Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (386)

Search Parameters:
Keywords = integration of photovoltaic plant

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6388 KiB  
Article
Spatial–Temporal Hotspot Management of Photovoltaic Modules Based on Fiber Bragg Grating Sensor Arrays
by Haotian Ding, Rui Guo, Huan Xing, Yu Chen, Jiajun He, Junxian Luo, Maojie Chen, Ye Chen, Shaochun Tang and Fei Xu
Sensors 2025, 25(15), 4879; https://doi.org/10.3390/s25154879 (registering DOI) - 7 Aug 2025
Abstract
Against the backdrop of an urgent energy crisis, solar energy has attracted sufficient attention as one of the most inexhaustible and friendly types of environmental energy. Faced with long service and harsh environment, the poor performance ratios of photovoltaic arrays and safety hazards [...] Read more.
Against the backdrop of an urgent energy crisis, solar energy has attracted sufficient attention as one of the most inexhaustible and friendly types of environmental energy. Faced with long service and harsh environment, the poor performance ratios of photovoltaic arrays and safety hazards are frequently boosted worldwide. In particular, the hot spot effect plays a vital role in weakening the power generation performance and reduces the lifetime of photovoltaic (PV) modules. Here, our research reports a spatial–temporal hot spot management system integrated with fiber Bragg grating (FBG) temperature sensor arrays and cooling hydrogels. Through finite element simulations and indoor experiments in laboratory conditions, a superior cooling effect of hydrogels and photoelectric conversion efficiency improvement have been demonstrated. On this basis, field tests were carried out in which the FBG arrays detected the surface temperature of the PV module first, and then a classifier based on an optimized artificial neural network (ANN) recognized hot spots with an accuracy of 99.1%. The implementation of cooling hydrogels as a feedback mechanism achieved a 7.7 °C reduction in temperature, resulting in a 5.6% enhancement in power generation efficiency. The proposed strategy offers valuable insights for conducting predictive maintenance of PV power plants in the case of hot spots. Full article
Show Figures

Figure 1

32 pages, 5466 KiB  
Article
Comprehensive Energy and Economic Analysis of Selected Variants of a Large-Scale Photovoltaic Power Plant in a Temperate Climate
by Dennis Thom, Artur Bugała, Dorota Bugała and Wojciech Czekała
Energies 2025, 18(15), 4198; https://doi.org/10.3390/en18154198 - 7 Aug 2025
Abstract
In recent years, solar energy has emerged as one of the most advanced renewable energy sources, with its production capacity steadily growing. To maximize output and efficiency, choosing the right configuration for a specific location for these installations is crucial. This study uniquely [...] Read more.
In recent years, solar energy has emerged as one of the most advanced renewable energy sources, with its production capacity steadily growing. To maximize output and efficiency, choosing the right configuration for a specific location for these installations is crucial. This study uniquely integrates detailed multi-variant fixed-tilt PV system simulations with comprehensive economic evaluation under temperate climate conditions, addressing site-specific spatial constraints and grid integration considerations that have rarely been combined in previous works. In this paper, an energy and economic efficiency analysis for a photovoltaic power plant, located in central Poland, designed in eight variants (10°, 15°, 20°, 25°, 30° PV module inclination angle for a south orientation and 10°, 20°, 30° for an east–west orientation) for a limited building area of approximately 300,000 m2 was conducted. In PVSyst computer simulations, PVGIS-SARAH2 solar radiation data were used together with the most common data for describing the Polish local solar climate, called Typical Meteorological Year data (TMY). The most energy-efficient variants were found to be 20° S and 30° S, configurations with the highest surface production coefficient (249.49 and 272.68 kWh/m2) and unit production efficiency values (1123 and 1132 kWh/kW, respectively). These findings highlight potential efficiency gains of up to approximately 9% in surface production coefficient and financial returns exceeding 450% ROI, demonstrating significant economic benefits. In economic terms, the 15° S variant achieved the highest values of financial parameters, such as the return on investment (ROI) (453.2%), the value of the average annual share of profits in total revenues (56.93%), the shortest expected payback period (8.7 years), the value of the levelized cost of energy production (LCOE) (0.1 EUR/kWh), and one of the lowest costs of building 1 MWp of a photovoltaic farm (664,272.7 EUR/MWp). Among the tested variants of photovoltaic farms with an east–west geographical orientation, the most advantageous choice is the 10° EW arrangement. The results provide valuable insights for policymakers and investors aiming to optimize photovoltaic deployment in temperate climates, supporting the broader transition to renewable energy and alignment with national energy policy goals. Full article
Show Figures

