Physiological and Chemical Response of Urochloa brizantha to Edaphic and Microclimatic Variations Along an Altitudinal Gradient in the Amazon
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area Location
masl | Condition | ϕ | λ | φ | °C | HR (%) | W/m2 |
---|---|---|---|---|---|---|---|
170 | Shade | 5°33′36″ | 76°47′60″ | 155 | |||
5°58′48″ | 76°11′24″ | 178 | |||||
5°54′0″ | 76°10′12″ | 170 | 26.2 ± 1.2 | 93.5 ± 3.9 | 37.5 ± 25.8 | ||
Sun | 5°53′24″ | 76°12′0″ | 192 | ||||
5°58′12″ | 76°10′48″ | 157 | 26.5 ± 1.3 | 89.9 ± 4.2 | 144.4 ± 56.3 | ||
5°53′24″ | 76°11′24″ | 169 | |||||
503 | Shade | 6°31′12″ | 76°31′12″ | 571 | 25.7 ± 1.5 | 83.7 ± 7.8 | 108.8 ± 47.7 |
6°31′48″ | 76°31′12″ | 373 | |||||
6°32′24″ | 76°28′48″ | 554 | |||||
Sun | 6°30′36″ | 76°30′36″ | 572 | 26.5 ± 1.7 | 80.4 ± 7.9 | 146.0 ± 49.5 | |
6°31′12″ | 76°30′0″ | 466 | |||||
6°32′60″ | 76°29′24″ | 483 | |||||
661 | Shade | 6°36′36″ | 76°29′24″ | 648 | 25.2 ± 1.6 | 81.0 ± 9.1 | 61.9 ± 29.2 |
6°32′60″ | 76°31′12″ | 724 | |||||
6°35′60″ | 76°29′24″ | 652 | |||||
Sun | 6°32′60″ | 76°30′36″ | 651 | ||||
6°30′36″ | 76°32′24″ | 637 | 25.6 ± 1.7 | 78.8 ± 8.1 | 163.6 ± 57.8 | ||
6°20′60″ | 76°17′60″ | 652 | |||||
1110 | Shade | 6°2′24″ | 77°2′60″ | 1112 | 23.1 ± 1.1 | 86.1 ± 5.0 | 52.6 ± 32.0 |
6°2′24″ | 77°4′48″ | 1035 | |||||
6°2′60″ | 77°3′36″ | 1260 | |||||
Sun | 6°2′24″ | 77°2′24″ | 1009 | 24.2 ± 2.0 | 80.5 ± 7.0 | 161.3 ± 52.6 | |
6°2′24″ | 77°0′36″ | 1138 | |||||
6°4′48″ | 77°0′36″ | 1104 |
2.2. Trees in Silvopastoral Areas
2.3. Soil Sampling and Analysis
2.4. Sample Collection and Biomass
2.5. Chemical or Bromatological Analysis
2.6. Stomatal Length and Density
2.7. Data Analysis
3. Results
3.1. Silvopastoral Tree Families
3.2. Soil Properties Along the Altitudinal Gradient
3.3. PCA of Brizantha Variables
3.4. Growth Variables
3.5. Foliar Chemical Properties
3.6. Association Between Foliar Chemical Properties and Soil
3.7. Morphometry of Brizantha Stomata
4. Discussion
4.1. Tree Family in Altitudinal Gradient
4.2. Soil Properties
4.3. Physiological Variables and Chemical Properties of Brizantha
4.4. Stomatal Morphometry
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Granier, P.; Lahore, J. Amélioration des pâturages.: Le Brachiaria brizantha. Rev. D’élevage Et De Médecine Vétérinaire Des Pays Trop. 1966, 19, 233–242. [Google Scholar] [CrossRef]
- Valle, C.B.D.; Euclides, V.P.; Montagner, D.B.; Valério, J.R.; Fernandes, C.D.; Macedo, M.C.; Machado, L.A. BRS Paiaguás: A new Brachiaria (Urochloa) cultivar for tropical pastures in Brazil. Trop. Grassl.-Forrajes Trop. 2013, 1, 121–122. [Google Scholar] [CrossRef]
- Pereira, A.L.; Campos, M.C.C.; Souza, Z.M.D.; Cavalcante, Í.H.L.; Silva, V.A.D.; Martins Filho, M.V. Atributos do solo sob pastagens em sistema de sequeiro e irrigado. Ciência E Agrotecnologia 2009, 33, 377–384. [Google Scholar] [CrossRef]
- Pérez Brandan, C.; Chavarría, D.; Huidobro, J.; Meriles, J.M.; Pérez Brandan, C.; Gil, S.V. Influence of a tropical grass (Brachiaria brizantha cv. Mulato) as cover crop on soil biochemical properties in a degraded agricultural soil. Eur. J. Soil Biol. 2017, 83, 84–90. [Google Scholar] [CrossRef]
