renewable energy. In the intraday scheduling phase, a rolling optimisation mechanism is used to activate energy storage capacity contracts and dynamic frequency stability contracts in real time based on day-ahead prediction deviations. This efficiently coordinates the intelligent frequency regulation strategies of energy storage devices and electric vehicle aggregators to quickly mitigate power fluctuations and achieve coordinated control of primary and secondary frequency regulation. Case study results indicate that the intelligent optimisation-driven multi-contract scheduling model significantly improves system operational efficiency and stability, reduces system operational costs by 30.49%, and decreases power purchase fluctuations by 12.41%, providing a feasible path for constructing a low-carbon, resilient grid under high renewable energy penetration. Full article
Show Figures

Figure 1

23 pages, 13580 KiB  
Article
Enabling Smart Grid Resilience with Deep Learning-Based Battery Health Prediction in EV Fleets
by Muhammed Cavus and Margaret Bell
Batteries 2025, 11(8), 283; https://doi.org/10.3390/batteries11080283 - 24 Jul 2025
Viewed by 294
Abstract
The widespread integration of electric vehicles (EVs) into smart grid infrastructures necessitates intelligent and robust battery health diagnostics to ensure system resilience and performance longevity. While numerous studies have addressed the estimation of State of Health (SOH) and the prediction of remaining useful [...] Read more.
The widespread integration of electric vehicles (EVs) into smart grid infrastructures necessitates intelligent and robust battery health diagnostics to ensure system resilience and performance longevity. While numerous studies have addressed the estimation of State of Health (SOH) and the prediction of remaining useful life (RUL) using machine and deep learning, most existing models fail to capture both short-term degradation trends and long-range contextual dependencies jointly. In this study, we introduce V2G-HealthNet, a novel hybrid deep learning framework that uniquely combines Long Short-Term Memory (LSTM) networks with Transformer-based attention mechanisms to model battery degradation under dynamic vehicle-to-grid (V2G) scenarios. Unlike prior approaches that treat SOH estimation in isolation, our method directly links health prediction to operational decisions by enabling SOH-informed adaptive load scheduling and predictive maintenance across EV fleets. Trained on over 3400 proxy charge-discharge cycles derived from 1 million telemetry samples, V2G-HealthNet achieved state-of-the-art performance (SOH RMSE: 0.015, MAE: 0.012, R2: 0.97), outperforming leading baselines including XGBoost and Random Forest. For RUL prediction, the model maintained an MAE of 0.42 cycles over a five-cycle horizon. Importantly, deployment simulations revealed that V2G-HealthNet triggered maintenance alerts at least three cycles ahead of critical degradation thresholds and redistributed high-load tasks away from ageing batteries—capabilities not demonstrated in previous works. These findings establish V2G-HealthNet as a deployable, health-aware control layer for smart city electrification strategies. Full article
Show Figures

Figure 1

17 pages, 5504 KiB  
Article
Multi-Objective Optimization of Acoustic Black Hole Plate Attached to Electric Automotive Steering Machine for Maximizing Vibration Attenuation Performance
by Xiaofei Du, Weilong Li, Fei Hao and Qidi Fu
Machines 2025, 13(8), 647; https://doi.org/10.3390/machines13080647 - 24 Jul 2025
Viewed by 327
Abstract
This research introduces an innovative passive vibration control methodology employing acoustic black hole (ABH) structures to mitigate vibration transmission in electric automotive steering machines—a prevalent issue adversely affecting driving comfort and vehicle safety. Leveraging the inherent bending wave manipulation properties of ABH configurations, [...] Read more.
This research introduces an innovative passive vibration control methodology employing acoustic black hole (ABH) structures to mitigate vibration transmission in electric automotive steering machines—a prevalent issue adversely affecting driving comfort and vehicle safety. Leveraging the inherent bending wave manipulation properties of ABH configurations, we conceive an integrated vibration suppression framework synergizing advanced computational modeling with intelligent optimization algorithms. A high-fidelity finite element (FEM) model integrating ABH-attached steering machine system was developed and subjected to experimental validation via rigorous modal testing. To address computational challenges in design optimization, a hybrid modeling strategy integrating parametric design (using Latin Hypercube Sampling, LHS) with Kriging surrogate modeling is proposed. Systematic parameterization of ABH geometry and damping layer dimensions generated 40 training datasets and 12 validation datasets. Surrogate model verification confirms the model’s precise mapping of vibration characteristics across the design space. Subsequent multi-objective genetic algorithm optimization targeting RMS velocity suppression achieved substantial vibration attenuation (29.2%) compared to baseline parameters. The developed methodology provides automotive researchers and engineers with an efficient suitable design tool for vibration-sensitive automotive component design. Full article
Show Figures