Figure 1

19 pages, 18533 KiB  
Article
Modeling of Marine Assembly Logistics for an Offshore Floating Photovoltaic Plant Subject to Weather Dependencies
by Lu-Jan Huang, Simone Mancini and Minne de Jong
J. Mar. Sci. Eng. 2025, 13(8), 1493; https://doi.org/10.3390/jmse13081493 - 2 Aug 2025
Viewed by 133
Abstract
Floating solar technology has gained significant attention as part of the global expansion of renewable energy due to its potential for installation in underutilized water bodies. Several countries, including the Netherlands, have initiated efforts to extend this technology from inland freshwater applications to [...] Read more.
Floating solar technology has gained significant attention as part of the global expansion of renewable energy due to its potential for installation in underutilized water bodies. Several countries, including the Netherlands, have initiated efforts to extend this technology from inland freshwater applications to open offshore environments, particularly within offshore wind farm areas. This development is motivated by the synergistic benefits of increasing site energy density and leveraging the existing offshore grid infrastructure. The deployment of offshore floating photovoltaic (OFPV) systems involves assembling multiple modular units in a marine environment, introducing operational risks that may give rise to safety concerns. To mitigate these risks, weather windows must be considered prior to the task execution to ensure continuity between weather-sensitive activities, which can also lead to additional time delays and increased costs. Consequently, optimizing marine logistics becomes crucial to achieving the cost reductions necessary for making OFPV technology economically viable. This study employs a simulation-based approach to estimate the installation duration of a 5 MWp OFPV plant at a Dutch offshore wind farm site, started in different months and under three distinct risk management scenarios. Based on 20 years of hindcast wave data, the results reveal the impacts of campaign start months and risk management policies on installation duration. Across all the scenarios, the installation duration during the autumn and winter period is 160% longer than the one in the spring and summer period. The average installation durations, based on results from 12 campaign start months, are 70, 80, and 130 days for the three risk management policies analyzed. The result variation highlights the additional time required to mitigate operational risks arising from potential discontinuity between highly interdependent tasks (e.g., offshore platform assembly and mooring). Additionally, it is found that the weather-induced delays are mainly associated with the campaigns of pre-laying anchors and platform and mooring line installation compared with the other campaigns. In conclusion, this study presents a logistics modeling methodology for OFPV systems, demonstrated through a representative case study based on a state-of-the-art truss-type design. The primary contribution lies in providing a framework to quantify the performance of OFPV installation strategies at an early design stage. The findings of this case study further highlight that marine installation logistics are highly sensitive to local marine conditions and the chosen installation strategy, and should be integrated early in the OFPV design process to help reduce the levelized cost of electricity. Full article
(This article belongs to the Special Issue Design, Modeling, and Development of Marine Renewable Energy Devices)
Show Figures