- Gemeda, M.; Kebebe, D.; Demto, T. Screening and selection of Brachiaria brizantha accessions for forage values under irrigation at Wondo Genet, Sidama, Ethiopia. Open J. Biol. Sci. 2022, 7, 005–010. [Google Scholar] [CrossRef]
- Rego, C.A.R.D.M.; Oliveira, P.S.R.D.; Muniz, L.C.; Rosset, J.S.; Mattei, E.; Costa, B.P.; Pereira, M.G. Chemical, physical, and biological properties of soil with pastures recovered by integration crop-livestock system in Eastern Amazon. Rev. Bras. De Ciência Do Solo 2023, 47, e0220094. [Google Scholar] [CrossRef]
- Pizarro, D.; Vásquez, H.; Bernal, W.; Fuentes, E.; Alegre, J.; Castillo, M.S.; Gómez, C. Assessment of silvopasture systems in the northern Peruvian Amazon. Agrofor. Syst. 2020, 94, 173–183. [Google Scholar] [CrossRef]
- Rivera Damacio, S. Evaluación agronómica y productiva de tres variedades de Brachiaria brizantha bajo dos métodos de siembra en el caserío de Montevideo. Rev. De Investig. Agropecu. Sci. Biotechnol. RIAGROP 2023, 3, 39–50. [Google Scholar] [CrossRef]
- Merloti, L.F.; Bossolani, J.W.; Mendes, L.W.; Rocha, G.S.; Rodrigues, M.; Asselta, F.O.; Crusciol, C.A.C.; Tsai, S.M. Investigating the effects of Brachiaria (Syn. Urochloa) varieties on soil properties and microbiome. Plant Soil 2023, 503, 29–46. [Google Scholar] [CrossRef]
- Gómez-Marín, G.Y.; Canches-Gonzales, A.; Goicochea-Vargas, J.F. Performance of the common Brachiaria (Brachiaria decumbens) vs. the Brachiaria brizanta (Bachiaria brizantha) in the district of Codo del Pozuzo-Huánuco. Rev. Investig. Agrar. 2023, 5, 23–29. [Google Scholar] [CrossRef]
- Balseca, D.G.; Cienfuegos, E.G.; López, H.B.; Guevara, H.P.; Martínez, J.C. Valor nutritivo de Brachiarias y leguminosas forrajeras en el trópico húmedo de Ecuador. Cienc. E Investig. Agrar. 2015, 42, 57–63. [Google Scholar] [CrossRef]
- Guerra, G.L.; Becquer, T.; Vendrame, P.R.S.; Galbeiro, S.; Brito, O.R.; da Silva, L.D.D.F.; Felix, J.C.; Lopes, M.R.; Henz, É.L.; Mizubuti, I.Y. Avaliação nutricional da Brachiaria brizantha cv. Marandu cultivada em solos desenvolvidos de basalto e de arenito no estado do Paraná. Semin. Ciências Agrárias 2019, 40, 469–484. [Google Scholar] [CrossRef]
- Santos, D.F.D.; de Oliveira, M.W.; Oliveira, T.B.A.; da Costa Soares, E.; de Assis, W.O.; da Silva, R.N. Dry matter allocation and chemical composition of Brachiaria brizantha and decumbens 45 days after emergence. Braz. J. Dev. 2022, 8, 37050–37061. [Google Scholar] [CrossRef]
- Brito, C.J.F.; Rodella, R.A.; Deschamps, F.C. Perfil químico da parede celular e suas implicações na digestibilidade de Brachiaria brizantha e Brachiaria humidicola. Rev. Bras. De Zootec. 2003, 32, 1835–1844. [Google Scholar] [CrossRef]
- Medeiros, L.T.; Pinto, J.C.; Castro, E.M.D.; Rezende, A.V.D.; Lima, C.A. Nitrogen and anatomical, bromatological and agronomical characteristics of Brachiaria brizantha cultivars. Ciência E Agrotecnologia 2011, 35, 598–605. [Google Scholar] [CrossRef]