Figure 1

26 pages, 3405 KiB  
Article
Digital Twins for Intelligent Vehicle-to-Grid Systems: A Multi-Physics EV Model for AI-Based Energy Management
by Michela Costa and Gianluca Del Papa
Appl. Sci. 2025, 15(15), 8214; https://doi.org/10.3390/app15158214 - 23 Jul 2025
Viewed by 300
Abstract
This paper presents a high-fidelity multi-physics dynamic model for electric vehicles, serving as a fundamental building block for intelligent vehicle-to-grid (V2G) integration systems. The model accurately captures complex vehicle dynamics of the powertrain, battery, and regenerative braking, enabling precise energy consumption evaluation, including [...] Read more.
This paper presents a high-fidelity multi-physics dynamic model for electric vehicles, serving as a fundamental building block for intelligent vehicle-to-grid (V2G) integration systems. The model accurately captures complex vehicle dynamics of the powertrain, battery, and regenerative braking, enabling precise energy consumption evaluation, including in AI-driven V2G scenarios. Validated using real-world data from a Citroën Ami operating on urban routes in Naples, Italy, it achieved exceptional accuracy with a root mean square error (RMSE) of 1.28% for dynamic state of charge prediction. This robust framework provides an essential foundation for AI-driven digital twin technologies in V2G applications, significantly advancing sustainable transportation and smart grid integration through predictive simulation. Its versatility supports diverse fleet applications, from residential energy management and coordinated charging optimization to commercial car sharing operations, leveraging backup power during peak demand or grid outages, so to maximize distributed battery storage utilization. Full article
(This article belongs to the Special Issue Applications of Artificial Intelligence in the Novel Power System)
Show Figures

Figure 1

20 pages, 13715 KiB  
Article
Dynamic Reconfiguration for Energy Management in EV and RES-Based Grids Using IWOA
by Hossein Lotfi, Mohammad Hassan Nikkhah and Mohammad Ebrahim Hajiabadi
World Electr. Veh. J. 2025, 16(8), 412; https://doi.org/10.3390/wevj16080412 - 23 Jul 2025
Viewed by 211
Abstract
Effective energy management is vital for enhancing reliability, reducing operational costs, and supporting the increasing penetration of electric vehicles (EVs) and renewable energy sources (RESs) in distribution networks. This study presents a dynamic reconfiguration strategy for distribution feeders that integrates EV charging stations [...] Read more.
Effective energy management is vital for enhancing reliability, reducing operational costs, and supporting the increasing penetration of electric vehicles (EVs) and renewable energy sources (RESs) in distribution networks. This study presents a dynamic reconfiguration strategy for distribution feeders that integrates EV charging stations (EVCSs), RESs, and capacitors. The goal is to minimize both Energy Not Supplied (ENS) and operational costs, particularly under varying demand conditions caused by EV charging in grid-to-vehicle (G2V) and vehicle-to-grid (V2G) modes. To improve optimization accuracy and avoid local optima, an improved Whale Optimization Algorithm (IWOA) is employed, featuring a mutation mechanism based on Lévy flight. The model also incorporates uncertainties in electricity prices and consumer demand, as well as a demand response (DR) program, to enhance practical applicability. Simulation studies on a 95-bus test system show that the proposed approach reduces ENS by 16% and 20% in the absence and presence of distributed generation (DG) and EVCSs, respectively. Additionally, the operational cost is significantly reduced compared to existing methods. Overall, the proposed framework offers a scalable and intelligent solution for smart grid integration and distribution network modernization. Full article
(This article belongs to the Special Issue Power and Energy Systems for E-Mobility, 2nd Edition)
Show Figures