Figure 1

18 pages, 687 KiB  
Article
A Low-Carbon and Economic Optimal Dispatching Strategy for Virtual Power Plants Considering the Aggregation of Diverse Flexible and Adjustable Resources with the Integration of Wind and Solar Power
by Xiaoqing Cao, He Li, Di Chen, Qingrui Yang, Qinyuan Wang and Hongbo Zou
Processes 2025, 13(8), 2361; https://doi.org/10.3390/pr13082361 - 24 Jul 2025
Viewed by 250
Abstract
Under the dual-carbon goals, with the rapid increase in the proportion of fluctuating power sources such as wind and solar energy, the regulatory capacity of traditional thermal power generation can no longer meet the demand for intra-day fluctuations. There is an urgent need [...] Read more.
Under the dual-carbon goals, with the rapid increase in the proportion of fluctuating power sources such as wind and solar energy, the regulatory capacity of traditional thermal power generation can no longer meet the demand for intra-day fluctuations. There is an urgent need to tap into the potential of flexible load-side regulatory resources. To this end, this paper proposes a low-carbon economic optimal dispatching strategy for virtual power plants (VPPs), considering the aggregation of diverse flexible and adjustable resources with the integration of wind and solar power. Firstly, the method establishes mathematical models by analyzing the dynamic response characteristics and flexibility regulation boundaries of adjustable resources such as photovoltaic (PV) systems, wind power, energy storage, charging piles, interruptible loads, and air conditioners. Subsequently, considering the aforementioned diverse adjustable resources and aggregating them into a VPP, a low-carbon economic optimal dispatching model for the VPP is constructed with the objective of minimizing the total system operating costs and carbon costs. To address the issue of slow convergence rates in solving high-dimensional state variable optimization problems with the traditional plant growth simulation algorithm, this paper proposes an improved plant growth simulation algorithm through elite selection strategies for growth points and multi-base point parallel optimization strategies. The improved algorithm is then utilized to solve the proposed low-carbon economic optimal dispatching model for the VPP, aggregating diverse adjustable resources. Simulations conducted on an actual VPP platform demonstrate that the proposed method can effectively coordinate diverse load-side adjustable resources and achieve economically low-carbon dispatching, providing theoretical support for the optimal aggregation of diverse flexible resources in new power systems. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

33 pages, 7120 KiB  
Article
Operational Analysis of a Pilot-Scale Plant for Hydrogen Production via an Electrolyser Powered by a Photovoltaic System
by Lucio Bonaccorsi, Rosario Carbone, Fabio La Foresta, Concettina Marino, Antonino Nucara, Matilde Pietrafesa and Mario Versaci
Energies 2025, 18(15), 3949; https://doi.org/10.3390/en18153949 - 24 Jul 2025
Viewed by 277
Abstract
This study presents preliminary findings from an experimental campaign conducted on a pilot-scale green hydrogen production plant powered by a photovoltaic (PV) system. The integrated setup, implemented at the University “Mediterranea” of Reggio Calabria, includes renewable energy generation, hydrogen production via electrolysis, on-site [...] Read more.
This study presents preliminary findings from an experimental campaign conducted on a pilot-scale green hydrogen production plant powered by a photovoltaic (PV) system. The integrated setup, implemented at the University “Mediterranea” of Reggio Calabria, includes renewable energy generation, hydrogen production via electrolysis, on-site storage, and reconversion through fuel cells. The investigation assessed system performance under different configurations (on-grid and selective stand-alone modes), focusing on key operational phases such as inerting, purging, pressurization, hydrogen generation, and depressurization. Results indicate a strong linear correlation between the electrolyser’s power setpoint and the pressure rise rate, with a maximum gradient of 0.236 bar/min observed at 75% power input. The system demonstrated robust and stable operation, efficient control of shutdown sequences, and effective integration with PV input. These outcomes support the technical feasibility of small-scale hydrogen systems driven by renewables and offer valuable reference data for calibration models and future optimization strategies. Full article
(This article belongs to the Special Issue Renewable Energy and Hydrogen Energy Technologies)
Show Figures