- Magalhães, J.A.; de Souza Carneiro, M.S.; Andrade, A.C.; Pereira, E.S.; Rodrigues, B.H.N.; de Lucena Costa, N.; Townsend, C.R. Composição bromatológica do capim-Marandu sob efeito de irrigação e adubação nitrogenada. Semin. Ciências Agrárias 2015, 36, 933–942. [Google Scholar] [CrossRef]
- Murga-Orrillo, H.; Abanto-Rodriguez, C.; Fernandes Silva Dionisio, L.; Chu-Koo, F.W.; Schwartz, G.; Nuñez Bustamante, E.; Stewart, P.M.; Santos Silva Amorim, R.; Vourlitis, G.L.; De Almeida Lobo, F.; et al. Tara (Caesalpinia spinosa) in Natural and Agroforestry Systems under an Altitudinal Gradient in the Peruvian Andes: Responses to Soil and Climate Variation. Agronomy 2023, 13, 282. [Google Scholar] [CrossRef]
- Murga-Orrillo, H.; Coronado, J.M.F.; Abanto-Rodríguez, C.; Lobo, A.F. Altitudinal gradient and its influence on the edaphoclimatic characteristics of tropical forests. Madera Bosques 2021, 27, e2732271. [Google Scholar] [CrossRef]
- Siebert, F.; Klem, J.; Van Coller, H. Forb community responses to an extensive drought in two contrasting land-use types of a semi-arid Lowveld savanna. Afr. J. Range Forage Sci. 2020, 37, 53–64. [Google Scholar] [CrossRef]
- Carvalho, P.; Domiciano, L.F.; Mombach, M.A.; Nascimento, H.L.B.; Cabral, L.D.S.; Sollenberger, L.E.; Pedreira, B.C. Forage and animal production on palisadegrass pastures growing in monoculture or as a component of integrated crop–livestock–forestry systems. Grass Forage Sci. 2019, 74, 650–660. [Google Scholar] [CrossRef]
- Azar, G.S.; de Araújo, A.S.F.; de Oliveira, M.E.; Azevêdo, D.M.M.R. Biomassa e atividade microbiana do solo sob pastagem em sistemas de monocultura e silvipastoril. Semin. Ciências Agrárias Londrina 2013, 34, 2727–2736. [Google Scholar] [CrossRef]
- Sousa, L.F.; Moreira, G.R.; Lemos Filho, J.P.D.; Paciullo, D.S.C.; Vendramini, J.M.B.; Luna, R.E.M.; Maurício, R.M. Morpho-physiological and anatomical characteristics of Urochloa brizantha cv. Marandu in silvopastoral and monoculture systems. Acta Sci. Anim. Sci. 2023, 45, e59494. [Google Scholar] [CrossRef]
- Murga-Orrillo, H.; Amasifuén, B.P.; López, L.A.A.; Inuma, M.C.; Abanto-Rodríguez, C. Cedrelinga catenaeformis (Tornillo) in natural and agroforestry systems: Dendrometry, soil and macrofauna. Trees For. People 2024, 16, 100577. [Google Scholar] [CrossRef]
- Oliveira, L.B.T.D.; Santos, A.C.D.; André, T.B.; Santos, J.G.D.D.; Oliveira, H.M.R.D. Influence of a silvopastoral system on anatomical aspects and dry matter quality of Mombasa and Marandu grasses. J. Agric. Ecol. Res. Int. 2017, 13, 1–11. [Google Scholar] [CrossRef]
- Soares, A.S.; Driscoll, S.P.; Olmos, E.; Harbinson, J.; Arrabaça, M.C.; Foyer, C.H. Adaxial/abaxial specification in the regulation of photosynthesis and stomatal opening with respect to light orientation and growth with CO2 enrichment in the C4 species Paspalum dilatatum. New Phytol. 2008, 177, 186–198. [Google Scholar] [CrossRef]
