Zero Emissions Analysis for a Hybrid System with Photovoltaic and Thermal Energy in the Balearic Islands University
Abstract
1. Introduction
- Kim et al. [6] described the use of model predictive control (MPC) at the University of California, Merced, where a central energy facility with five water-cooled chillers and a 4 MW solar array achieved a 25% reduction in excess photovoltaic output, a 10% drop in greenhouse gases, and a further 10% reduction in peak electricity consumption.
- Huylo et al. [7] examined microgrid upgrades at the University of Texas at Austin, which already incorporates CHP, storage, and district-scale energy distribution. By integrating up to 200 MW of solar and wind, and transitioning turbines to partially use hydrogen, the system could reduce emissions by up to 54.7%.
- Wang et al. [8] employed linear programming to optimize a CHP and solar thermal system with heat storage, revealing that storage usage is strongly influenced by heating needs and electricity price variability.
- Zhang et al. [9] used a revised Lyapunov optimization algorithm to coordinate CHP, renewables, and grid interactions, reducing operational costs based on real-world performance.
- Firouzmakan et al. [10] proposed a multi-objective optimization framework for energy management in microgrids, balancing reliability and sustainability under both islanded and grid-connected scenarios.
2. Case Study
3. Materials and Methods
3.1. Statistical Analysis of Thermal Energy Storage Charging and Discharging Cycles
3.2. Optimal Operation of the Energy Network
- θ1(t): Energy charged into the battery [kWhe];
- θ2(t): Energy charged into the TES [kWht];
- θ3(t): Battery discharge for HVAC thermal load [kWhe];
- θ4(t): TES discharge for HVAC thermal load [kWht];
- θ5(t): Battery state of charge [kWhe];
- θ6(t): TES state of charge [kWht];
- θ7(t): Battery discharge to support pumping load [kWhe].
- P(x): Converts thermal load to electrical input using EER [kWhe];
- d(t): Hourly thermal demand [kWht];
- b(t): Electrical consumption for pumping, with pumping costing 10% of thermal demand [kWhe];
- AFP(t): Hourly market electricity price in Spain for 2023 [€/kWhe].
4. Results
4.1. Complete Campus Results
4.2. Optimal Sizing of Energy Storage System
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
θ1(t) | Energy charged into the battery [kWhe] |
θ2(t) | Energy charged into the TES [kWht] |
θ3(t) | Battery discharge for HVAC thermal load [kWhe] |
θ4(t) | TES discharge for HVAC thermal load [kWht] |
θ5(t) | Battery state of charge [kWhe] |
θ6(t) | TES state of charge [kWht] |
θ7(t) | Battery discharge to support pumping load [kWhe] |
P(x) | Converts thermal load to electrical input using EER [kWhe] |
d(t) | Hourly thermal demand [kWht] |
b(t) | Electrical consumption for pumping [kWhe] |
MWhe | Electric Megawatt-hour |
MWht | Thermal Megawatt-hour |
GLPK | GNU Linear Programming Kit |
LP | Linear Programming |
AFP(t) | Hourly market electricity price in Spain |
PITEIB | Investment Plan for Energy Transition in the Balearic Islands |
PIREP | Plan to Promote the Recovery of Public Buildings |
DSO | Distribution System Operator |
IDAE | Institute for the Diversification and Saving of Energy |
VPP | Virtual Power Plant |
CO2 | Carbon Dioxide |
References
- Tsiropoulos, I.; Nijs, W.; Tarvydas, D.; Castello, P.R. Towards Net-Zero Emissions in the EU Energy System by 2050—Insights from Scenarios in Line with the 2030 and 2050 Ambitions of the European Green Deal; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar]
- Bibiloni-Mulet, P.A.; Moià-Pol, A.; Vidal-Noguera, J.; Alonso, I.; Martínez-Moll, V.; Díaz Torres, Y.; Canals, V.; Mas, B.; Mulet-Forteza, C. Estudio de hibridación de energías fotovoltaica y térmica en la universitat de les illes balears para tener un balance cero de emisiones. In Proceedings of the XIX Congreso Ibérico y XV Congreso Iberoamericano de Energía Solar (CIES2024), Evora, Portugal, 19–21 June 2024. [Google Scholar]