Figure 1

25 pages, 2495 KiB  
Article
Integration Strategies for Large-Scale Renewable Interconnections with Grid Forming and Grid Following Inverters, Capacitor Banks, and Harmonic Filters
by Soham Ghosh, Arpit Bohra, Sreejata Dutta and Saurav Verma
Energies 2025, 18(15), 3934; https://doi.org/10.3390/en18153934 - 23 Jul 2025
Viewed by 247
Abstract
The transition towards a power system characterized by a reduced presence of synchronous generators (SGs) and an increased reliance on inverter-based resources (IBRs), including wind, solar photovoltaics (PV), and battery storage, presents new operational challenges, particularly when these sources exceed 50–60% of the [...] Read more.
The transition towards a power system characterized by a reduced presence of synchronous generators (SGs) and an increased reliance on inverter-based resources (IBRs), including wind, solar photovoltaics (PV), and battery storage, presents new operational challenges, particularly when these sources exceed 50–60% of the system’s demand. While current grid-following (GFL) IBRs, which are equipped with fast and rigid control systems, continue to dominate the inverter landscape, there has been a notable surge in research focused on grid-forming (GFM) inverters in recent years. This study conducts a comparative analysis of the practicality and control methodologies of GFM inverters relative to traditional GFL inverters from a system planning perspective. A comprehensive framework aimed at assisting system developers and consulting engineers in the grid-integration of wide-scale renewable energy sources (RESs), incorporating strategies for the deployment of inverters, capacitor banks, and harmonic filters, is proposed in this paper. The discussion includes an examination of the reactive power capabilities of the plant’s inverters and the provision of additional reactive power to ensure compliance with grid interconnection standards. Furthermore, the paper outlines a practical approach to assess the necessity for enhanced filtering measures to mitigate potential resonant conditions and achieve harmonic compliance at the installation site. The objective of this work is to offer useful guidelines and insights for the effective addition of RES into contemporary power systems. Full article
Show Figures

Figure 1

21 pages, 10456 KiB  
Article
Experimental Validation of a Modular Skid for Hydrogen Production in a Hybrid Microgrid
by Gustavo Teodoro Bustamante, Jamil Haddad, Bruno Pinto Braga Guimaraes, Ronny Francis Ribeiro Junior, Frederico de Oliveira Assuncao, Erik Leandro Bonaldi, Luiz Eduardo Borges-da-Silva, Fabio Monteiro Steiner, Jaime Jose de Oliveira Junior and Claudio Inacio de Almeida Costa
Energies 2025, 18(15), 3910; https://doi.org/10.3390/en18153910 - 22 Jul 2025
Viewed by 284
Abstract
This article presents the development, integration, and experimental validation of a modular microgrid for sustainable hydrogen production, addressing global electricity demand and environmental challenges. The system was designed for initial validation in a thermoelectric power plant environment, with scalability to other applications. Centered [...] Read more.
This article presents the development, integration, and experimental validation of a modular microgrid for sustainable hydrogen production, addressing global electricity demand and environmental challenges. The system was designed for initial validation in a thermoelectric power plant environment, with scalability to other applications. Centered on a six-compartment skid, it integrates photovoltaic generation, battery storage, and a liquefied petroleum gas generator to emulate typical cogeneration conditions, together with a high-purity proton exchange membrane electrolyzer. A supervisory control module ensures real-time monitoring and energy flow management, following international safety standards. The study also explores the incorporation of blockchain technology to certify the renewable origin of hydrogen, enhancing traceability and transparency in the green hydrogen market. The experimental results confirm the system’s technical feasibility, demonstrating stable hydrogen production, efficient energy management, and islanded-mode operation with preserved grid stability. These findings highlight the strategic role of hydrogen as an energy vector in the transition to a cleaner energy matrix and support the proposed architecture as a replicable model for industrial facilities seeking to combine hydrogen production with advanced microgrid technologies. Future work will address large-scale validation and performance optimization, including advanced energy management algorithms to ensure economic viability and sustainability in diverse industrial contexts. Full article
Show Figures