- Gobbi, K.F.; Garcia, R.; Ventrella, M.C.; Neto, A.F.G.; Rocha, G.C. Specific leaf area and quantitative leaf anatomy of signalgrass and forage peanut submitted to shading. Rev. Bras. De Zootec. 2011, 40, 1436–1444. [Google Scholar] [CrossRef]
- Romero-Romero, E.; Sánchez, R.; Sumich, J.; Añino, Y.J.; Lopez, O.R. Variaciones morfométricas y densidad estomática en hojas de Mangifera indica bajo condiciones lumínicas contrastantes. Tecnociencia 2020, 22, 66–75. [Google Scholar] [CrossRef]
- Murga-Orrillo, H.; Arévalo López, L.A.; Mathios Flores, M.A.; Cáceres Coral, J.; Rojas García, M.; Guerra Teixeira, A.A.; Murga Valderrama, N.L. Silvopasture and altitudinal gradient reduce heat stress in livestock production in the Peruvian tropics. Front. Anim. Sci. 2025, 6, 1521790. [Google Scholar]
- Murga-Orrillo, H.; Mathios Flores, M.A.; Coral, C.J.; García, M.R.; Guerra-Teixeira, A.A.; Pashanasi Amasifuén, B.; Quevedo, C.D.; Arévalo López, L.A. Brachiaria brizantha in Silvopastoral and Monoculture Systems: Soil, Trees, and Microclimate in an Altitudinal Gradient of the Amazon. Res. Sq. 2025. [Google Scholar] [CrossRef]
- Korning, J.; Balslev, H. Growth and Mortality of Trees in Amazonian Tropical Rain Forest in Ecuador. J. Veg. Sci. 1994, 5, 77–86. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. An examination of the detjareff method for determining soil organic matter and a proposed modification to the chronic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Circular 1954, 19, 1–19. [Google Scholar]
- Hunter, A.H. Suggested Soil Plant Analytical Techniques for Tropical Soils Research Program Laboratories; Agro Services International: Orange City, FL, USA, 1986; p. 70. [Google Scholar]
- Bouyoucos, G. Particle Size Analysis by Hydrometer: A Simplified Method for Routine Textural Analysis and a Sensitivity Test of Measurement Parameters. Soil Sci. Soc. Am. J. 1979, 43, 1004–1007. [Google Scholar] [CrossRef]
- Bianco, S.; Brendolan, R.A.; Alves, P.L.; Pitelli, R.A. Estimativa da área foliar de plantas daninhas: Brachiaria decumbens Stapf. e Brachiaria brizantha (Hochst.) Stapf. Planta Daninha 2000, 18, 79–83. [Google Scholar] [CrossRef]
- AOAC (Association of Official Analytical Chemists). Official Methods of Analysis of AOAC International, 21st ed.; AOAC International Press: Gaithersburg, MD, USA, 2019. [Google Scholar]
- AOCS. (Association of Official Analytical Chemists). Official Method of Analysis Am 5-04: Rapid Determination of Oil/Fat Utilizing High Temperature Solvent Extraction; AOAC International Press: Gaithersburg, MD, USA, 2004. [Google Scholar]
- ANKOM. Operator’s Manual. Rapid Determination of Oil/Fat Utilizing High Temperature Solvent Extraction; ANKOM Technology Corporation: Macedon, NY, USA, 2021. [Google Scholar]
- ANKOM. Operator’s Manual. In Vitro True Digestibility Using the DAISYII Incubator; ANKOM Technology Corporation: Macedon, NY, USA, 2005. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing, version 4.1.0; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.r-project.org/ (accessed on 22 July 2024).