Figure 1

49 pages, 15060 KiB  
Review
A Comprehensive Review of Thermal Management Challenges and Safety Considerations in Lithium-Ion Batteries for Electric Vehicles
by Ali Alawi, Ahmed Saeed, Mostafa H. Sharqawy and Mohammad Al Janaideh
Batteries 2025, 11(7), 275; https://doi.org/10.3390/batteries11070275 - 19 Jul 2025
Viewed by 1197
Abstract
The transition to electric vehicles (EVs) is accelerating due to global efforts to reduce greenhouse gas emissions and reliance on fossil fuels. Lithium-ion batteries (LIBs) are the predominant energy storage solution in EVs, offering high energy density, efficiency, and long lifespan. However, their [...] Read more.
The transition to electric vehicles (EVs) is accelerating due to global efforts to reduce greenhouse gas emissions and reliance on fossil fuels. Lithium-ion batteries (LIBs) are the predominant energy storage solution in EVs, offering high energy density, efficiency, and long lifespan. However, their adoption is overly involved with critical safety concerns, including thermal runaway and overheating. This review systematically focuses on the critical role of battery thermal management systems (BTMSs), such as active, passive, and hybrid cooling systems, in maintaining LIBs within their optimal operating temperature range, ensuring temperature homogeneity, safety, and efficiency. Additionally, the study explores the impact of integrating artificial intelligence (AI) and machine learning (ML) into BTMS on thermal performance prediction and energy-efficient cooling, focusing on optimizing the operating parameters of cooling systems. This review provides insights into enhancing LIB safety and performance for widespread EV adoption by addressing these challenges. Full article
Show Figures

Figure 1

20 pages, 2207 KiB  
Review
A Critical Review of the State Estimation Methods of Power Batteries for Electric Vehicles
by Qi Zhang, Hailin Rong, Daduan Zhao, Menglu Pei and Xing Dong
Energies 2025, 18(14), 3834; https://doi.org/10.3390/en18143834 - 18 Jul 2025
Viewed by 337
Abstract
Power batteries and their management technology are crucial for the safe and efficient operation of electric vehicles (EVs). The life and safety issues of power batteries have always plagued the EV industry. To achieve an intelligent battery management system (BMS), it is crucial [...] Read more.
Power batteries and their management technology are crucial for the safe and efficient operation of electric vehicles (EVs). The life and safety issues of power batteries have always plagued the EV industry. To achieve an intelligent battery management system (BMS), it is crucial to accurately estimate the internal state of the power battery. The purpose of this review is to analyze the current status of research on multi-state estimation of power batteries, which mainly focuses on the estimation of state of charge (SOC), state of energy (SOE), state of health (SOH), state of power (SOP), state of temperature (SOT), and state of safety (SOS). Moreover, it also analyzes and prospects the research hotspots, development trends, and future challenges of battery state estimation. It is a significant guide for designing BMSs for EVs, as well as for achieving intelligent safety management and efficient power battery use. Full article
Show Figures

Figure 1

28 pages, 1080 KiB  
Systematic Review
A Literature Review on Strategic, Tactical, and Operational Perspectives in EV Charging Station Planning and Scheduling
by Marzieh Sadat Aarabi, Mohammad Khanahmadi and Anjali Awasthi
World Electr. Veh. J. 2025, 16(7), 404; https://doi.org/10.3390/wevj16070404 - 18 Jul 2025
Viewed by 557
Abstract
Before the onset of global warming concerns, the idea of manufacturing electric vehicles on a large scale was not widely considered. However, electric vehicles offer several advantages that have garnered attention. They are environmentally friendly, with simpler drive systems compared to traditional fossil [...] Read more.
Before the onset of global warming concerns, the idea of manufacturing electric vehicles on a large scale was not widely considered. However, electric vehicles offer several advantages that have garnered attention. They are environmentally friendly, with simpler drive systems compared to traditional fossil fuel vehicles. Additionally, electric vehicles are highly efficient, with an efficiency of around 90%, in contrast to fossil fuel vehicles, which have an efficiency of about 30% to 35%. The higher energy efficiency of electric vehicles contributes to lower operational costs, which, alongside regulatory incentives and shifting consumer preferences, has increased their strategic importance for many vehicle manufacturers. In this paper, we present a thematic literature review on electric vehicles charging station location planning and scheduling. A systematic literature review across various data sources in the area yielded ninety five research papers for the final review. The research results were analyzed thematically, and three key directions were identified, namely charging station deployment and placement, optimal allocation and scheduling of EV parking lots, and V2G and smart charging systems as the top three themes. Each theme was further investigated to identify key topics, ongoing works, and future trends. It has been found that optimization methods followed by simulation and multi-criteria decision-making are most commonly used for EV infrastructure planning. A multistakeholder perspective is often adopted in these decisions to minimize costs and address the range anxiety of users. The future trend is towards the integration of renewable energy in smart grids, uncertainty modeling of user demand, and use of artificial intelligence for service quality improvement. Full article
Show Figures