Figure 1

33 pages, 7013 KiB  
Article
Towards Integrated Design Tools for Water–Energy Nexus Solutions: Simulation of Advanced AWG Systems at Building Scale
by Lucia Cattani, Roberto Figoni, Paolo Cattani and Anna Magrini
Energies 2025, 18(14), 3874; https://doi.org/10.3390/en18143874 - 21 Jul 2025
Viewed by 448
Abstract
This study investigated the integration of advanced Atmospheric Water Generators (AWGs) within the design process of building energy systems, focusing on the water–energy nexus in the context of a real-life hospital building. It is based on a simulation approach, recognised as a viable [...] Read more.
This study investigated the integration of advanced Atmospheric Water Generators (AWGs) within the design process of building energy systems, focusing on the water–energy nexus in the context of a real-life hospital building. It is based on a simulation approach, recognised as a viable means to analyse and enhance AWG potentialities. However, the current state of research does not address the issue of AWG integration within building plant systems. This study contributes to fill such a research gap by building upon an authors’ previous work and proposing an enhanced methodology. The methodology describes how to incorporate a multipurpose AWG system into the energy simulation environment of DesignBuilder (DB), version 7.0.0116, through its coupling with AWGSim, version 1.20d, a simulation tool specifically developed for atmospheric water generators. The chosen case study is a wing of the Mondino Hospital in Pavia, Italy, selected for its complex geometry and HVAC requirements. By integrating AWG outputs—covering water production, heating, and cooling—into DB, this study compared two configurations: the existing HVAC system and an enhanced version that includes the AWG as plant support. The simulation results demonstrated a 16.3% reduction in primary energy consumption (from 231.3 MWh to 193.6 MWh), with the elimination of methane consumption and additional benefits in water production (257 m3). This water can be employed for photovoltaic panel cleaning, further reducing the primary energy consumption to 101.9 MWh (55.9% less than the existing plant), and for human consumption or other technical needs. Moreover, this study highlights the potential of using AWG technology to supply purified water, which can be a pivotal solution for hospitals located in areas affected by water crises. This research contributes to the atmospheric water field by addressing the important issue of simulating AWG systems within building energy design tools, enabling informed decisions regarding water–energy integration at the project stage and supporting a more resilient and sustainable approach to building infrastructure. Full article
(This article belongs to the Special Issue Performance Analysis of Building Energy Efficiency)
Show Figures

Figure 1

27 pages, 3704 KiB  
Article
Explainable Machine Learning and Predictive Statistics for Sustainable Photovoltaic Power Prediction on Areal Meteorological Variables
by Sajjad Nematzadeh and Vedat Esen
Appl. Sci. 2025, 15(14), 8005; https://doi.org/10.3390/app15148005 - 18 Jul 2025
Cited by 1 | Viewed by 394
Abstract
Precisely predicting photovoltaic (PV) output is crucial for reliable grid integration; so far, most models rely on site-specific sensor data or treat large meteorological datasets as black boxes. This study proposes an explainable machine-learning framework that simultaneously ranks the most informative weather parameters [...] Read more.
Precisely predicting photovoltaic (PV) output is crucial for reliable grid integration; so far, most models rely on site-specific sensor data or treat large meteorological datasets as black boxes. This study proposes an explainable machine-learning framework that simultaneously ranks the most informative weather parameters and reveals their physical relevance to PV generation. Starting from 27 local and plant-level variables recorded at 15 min resolution for a 1 MW array in Çanakkale region, Türkiye (1 August 2022–3 August 2024), we apply a three-stage feature-selection pipeline: (i) variance filtering, (ii) hierarchical correlation clustering with Ward linkage, and (iii) a meta-heuristic optimizer that maximizes a neural-network R2 while penalizing poor or redundant inputs. The resulting subset, dominated by apparent temperature and diffuse, direct, global-tilted, and terrestrial irradiance, reduces dimensionality without significantly degrading accuracy. Feature importance is then quantified through two complementary aspects: (a) tree-based permutation scores extracted from a set of ensemble models and (b) information gain computed over random feature combinations. Both views converge on shortwave, direct, and global-tilted irradiance as the primary drivers of active power. Using only the selected features, the best model attains an average R2 ≅ 0.91 on unseen data. By utilizing transparent feature-reduction techniques and explainable importance metrics, the proposed approach delivers compact, more generalized, and reliable PV forecasts that generalize to sites lacking embedded sensor networks, and it provides actionable insights for plant siting, sensor prioritization, and grid-operation strategies. Full article
Show Figures