- Myster, R.W. Tree families and physical structure across an elevational gradient in a Southern Andean Cloud forest in Ecuador. J. Plant Biota. 2024, 3, 37–43. [Google Scholar] [CrossRef]
- Zamora, Y.S.; Mas, B.S.; Coronel-Castro, E.; López, R.Y.R.; Silva, E.A.A.; Jeri, A.B.F.; Pariente-Mondragón, E. Tree Species Composition and Structure of a Vegetation Plot in a Montane Forest in the Department of Amazonas, Peru. Forests 2024, 15, 1175. [Google Scholar] [CrossRef]
- Leakey, R.R. The role of trees in agroecology and sustainable agriculture in the tropics. Annu. Rev. Phytopathol. 2014, 52, 113–133. [Google Scholar] [CrossRef] [PubMed]
- Lazali, M.; Drevon, J.J. Legume ecosystemic services. Commun. Plant Sci. 2023, 13, 13–18. [Google Scholar] [CrossRef]
- Duchesne, L.; Moore, J.D.; Ouimet, R. Partitioning the effect of release and liming on growth of sugar maple and American beech saplings. North. J. Appl. For. 2013, 30, 28–36. [Google Scholar] [CrossRef]
- Umer, M.I.; Rajab, S.M.; Ismail, H.K. Effect of CaCO3 form on soil inherent quality properties of calcareous soils. In Materials Science Forum; Trans Tech Publications Ltd.: Pfaffikon, Switzerland, 2020; Volume 1002, pp. 459–467. [Google Scholar] [CrossRef]
- Rowley, M.C.; Grand, S.; Adatte, T.; Verrecchia, E.P.A. cascading influence of calcium carbonate on the biogeochemistry and pedogenic trajectories of subalpine soils, Switzerland. Geoderma 2020, 361, 114065. [Google Scholar] [CrossRef]
- Guenni, O.S.S.F.R.; Seiter, S.; Figueroa, R. Growth responses of three Brachiaria species to light intensity and nitrogen supply. TG Trop. Grassl. 2008, 42, 75. [Google Scholar]
- Casanova-Lugo, F.; Villanueva-López, G.; Alcudia-Aguilar, A.; Nahed-Toral, J.; Medrano-Pérez, O.R.; Jiménez-Ferrer, G.; Aryal, D.R. Effect of tree shade on the yield of Brachiaria brizantha grass in tropical livestock production systems in Mexico. Rangel. Ecol. Manag. 2022, 80, 31–38. [Google Scholar] [CrossRef]
- Apollon, W.; Jean-Baptiste, Y.; Wagner, B.J.; Luna-Maldonado, A.I.; Silos-Espino, H. Effect of organic and inorganic fertilization on the production and quality of Brachiaria brizantha. Rev. Mex. De Cienc. Agrícolas 2022, 13, 1–13. [Google Scholar] [CrossRef]
- Martins, L.E.; Monteiro, F.A.; Pedreira, B.C. Photosynthesis and leaf area of Brachiaria brizantha in response to phosphorus and zinc nutrition. J. Plant Nutr. 2015, 38, 754–767. [Google Scholar] [CrossRef]
- Bachmaier, H.; Kuptz, D.; Hartmann, H. Wood ashes from grate-fired heat and power plants: Evaluation of nutrient and heavy metal contents. Sustainability 2021, 13, 5482. [Google Scholar] [CrossRef]
- Wassie, W.A.; Tsegay, B.A.; Wolde, A.T.; Limeneh, B.A. Evaluation of morphological characteristics, yield and nutritive value of Brachiaria grass ecotypes in northwestern Ethiopia. Agric. Food Secur. 2018, 7, 1–10. [Google Scholar] [CrossRef]