- Alghamdi, A.; Hu, G.; Haider, H.; Hewage, K.; Sadiq, R. Benchmarking of Water, Energy, and Carbon Flows in Academic Buildings: A Fuzzy Clustering Approach. Sustainability 2020, 12, 4422. [Google Scholar] [CrossRef]
- Maiorano, J.; Savan, B. Barriers to energy efficiency and the uptake of green revolving funds in Canadian universities. Int. J. Sustain. High. Educ. 2015, 16, 200–216. [Google Scholar] [CrossRef]
- Shirazi, A.; Newton, S.; Christensen, P.H. Processing and Configuring Smart and Sustainable Building Management Practices in a University Building in Australia. Sustainability 2023, 15, 6194. [Google Scholar] [CrossRef]
- Kim, D.; Wang, Z.; Brugger, J.; Blum, D.; Wetter, M.; Hong, T.; Piette, M.A. Site demonstration and performance evaluation of MPC for a large chiller plant with TES for renewable energy integration and grid decarbonization. Appl. Energy 2022, 321, 119343. [Google Scholar] [CrossRef]
- Huylo, M.; Taheri, S.; Novoselac, A. Integration of renewable energy generation and storage systems for emissions reduction in an islanded campus microgrid. Build. Environ. 2025, 274, 112736. [Google Scholar] [CrossRef]
- Wang, H.; Yin, W.; Abdollahi, E.; Lahdelma, R.; Jiao, W. Modelling and optimization of CHP based district heating system with renewable energy production and energy storage. Appl. Energy 2015, 159, 401–421. [Google Scholar] [CrossRef]
- Zhang, G.; Cao, Y.; Cao, Y.; Li, D.; Wang, L. Optimal Energy Management for Microgrids with Combined Heat and Power (CHP) Generation, Energy Storages, and Renewable Energy Sources. Energies 2017, 10, 1288. [Google Scholar] [CrossRef]
- Firouzmakan, P.; Hooshmand, R.-A.; Bornapour, M.; Khodabakhshian, A. A comprehensive stochastic energy management system of micro-CHP units, renewable energy sources and storage systems in microgrids considering demand response programs. Renew. Sustain. Energy Rev. 2019, 108, 355–368. [Google Scholar] [CrossRef]
- Testasecca, T.; Catrini, P.; La Villetta, M.; Beccali, M.; Piacentino, A. Energy assessment of thermal solar-powered district heating and cooling networks for a cluster of buildings in Mediterranean climate. Renew. Energy 2025, 251, 123397. [Google Scholar] [CrossRef]
- Calise, F.; Cappiello, F.L.; Cimmino, L.; Dentice d’Accadia, M.; Vicidomini, M. A comparative thermoeconomic analysis of fourth generation and fifth generation district heating and cooling networks. Energy 2023, 284, 128561. [Google Scholar] [CrossRef]
- Calise, F.; Cappiello, F.L.; Cimmino, L.; Vicidomini, M.; Petrakopoulou, F. Thermoeconomic analysis of a novel topology of a 5th generation district energy network for a commercial user. Appl. Energy 2024, 371, 123718. [Google Scholar] [CrossRef]
- De Rosa, L.; Martínez, M.; Linares, J.I.; Mateo, C.; Gomez, T.; Cossent, R.; Postigo, F.; Sánchez-Miralles, Á.; Martín-Martínez, F. Design and assessment of energy infrastructure in new decarbonized urban districts: A Spanish case study. Energy Rep. 2024, 11, 4631–4641. [Google Scholar] [CrossRef]
- Moià-Pol, A.; Pujol-Nadal, R.; Martínez-Moll, V.; Hertel, J.D. Retrofit of a Solar System in Sport Center in Mallorca. Energy Procedia 2016, 91, 190–196. [Google Scholar] [CrossRef]
- Bulut, M. Integrated solar power project based on CSP and PV technologies for Southeast of Turkey. Int. J. Green Energy 2022, 19, 603–613. [Google Scholar] [CrossRef]
- Moll, V.M.; Bibiloni, P.A.; Vidal, J.; Canals, V.; Díaz-Torres, Y.; Moià-Pol, A.; Alonso, I.; Mas, B. Enhancing Energy Transition on Campus: Implementing Thermal Accumulation Mechanisms for Flexibility. In Proceedings of the EuroSun 2024: 15th International Conference on Solar Energy for Buildings and Industry, Limassol, Cyprus, 26–30 August 2024; pp. 1–12. [Google Scholar] [CrossRef]
- Bynum, M.L.; Hackebeil, G.A.; Hart, W.E.; Laird, C.D.; Nicholson, B.L.; Siirola, J.D.; Watson, J.-P.; Woodruff, D.L. Pyomo—Optimization Modeling in Python, 3rd ed.; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Free Software Foundation. GLPK (GNU Linear Programming Kit). [Online]. Available online: https://www.gnu.org/software/glpk/glpk.html (accessed on 28 January 2025).