Figure 1

20 pages, 6173 KiB  
Article
Research on an Energy-Harvesting System Based on the Energy Field of the Environment Surrounding a Photovoltaic Power Plant
by Bin Zhang, Binbin Wang, Hongxi Zhang, Abdelkader Outzourhit, Fouad Belhora, Zoubir El Felsoufi, Jia-Wei Zhang and Jun Gao
Energies 2025, 18(14), 3786; https://doi.org/10.3390/en18143786 - 17 Jul 2025
Viewed by 298
Abstract
With the large-scale global deployment of photovoltaics (PV), traditional monitoring technologies face challenges such as wiring difficulties, high energy consumption, and high maintenance costs in remote or complex terrains, which limit long-term environmental sensing. Therefore, energy-harvesting systems are crucial for the intelligent operation [...] Read more.
With the large-scale global deployment of photovoltaics (PV), traditional monitoring technologies face challenges such as wiring difficulties, high energy consumption, and high maintenance costs in remote or complex terrains, which limit long-term environmental sensing. Therefore, energy-harvesting systems are crucial for the intelligent operation of photovoltaic systems; however, their deployment depends on the accurate mapping of wind energy fields and solar irradiance fields. This study proposes a multi-scale simulation method based on computational fluid dynamics (CFD) to optimize the placement of energy-harvesting systems in photovoltaic power plants. By integrating wind and irradiance distribution analysis, the spatial characteristics of airflow and solar radiation are mapped to identify high-efficiency zones for energy harvesting. The results indicate that the top of the photovoltaic panel exhibits a higher wind speed and reflected irradiance, providing the optimal location for an energy-harvesting system. The proposed layout strategy improves overall energy capture efficiency, enhances sensor deployment effectiveness, and supports intelligent, maintenance-free monitoring systems. This research not only provides theoretical guidance for the design of energy-harvesting systems in PV stations but also offers a scalable method applicable to various geographic scenarios, contributing to the advancement of smart and self-powered energy systems. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

15 pages, 3755 KiB  
Article
Zero Emissions Analysis for a Hybrid System with Photovoltaic and Thermal Energy in the Balearic Islands University
by Pere Antoni Bibiloni-Mulet, Andreu Moià-Pol, Jacinto Vidal-Noguera, Iván Alonso, Víctor Martínez-Moll, Yamile Díaz Torres, Vicent Canals, Benito Mas and Carles Mulet-Forteza
Solar 2025, 5(3), 31; https://doi.org/10.3390/solar5030031 - 4 Jul 2025
Viewed by 311
Abstract
The University of the Balearic Islands is undertaking a significant energy transition toward a zero-emissions model, motivated by escalating energy costs and strong institutional commitments to climate neutrality. This study investigates the technical and operational feasibility of deploying 7.1 MWp of photovoltaic capacity [...] Read more.
The University of the Balearic Islands is undertaking a significant energy transition toward a zero-emissions model, motivated by escalating energy costs and strong institutional commitments to climate neutrality. This study investigates the technical and operational feasibility of deploying 7.1 MWp of photovoltaic capacity across the campus, integrated with Li-FePO4 battery systems and thermal energy storage. Through a detailed analysis of hourly energy demand, PV generation profiles, and storage constraints, the research evaluates how these technologies can be optimized to meet campus needs. A linear optimization model is applied to assess system performance under the constraint of a 3 MW grid export limit. Furthermore, the potential of demand-side electrification, implemented via a centralized HVAC plant and a 4th–5th generation district heating and cooling network, is analyzed in terms of its ability to maximize on-site PV self-consumption and reduce reliance on grid electricity during non-generation periods. Full article
Show Figures