- Adnew, W.; Tsegay, B.A.; Tassew, A.; Asmare, B. Effect of Harvesting stage and Altitude on Agronomic and Qualities of six Brachiaria grass in Northwestern Ethiopia. AgroLife Sci. J. 2019, 8, 9–20. [Google Scholar]
- Maranhão, C.M.D.A.; Bonomo, P.; Pires, A.J.V.; Costa, A.C.P.R.; Martins, G.C.F.; Cardoso, E.O. Características produtivas do capim-braquiária submetido a intervalos de cortes e adubação nitrogenada durante três estações. Acta Scientiarum. Anim. Sci. 2010, 32, 375–384. [Google Scholar] [CrossRef]
- Costa, K.A.D.P.; Oliveira, I.P.D.; Faquin, V.; Neves, B.P.D.; Rodrigues, C.; Sampaio, F.D.M.T. Intervalo de corte na produção de massa seca e composição químico-bromatológica da Brachiaria brizantha cv. MG-5. Ciência E Agrotecnologia 2007, 31, 1197–1202. [Google Scholar] [CrossRef]
- Quintino, A.D.C.; Abreu, J.G.D.; Almeida, R.G.D.; Macedo, M.C.M.; Cabral, L.D.S.; Galati, R.L. Production and nutritive value of piatã grass and hybrid sorghum at different cutting ages. Acta Scientiarum. Anim. Sci. 2013, 35, 243–249. [Google Scholar] [CrossRef]
- Pompelli, M.F.; Martins, S.C.V.; Celin, E.F.; Ventrella, M.C.; DaMatta, F.M. What is the influence of ordinary epidermal cells and stomata on the leaf plasticity of coffee plants grown under full-sun and shady conditions? Braz. J. Biol. 2010, 70, 1083–1088. [Google Scholar] [CrossRef] [PubMed]
mals | pH | EC | CaCO3 | OM | P | K | Sand | Silt | Clay | CEC |
---|---|---|---|---|---|---|---|---|---|---|
dS/m | % | cmolc/kg | ||||||||
170 | 4.2 b | 0.1 b | 0.0 b | 2.7 b | 2.3 bc | 62.0 c | 56.0 a | 24.0 b | 20.0 b | 9.2 b |
503 | 7.4 a | 0.8 a | 2.3 a | 5.1 ab | 4.2 a | 385.8 a | 29.3 b | 25.3 ab | 45.3 a | 35.8 a |
661 | 7.1 a | 0.7 a | 1.6 ab | 6.0 a | 3.8 ab | 342.0 ab | 35.3 b | 25.7 ab | 39.0 a | 31.3 a |
1110 | 4.4 b | 0.1 b | 0.0 b | 3.8 ab | 2.2 c | 138.0 bc | 40.3 ab | 35.3 a | 24.3 b | 12.3 b |
DMS | 0.4 | 0.2 | 2.3 | 2.5 | 1.6 | 221.3 | 17.0 | 11.3 | 10.2 | 8.6 |
Enviroment | ||||||||||
Shade | 5.9 a | 0.4 a | 1.4 a | 5.1 a | 3.1 a | 280.8 a | 36.2 a | 30.2 a | 33.7 a | 22.8 a |
Sun | 5.6 a | 0.4 a | 0.6 a | 3.7 a | 3.1 a | 183.1 a | 44.3 a | 25.0 a | 30.7 a | 21.4 a |
DMS | 1.3 | 0.3 | 1.4 | 1.5 | 1.1 | 157.2 | 11.6 | 6.5 | 10.4 | 11.0 |
Day | m | FW | DW | PH | SD | LA |
---|---|---|---|---|---|---|
kg/ha | cm | cm2 | ||||
15 (n = 120) | 170 | 3783.3 a | 1755.5 a | 30.1 ab | 0.27 a | 5.9 c |
503 | 5158.3 a | 494.8 a | 35.8 a | 0.39 a | 30.8 a | |
661 | 2898.3 a | 906.8 a | 24.5 b | 0.40 a | 18.6 b | |
1110 | 4491.7 a | 1325.9 a | 25.9 ab | 0.33 a | 5.7 c | |
MSD | 3628.3 | 924.9 | 11.0 | 0.2 | 7.7 | |
30 (n = 120) | 170 | 7366.7 a | 2785.0 a | 36.6 a | 0.43 a | 17.2 a |
503 | 5225.0 ab | 1838.6 ab | 38.3 a | 0.35 a | 32.0 a | |
661 | 5916.7 ab | 173.9 ab | 42.5 a | 0.29 a | 33.7 a | |
1110 | 4108.3 b | 1353.4 b | 31.8 a | 0.34 a | 34.8 a | |
MSD | 2701.4 | 1097.7 | 15.0 | 0.2 | 22.4 | |
45 (n = 120) | 170 | 8033.3 a | 2912.0 a | 41.0 ab | 0.25 a | 17.8 ab |