Figure 1

26 pages, 2207 KiB  
Article
Enhancing Electric Vehicle Battery Charging Efficiency Using an Improved Parrot Optimizer and Photovoltaic Systems
by Ebrahim Sheykhi and Mutlu Yilmaz
Energies 2025, 18(14), 3808; https://doi.org/10.3390/en18143808 - 17 Jul 2025
Cited by 1 | Viewed by 234
Abstract
There has been a great need for replacing combustion-powered vehicles with electric vehicles (EV), and fully electric cars are meant to replace combustion engine cars. This has led to considerable research into improving the performance of EVs, especially via electric motor voltage control. [...] Read more.
There has been a great need for replacing combustion-powered vehicles with electric vehicles (EV), and fully electric cars are meant to replace combustion engine cars. This has led to considerable research into improving the performance of EVs, especially via electric motor voltage control. A wide range of optimization algorithms have been used as traditional approaches, but the dynamic parameters of electric motors, impacted by temperature and different driving cycles, continue to be a problem. This study introduces an improved version of the Parrot Optimizer (IPO) aimed at enhancing voltage regulation in EVs. The algorithm can intelligently adjust certain motor parameters for adaptive management to maintain performance based on different situations. To ensure a stable and sustainable power supply for the powertrain of the EV, a photovoltaic (PV) system is used with energy storage batteries. Such an arrangement seeks to deliver permanent electric energy, a solution to traditional grid electricity reliance. This demonstrates the effectiveness of IPO, with the resultant motor performance remaining optimal despite parameter changes. It is also illustrated that energy production, by integrating PV systems, prevents excessive voltage line drops and thus voltage imbalances. The proposed intelligent controller is verified based on multiple simulations, demonstrating and ensuring significant improvements in EV efficiency and reliability. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

25 pages, 5872 KiB  
Article
Application of Twisting Controller and Modified Pufferfish Optimization Algorithm for Power Management in a Solar PV System with Electric-Vehicle and Load-Demand Integration
by Arunesh Kumar Singh, Rohit Kumar, D. K. Chaturvedi, Ibraheem, Gulshan Sharma, Pitshou N. Bokoro and Rajesh Kumar
Energies 2025, 18(14), 3785; https://doi.org/10.3390/en18143785 - 17 Jul 2025
Viewed by 257
Abstract
To combat the catastrophic effects of climate change, the usage of renewable energy sources (RESs) has increased dramatically in recent years. The main drivers of the increase in solar photovoltaic (PV) system grid integrations in recent years have been lowering energy costs and [...] Read more.
To combat the catastrophic effects of climate change, the usage of renewable energy sources (RESs) has increased dramatically in recent years. The main drivers of the increase in solar photovoltaic (PV) system grid integrations in recent years have been lowering energy costs and pollution. Active and reactive powers are controlled by a proportional–integral controller, whereas energy storage batteries improve the quality of energy by storing both current and voltage, which have an impact on steady-state error. Since traditional controllers are unable to maximize the energy output of solar systems, artificial intelligence (AI) is essential for enhancing the energy generation of PV systems under a variety of climatic conditions. Nevertheless, variations in the weather can have an impact on how well photovoltaic systems function. This paper presents an intelligent power management controller (IPMC) for obtaining power management with load and electric-vehicle applications. The architecture combines the solar PV, battery with electric-vehicle load, and grid system. Initially, the PV architecture is utilized to generate power from the irradiance. The generated power is utilized to compensate for the required load demand on the grid side. The remaining PV power generated is utilized to charge the batteries of electric vehicles. The power management of the PV is obtained by considering the proposed control strategy. The power management controller is a combination of the twisting sliding-mode controller (TSMC) and Modified Pufferfish Optimization Algorithm (MPOA). The proposed method is implemented, and the application results are matched with the Mountain Gazelle Optimizer (MSO) and Beluga Whale Optimization (BWO) Algorithm by evaluating the PV power output, EV power, battery-power and battery-energy utilization, grid power, and grid price to show the merits of the proposed work. Full article
(This article belongs to the Special Issue Power Quality and Disturbances in Modern Distribution Networks)
Show Figures