Figure 1

20 pages, 2078 KiB  
Article
Holistically Green and Sustainable Pathway Prioritisation for Chemical Process Plant Systems via a FAHP–TOPSIS Framework
by Daniel Li, Mohamed Galal Hassan-Sayed, Nuno Bimbo, Zhaomin Li and Ihab M. T. Shigidi
Processes 2025, 13(7), 2068; https://doi.org/10.3390/pr13072068 - 30 Jun 2025
Viewed by 370
Abstract
Multi-criteria Decision Making (MCDM) presents a novel approach towards truly holistic green sustainability, particularly within the context of chemical process plants (CPPs). ASPEN Plus v12.0 was utilised for two representative CPP cases: isopropanol (IPA) production via isopropyl acetate, and green ammonia (NH3 [...] Read more.
Multi-criteria Decision Making (MCDM) presents a novel approach towards truly holistic green sustainability, particularly within the context of chemical process plants (CPPs). ASPEN Plus v12.0 was utilised for two representative CPP cases: isopropanol (IPA) production via isopropyl acetate, and green ammonia (NH3) production. An integrated Fuzzy Analytic Hierarchy Process (FAHP) and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) was modelled in MATLAB v24.1 to prioritise the holistically green and sustainable pathways. Life cycle assessments (LCAs) were employed to select the pathways, and the most suitable sub-criteria per the four criteria are as follows: social, economic, environmental, and technical. In descending order of optimality, the pathways were ranked as follows for green NH3 and IPA, respectively: Hydropower (HPEA) > Wind Turbine (WGEA) > Biomass Gasification (BGEA)/Solar Photovoltaic (PVEA) > Nuclear High Temperature (NTEA), and Propylene Indirect Hydration (IAH) > Direct Propylene Hydration (PH) > Acetone Hydrogenation (AH). Sensitivity analysis evaluated the FAHP–TOPSIS framework to be overall robust. However, there are potential uncertainties within and/or among sub-criteria, particularly in the social dimension, due to software and data limitations. Future research would seek to integrate FAHP with VIKOR and the Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE-II). Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

22 pages, 1887 KiB  
Article
Technical and Economic Assessment of the Implementation of 60 MW Hybrid Power Plant Projects (Wind, Solar Photovoltaic) in Iraq
by Luay F. Al-Mamory, Mehmet E. Akay and Hasanain A. Abdul Wahhab
Sustainability 2025, 17(13), 5853; https://doi.org/10.3390/su17135853 - 25 Jun 2025
Viewed by 520
Abstract
The growing global demand for sustainable energy solutions has spurred interest in hybrid renewable energy systems, particularly those combining photovoltaic (PV) solar and wind power. This study records the technical and financial feasibility of establishing hybrid solar photovoltaic and wind power stations in [...] Read more.
The growing global demand for sustainable energy solutions has spurred interest in hybrid renewable energy systems, particularly those combining photovoltaic (PV) solar and wind power. This study records the technical and financial feasibility of establishing hybrid solar photovoltaic and wind power stations in Iraq, Al-Rutbah and Al-Nasiriya, with a total power of 60 MW for each, focusing on optimizing energy output and cost-efficiency. The analysis evaluates key technical factors, such as resource availability, system design, and integration challenges, alongside financial considerations, including capital costs, operational expenses, and return on investment (ROI). Using the RETScreen program, the research explores potential locations and configurations for maximizing energy production and minimizing costs, and the evaluation is performed through the calculation Internal Rate of Return (IRR) on equity (%), the Simple Payback (year), the Net Present Value (NPV), and the Annual Life Cycle Savings (ALCSs). The results show that both PV and wind technologies demonstrate significant energy export potential, with PV plants exporting slightly more electricity than their wind counterparts. Al Nasiriya Wind had the highest output, indicating favorable wind conditions or better system performance at that site. The results show that the analysis of the proposed hybrid system has a standardizing effect on emissions, reducing variability and environmental impact regardless of location. The results demonstrate that solar PV is significantly more financially favorable in terms of capital recovery time at both sites, and that financial incentives, especially grants, are essential to improve project attractiveness, particularly for wind power. The analysis underscores the superior financial viability of solar PV projects in both regions. It highlights the critical role of financial support, particularly capital grants, in turning renewable energy investments into economically attractive opportunities. Full article
Show Figures