503 | 7808.3 a | 2581.9 a | 55.2 a | 0.40 a | 32.3 a | |
661 | 7073.3 a | 1982.9 a | 39.7 ab | 0.24 a | 11.0 b | |
1110 | 7666.7 a | 2453.6 a | 35.5 b | 0.33 a | 28.4 ab | |
MSD | 6135.4 | 1860.4 | 19.2 | 0.2 | 17.8 | |
60 (n = 120) | 170 | 11,183.3 a | 3667.6 a | 52.4 a | 0.36 a | 22.4 a |
503 | 11,925.0 a | 4058.6 a | 61.8 a | 0.35 a | 31.9 a | |
661 | 10,000.0 a | 3423.8 a | 46.0 a | 0.17 b | 19.1 a | |
1110 | 10,491.7 a | 3403.4 a | 46.8 a | 0.31 ab | 18.9 a | |
MSD | 7508.8 | 2466.2 | 24.9 | 0.2 | 18.8 | |
75 (n = 120) | 170 | 14,566.7 a | 5061.8 a | 71.0 ab | 0.32 a | 39.3 a |
503 | 14,425.0 a | 4715.8 a | 72.9 a | 0.33 a | 37.2 a | |
661 | 12,683.3 a | 4331.8 a | 60.8 ab | 0.25 a | 38.7 a | |
1110 | 13,100.0 a | 4722.4 a | 53.8 b | 0.31 a | 11.4 a | |
MSD | 7581.4 | 2732.2 | 18.9 | 0.1 | 46.4 | |
Gradient (n = 600) | Day | |||||
15 | 4082.9 d | 1370.7 d | 29.1 d | 0.35 a | 15.2 b | |
30 | 5654.2 cd | 2037.7 cd | 37.3 cd | 0.35 a | 29.4 a | |
45 | 7645.4 c | 2482.6 c | 42.8 bc | 0.31 a | 22.4 ab | |
60 | 10,900.0 b | 3638.3 b | 51.8 b | 0.30 a | 23.1 ab | |
75 | 13,693.8 a | 4707.9 a | 64.6 a | 0.30 a | 31.7 a | |
MSD | 2790.7 | 946.0 | 9.9 | 0.1 | 14.0 |
Day | masl | Ash | Fat | Protein | Fiber | NNE | NDF | ADF | IVDMD | Energy |
---|---|---|---|---|---|---|---|---|---|---|
% | kcal/kg | |||||||||
15 (n = 24) | 170 | 8.3 b | 1.7 a | 8.3 a | 28.2 a | 43.5 a | 68.0 a | 39.4 a | 43.9 b | 3635.5 ab |
503 | 10.9 a | 1.3 a | 6.5 a | 28.7 a | 42.1 a | 66.3 a | 36.1 b | 48.9 a | 3458.2 b | |
661 | 12.3 a | 1.7 a | 7.4 a | 26.7 a | 42.7 a | 65.5 a | 35.4 b | 47.9 ab | 3480.3 b | |
1110 | 11.5 a | 1.8 a | 7.6 a | 29.3 a | 47.4 a | 66.5 a | 36.3 b | 46.0 ab | 3813.8 a | |
MSD | 2.5 | 0.9 | 2.1 | 3.1 | 7.9 a | 3.5 | 3.0 | 4.8 | 278.1 | |
30 (n = 24) | 170 | 8.4 b | 1.6 a | 7.5 a | 28.5 a | 43.9 a | 68.3 a | 37.3 a | 43.9 a | 3614.1 ab |
503 | 9.4 ab | 1.7 a | 6.7 a | 29.0 a | 44.6 a | 68.5 a | 35.9 a | 46.3 a | 3653.4 ab | |
661 | 11.4 a | 1.3 a | 6.8 a | 27.1 a | 43.7 a | 67.0 a | 35.0 a | 45.5 a | 3507.9 b | |
1110 | 11.2 a | 1.9 a | 8.1 a | 28.4 a | 47.9 a | 68.5 a | 36.8 a | 45.9 a | 3837.2 a | |
MSD | 2.1 | 0.8 | 2.3 | 3.1 | 7.1 | 3.9 | 3.4 | 5.9 | 313.8 | |
45 (n = 24) | 170 | 7.9 b | 2.0 a | 8.3 a | 27.6 b | 43.9 a | 68.7 ab | 36.4 a | 46.5 a | 3654.2 a |
503 | 9.5 ab | 1.4 a | 6.6 a | 29.6 ab | 43.8 a | 70.7 a | 36.2 a | 42.8 bc | 3582.4 a | |
661 | 9.8 ab | 1.8 a | 4.1 b | 31.5 a | 44.2 a | 67.2 b | 37.8 a | 40.8 c | 3580.3 a | |
1110 | 10.4 a | 1.9 a | 8.1 a | 27.1 b | 48.5 a | 66.9 b | 36.1 a | 45.4 ab | 3804.1 a | |
MSD | 2.3 | 1.0 | 2.3 | 2.5 | 7.3 | 3.3 | 2.6 | 3.4 | 257.0 | |
60 (n = 24) | 170 | 7.5 b | 1.7 a | 7.9 a | 30.3 a | 43.3 a | 69.0 a | 37.6 a | 43.5 a | 3691.4 a |
503 | 8.8 b | 1.4 a | 6.1 b | 29.4 a | 43.9 a | 69.9 a | 38.4 a | 40.7 a | 3650.6 a | |
661 | 10.4 a | 2.0 a | 4.1 c | 32.7 a | 42.2 a | 67.5 a | 37.9 a | 41.0 a | 3565.8 a | |