- Kalkan, N.; Bercin, K.; Cangul, O.; Morales, M.G.; Saleem, M.M.K.M.; Marji, I.; Metaxa, A.; Tsigkogianni, E. A renewable energy solution for Highfield Campus of University of Southampton. Renew. Sustain. Energy Rev. 2011, 15, 2940–2959. [Google Scholar] [CrossRef]
- Tu, Q.; Zhu, C.; McAvoy, D.C. Converting campus waste into renewable energy—A case study for the University of Cincinnati. Waste Manag. 2015, 39, 258–265. [Google Scholar] [CrossRef]
- Elgqvist, E.; VanGeet, O. Campus Energy Approach, REopt Overview, and Solar for Universities. In Proceedings of the 2017 I2SL Annual Conference, Boston, MA, USA, 15–18 October 2017. NREL/PR-7A40-70252. [Google Scholar]
- Zanetti, E.; Aprile, M.; Kum, D.; Scoccia, R.; Motta, M. Energy saving potentials of a photovoltaic assisted heat pump for hybrid building heating system via optimal control. J. Build. Eng. 2020, 27, 100854. [Google Scholar] [CrossRef]
- Péan, T.Q.; Salom, J.; Costa-Castelló, R. Review of control strategies for improving the energy flexibility provided by heat pump systems in buildings. J. Process. Control 2019, 74, 35–49. [Google Scholar] [CrossRef]
- Sayegh, M.A.; Jadwiszczak, P.; Axcell, B.P.; Niemierka, E.; Bryś, K.; Jouhara, H. Heat pump placement, connection and operational modes in European district heating. Energy Build. 2018, 166, 122–144. [Google Scholar] [CrossRef]
- Bach, B.; Werling, J.; Ommen, T.; Münster, M.; Morales, J.M.; Elmegaard, B. Integration of large-scale heat pumps in the district heating systems of Greater Copenhagen. Energy 2016, 107, 321–334. [Google Scholar] [CrossRef]
- Barco-Burgos, J.; Bruno, J.C.; Eicker, U.; Saldaña-Robles, A.L.; Alcántar-Camarena, V. Review on the integration of high-temperature heat pumps in district heating and cooling networks. Energy 2022, 239, 122378. [Google Scholar] [CrossRef]
- Chen, H.; Jia, X.; Wang, H.; Ning, Y.; Li, X.; Duanmu, L. Optimization and evaluation of a near-zero carbon energy system: Integration of photovoltaics, heat pumps, and combined thermal and electrical storage solutions. Energy Convers. Manag. 2025, 327, 119583. [Google Scholar] [CrossRef]
- Bandera, C.F.; Pachano, J.; Salom, J.; Peppas, A.; Ruiz, G.R. Photovoltaic plant optimization to leverage electric self consumption by harnessing building thermal mass. Sustainability 2020, 12, 553. [Google Scholar] [CrossRef]
- Zhang, R.; Li, Z.; Liu, P. Modeling and optimization of a heating and cooling combined seasonal thermal energy storage system towards a carbon-neutral community: A university campus case study. Energy 2025, 319, 135122. [Google Scholar] [CrossRef]
- University of Minnesota. Twin Cities Climate Action Plan 2023. Twin Cities. 2023. Available online: https://sustainable.umn.edu/sites/sustainable.umn.edu/files/2023-07/Twin%20Cities%20Climate%20Action%20Plan%2020230720.pdf (accessed on 28 March 2025).