Figure 1

15 pages, 664 KiB  
Article
A Bio-Inspired Optimization Approach for Low-Carbon Dispatch in EV-Integrated Virtual Power Plants
by Renfei Gao, Kunze Song, Bijiang Zhu and Hongbo Zou
Processes 2025, 13(7), 1969; https://doi.org/10.3390/pr13071969 - 21 Jun 2025
Viewed by 399
Abstract
With the increasing penetration of renewable energy and the large-scale integration of electric vehicles (EVs), the economic optimization dispatch of EV-integrated virtual power plants (VPPs) faces multiple uncertainties and challenges. This paper first proposes an optimized dispatching model for EV clusters to form [...] Read more.
With the increasing penetration of renewable energy and the large-scale integration of electric vehicles (EVs), the economic optimization dispatch of EV-integrated virtual power plants (VPPs) faces multiple uncertainties and challenges. This paper first proposes an optimized dispatching model for EV clusters to form large-scale coordinated regulation capabilities. Subsequently, considering diversified resources such as energy storage systems and photovoltaic (PV) generation within VPPs, a low-carbon economic optimization dispatching model is established to minimize the total system operation costs and polluted gas emissions. To address the limitations of traditional algorithms in solving high-dimensional, nonlinear dispatching problems, this paper introduces a plant root-inspired growth optimization algorithm. By simulating the nutrient-adaptive uptake mechanism and branching expansion strategy of plant roots, the algorithm achieves a balance between global optimization and local fine-grained search. Compared with the genetic algorithm, particle swarm optimization algorithm and bat algorithm, simulation results demonstrate that the proposed method can effectively enhance the low-carbon operational economy of VPPs with high PV, ESS, and EV penetration. The research findings provide theoretical support and practical references for optimal dispatch of multi-stakeholder VPPs. Full article
Show Figures

Figure 1

25 pages, 1379 KiB  
Article
The Capacity Configuration of a Cascade Small Hydropower-Pumped Storage–Wind–PV Complementary System
by Bin Li, Shaodong Lu, Jianing Zhao and Peijie Li
Appl. Sci. 2025, 15(13), 6989; https://doi.org/10.3390/app15136989 - 20 Jun 2025
Viewed by 355
Abstract
Distributed renewable energy sources with significant output fluctuations can negatively impact the power grid stability when it is connected to the power grid. Therefore, it is necessary to develop a capacity configuration method that improves the output stability of highly uncertain energy sources [...] Read more.
Distributed renewable energy sources with significant output fluctuations can negatively impact the power grid stability when it is connected to the power grid. Therefore, it is necessary to develop a capacity configuration method that improves the output stability of highly uncertain energy sources such as wind and photovoltaic (PV) power by integrating pumped storage units. In response, this study proposes a capacity configuration method for a cascade small hydropower-pumped storage–wind–PV complementary system. The method utilizes the regulation capacity of cascade small hydropower plants and pumped storage units, in conjunction with the fluctuating characteristics of local distributed wind and PV, to perform power and energy time-series matching and determine the optimal capacity allocation for each type of renewable energy. Furthermore, an optimization and scheduling model for the cascade small hydropower-pumped storage–wind–PV complementary system is constructed to verify the effectiveness of the configuration under multiple scenarios. The results demonstrate that the proposed method reduces system energy deviation, improves the stability of power output and generation efficiency, and enhances the operational stability and economic performance of the system. Full article
Show Figures

Figure 1

Back to TopTop