1110 | 8.9 ab | 2.1 a | 8.8 a | 30.8 a | 45.3 a | 67.4 a | 36.2 a | 44.3 a | 3910.6 a | |
MSD | 1.5 | 0.8 | 1.5 | 3.6 | 6.5 | 4.0 | 3.7 | 3.7 | 364.2 | |
75 (n = 24) | 170 | 7.2 b | 1.4 b | 6.3 ab | 31.5 a | 45.8 a | 71.1 a | 40.0 a | 39.7 a | 3733.3 a |
503 | 8.2 b | 1.9 ab | 5.8 ab | 32.3 a | 41.3 a | 68.4 a | 37.7 a | 41.78 a | 3591.4 a | |
661 | 10.5 a | 2.2 a | 4.4 b | 32.1 a | 42.3 a | 66.6 a | 38.0 a | 40.9 a | 3579.4 a | |
1110 | 10.2 a | 1.6 ab | 6.5 a | 32.0 a | 48.3 a | 71.1 a | 38.6 a | 40.7 a | 3892.0 a | |
MSD | 1.8 | 0.6 | 2.0 | 3.1 | 7.4 | 5.6 | 3.0 | 3.3 | 335.3 | |
Gradient (n = 120) | Day | |||||||||
15 | 10.7 a | 1.6 a | 7.4 a | 28.2 b | 43.9 a | 66.6 b | 36.8 b | 46.7 a | 3596.9 a | |
30 | 10.1 ab | 1.6 a | 7.2 a | 28.5 b | 44.8 a | 67.9 ab | 36.4 b | 45.3 ab | 3654.2 a | |
45 | 9.4 ab | 1.8 a | 6.8 ab | 28.7 b | 45.3 a | 68.5 ab | 36.5 b | 43.9 bc | 3654.2 a | |
60 | 8.9 b | 1.8 a | 6.7 ab | 30.8 a | 43.7 a | 68.4 ab | 37.5 ab | 42.3 cd | 3704.6 a | |
75 | 9.0 b | 1.8 a | 5.8 b | 31.9 a | 44.4 a | 69.3 a | 38.6 a | 40.8 d | 3699.0 a | |
MSD | 1.4 | 0.4 | 1.3 | 1.7 | 3.7 | 2.1 | 1.6 | 2.3 | 175.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murga-Orrillo, H.; López, L.A.A.; Mathios-Flores, M.A.; Coral, J.C.; García, M.R.; Saavedra-Ramírez, J.; Alvarez-Cardenas, A.C.; Sánchez, C.I.P.; Guerra-Teixeira, A.A.; Valderrama, N.L.M. Physiological and Chemical Response of Urochloa brizantha to Edaphic and Microclimatic Variations Along an Altitudinal Gradient in the Amazon. Agronomy 2025, 15, 1870. https://doi.org/10.3390/agronomy15081870
Murga-Orrillo H, López LAA, Mathios-Flores MA, Coral JC, García MR, Saavedra-Ramírez J, Alvarez-Cardenas AC, Sánchez CIP, Guerra-Teixeira AA, Valderrama NLM. Physiological and Chemical Response of Urochloa brizantha to Edaphic and Microclimatic Variations Along an Altitudinal Gradient in the Amazon. Agronomy. 2025; 15(8):1870. https://doi.org/10.3390/agronomy15081870
Chicago/Turabian StyleMurga-Orrillo, Hipolito, Luis Alberto Arévalo López, Marco Antonio Mathios-Flores, Jorge Cáceres Coral, Melissa Rojas García, Jorge Saavedra-Ramírez, Adriana Carolina Alvarez-Cardenas, Christopher Iván Paredes Sánchez, Aldi Alida Guerra-Teixeira, and Nilton Luis Murga Valderrama. 2025. "Physiological and Chemical Response of Urochloa brizantha to Edaphic and Microclimatic Variations Along an Altitudinal Gradient in the Amazon" Agronomy 15, no. 8: 1870. https://doi.org/10.3390/agronomy15081870
APA StyleMurga-Orrillo, H., López, L. A. A., Mathios-Flores, M. A., Coral, J. C., García, M. R., Saavedra-Ramírez, J., Alvarez-Cardenas, A. C., Sánchez, C. I. P., Guerra-Teixeira, A. A., & Valderrama, N. L. M. (2025). Physiological and Chemical Response of Urochloa brizantha to Edaphic and Microclimatic Variations Along an Altitudinal Gradient in the Amazon. Agronomy, 15(8), 1870. https://doi.org/10.3390/agronomy15081870