Figure 1

34 pages, 1638 KiB  
Review
Recent Advances in Bidirectional Converters and Regenerative Braking Systems in Electric Vehicles
by Hamid Naseem and Jul-Ki Seok
Actuators 2025, 14(7), 347; https://doi.org/10.3390/act14070347 - 14 Jul 2025
Viewed by 703
Abstract
As electric vehicles (EVs) continue to advance toward widespread adoption, innovations in power electronics are playing a pivotal role in improving efficiency, performance, and sustainability. This review presents recent progress in bidirectional converters and regenerative braking systems (RBSs), highlighting their contributions to energy [...] Read more.
As electric vehicles (EVs) continue to advance toward widespread adoption, innovations in power electronics are playing a pivotal role in improving efficiency, performance, and sustainability. This review presents recent progress in bidirectional converters and regenerative braking systems (RBSs), highlighting their contributions to energy recovery, battery longevity, and vehicle-to-grid integration. Bidirectional converters support two-way energy flow, enabling efficient regenerative braking and advanced charging capabilities. The integration of wide-bandgap semiconductors, such as silicon carbide and gallium nitride, further enhances power density and thermal performance. The paper evaluates various converter topologies, including single-stage and multi-stage architectures, and assesses their suitability for high-voltage EV platforms. Intelligent control strategies, including fuzzy logic, neural networks, and sliding mode control, are discussed for optimizing braking force and maximizing energy recuperation. In addition, the paper explores the influence of regenerative braking on battery degradation and presents hybrid energy storage systems and AI-based methods as mitigation strategies. Special emphasis is placed on the integration of RBSs in advanced electric vehicle platforms, including autonomous systems. The review concludes by identifying current challenges, emerging trends, and key design considerations to inform future research and practical implementation in electric vehicle energy systems. Full article
(This article belongs to the Special Issue Feature Papers in Actuators for Surface Vehicles)
Show Figures

Figure 1

35 pages, 3959 KiB  
Article
Battery Charging Simulation of a Passenger Electric Vehicle from a Traction Voltage Inverter with an Integrated Charger
by Evgeniy V. Khekert, Boris V. Malozyomov, Roman V. Klyuev, Nikita V. Martyushev, Vladimir Yu. Konyukhov, Vladislav V. Kukartsev, Oleslav A. Antamoshkin and Ilya S. Remezov
World Electr. Veh. J. 2025, 16(7), 391; https://doi.org/10.3390/wevj16070391 - 13 Jul 2025
Viewed by 286
Abstract
This paper presents the results of the mathematical modeling and experimental studies of charging a traction lithium-ion battery of a passenger electric car using an integrated charger based on a traction voltage inverter. An original three-stage charging algorithm (3PT/PN) has been developed and [...] Read more.
This paper presents the results of the mathematical modeling and experimental studies of charging a traction lithium-ion battery of a passenger electric car using an integrated charger based on a traction voltage inverter. An original three-stage charging algorithm (3PT/PN) has been developed and implemented, which provides a sequential decrease in the charging current when the specified voltage and temperature levels of the battery module are reached. As part of this study, a comprehensive mathematical model has been created that takes into account the features of the power circuit, control algorithms, thermal effects and characteristics of the storage battery. The model has been successfully verified based on the experimental data obtained when charging the battery module in real conditions. The maximum error of voltage modeling has been 0.71%; that of current has not exceeded 1%. The experiments show the achievement of a realized capacity of 8.9 Ah and an integral efficiency of 85.5%, while the temperature regime remains within safe limits. The proposed approach provides a high charge rate, stability of the thermal state of the battery and a long service life. The results can be used to optimize the charging infrastructure of electric vehicles and to develop intelligent battery module management systems. Full article
Show Figures

Figure 1

Back to TopTop