- Kiehle, J.; Kopsakangas-Savolainen, M.; Hilli, M.; Pongrácz, E. Carbon footprint at institutions of higher education: The case of the University of Oulu. J. Environ. Manag. 2023, 329, 117056. [Google Scholar] [CrossRef]
- Patteeuw, D.; Henze, G.P.; Helsen, L. Comparison of load shifting incentives for low-energy buildings with heat pumps to attain grid flexibility benefits. Appl. Energy 2016, 167, 80–92. [Google Scholar] [CrossRef]
Nº | Building | Surface [m2] | Consumption [MWh/year] | Energy Intensity [kWh/m2] | Peak Thermal Power [kW] |
---|---|---|---|---|---|
1 | Anselm Turmeda | 8586 | 609 | 71 | 859 |
2 | TCC | 769 | 307 | 399 | 77 |
3 | Guillem Colom Casasnovas | 5882 | 613 | 104 | 649 |
4 | Ramon Llull | 7360 | 360 | 49 | 736 |
5 | Mateu Orfila i Rotger | 11,281 | 876 | 78 | 1128 |
7 | Cas Jai | 599 | 42 | 70 | 60 |
8 | Scientific-Technical Centre | 5672 | 2017 | 356 | 567 |
9 | Livestock Centre | 434 | 172 | 397 | 403 |
10 | Antoni Maria Alcover i Sureda | 4034 | 268 | 66 | 250 |
11 | Beatriu de Pinós | 2503 | 131 | 52 | 600 |
12 | Margalida Comas i Camps | 6000 | - | - | 1186 |
13 | Guillem Cifre de Colonya | 11,863 | 1031 | 87 | 1837 |
14 | Gaspar Melchor de Jovellanos | 18,366 | 1363 | 74 | 729 |
15 | Sports Centre | 7292 | 2048 | 281 | 324 |
16 | Bartomeu Rosselló-Pòrcel | 3237 | 201 | 62 | 200 |
17 | Arxiduc Lluís Salvador | 1997 | 158 | 79 | 453 |
Total | 95,875 | 10,196 | - | 10,058 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bibiloni-Mulet, P.A.; Moià-Pol, A.; Vidal-Noguera, J.; Alonso, I.; Martínez-Moll, V.; Díaz Torres, Y.; Canals, V.; Mas, B.; Mulet-Forteza, C. Zero Emissions Analysis for a Hybrid System with Photovoltaic and Thermal Energy in the Balearic Islands University. Solar 2025, 5, 31. https://doi.org/10.3390/solar5030031
Bibiloni-Mulet PA, Moià-Pol A, Vidal-Noguera J, Alonso I, Martínez-Moll V, Díaz Torres Y, Canals V, Mas B, Mulet-Forteza C. Zero Emissions Analysis for a Hybrid System with Photovoltaic and Thermal Energy in the Balearic Islands University. Solar. 2025; 5(3):31. https://doi.org/10.3390/solar5030031
Chicago/Turabian StyleBibiloni-Mulet, Pere Antoni, Andreu Moià-Pol, Jacinto Vidal-Noguera, Iván Alonso, Víctor Martínez-Moll, Yamile Díaz Torres, Vicent Canals, Benito Mas, and Carles Mulet-Forteza. 2025. "Zero Emissions Analysis for a Hybrid System with Photovoltaic and Thermal Energy in the Balearic Islands University" Solar 5, no. 3: 31. https://doi.org/10.3390/solar5030031
APA StyleBibiloni-Mulet, P. A., Moià-Pol, A., Vidal-Noguera, J., Alonso, I., Martínez-Moll, V., Díaz Torres, Y., Canals, V., Mas, B., & Mulet-Forteza, C. (2025). Zero Emissions Analysis for a Hybrid System with Photovoltaic and Thermal Energy in the Balearic Islands University. Solar, 5(3), 31. https://doi.org/10.3390/solar5030031