Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (131)

Search Parameters:
Keywords = imprinting disorder

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 6156 KB  
Article
Gestational High-Fat Diet Drives Premature Differentiation of Orexigenic Neurons and Reactivity of Astrocytes in the Fetal Rat Lateral Hypothalamus
by Nuria Galindo-Solano, Ximena Trejo-Villarreal, Geovanna Díaz-Olivares, Gustavo Rea-Palomino, Dayna Montes-Aguirre, Maricela Villagrán-Santa-Cruz and Gabriel Gutiérrez-Ospina
Brain Sci. 2026, 16(1), 52; https://doi.org/10.3390/brainsci16010052 - 30 Dec 2025
Viewed by 221
Abstract
Background/Objectives: Gestational exposure to a high-fat diet (HFD) reprograms hypothalamic orexigenic circuits prenatally. However, whether astrocytes, critical modulators of this system, are also imprinted by HFD in the fetal brain remains unknown. We investigated the impact of HFD on the prenatal neuroglial [...] Read more.
Background/Objectives: Gestational exposure to a high-fat diet (HFD) reprograms hypothalamic orexigenic circuits prenatally. However, whether astrocytes, critical modulators of this system, are also imprinted by HFD in the fetal brain remains unknown. We investigated the impact of HFD on the prenatal neuroglial architecture of the lateral hypothalamic area (LHA). Methods: Female Wistar rats were fed a control or a 60% fat diet for 12 weeks. Upon reaching obesity (Lee index ≥ 310), dams were mated. Fetuses were harvested via cesarean section at term, and their brains were processed for immunohistochemistry and morphometry to assess cell proliferation, orexin neuron density, and astrocytic reactivity in the LHA. Results: HFD significantly increased cell proliferation and orexinergic neuron density, and induced early signs of astrocyte reactivity in the fetal LHA. These findings reveal that both neuronal and glial components of the LHA orexigenic axis are structurally reprogrammed before birth. Conclusions: This study provides the first evidence that HFD simultaneously alters neuronal and glial developmental trajectories in the fetal hypothalamus. The concurrent programming of astrocytes and orexigenic neurons suggests a prenatal origin for neuroinflammatory susceptibility, reframing obesity as a neurodevelopmental disorder shaped by early life nutritional environments. Full article
(This article belongs to the Section Developmental Neuroscience)
Show Figures

Figure 1

18 pages, 570 KB  
Review
The Central Role of Macrophages in Long COVID Pathophysiology
by Philip Mcmillan, Anthony J. Turner and Bruce D. Uhal
Int. J. Mol. Sci. 2026, 27(1), 313; https://doi.org/10.3390/ijms27010313 - 27 Dec 2025
Viewed by 914
Abstract
This review article attempts to provide a unifying hypothesis to explain the myriad of symptoms and predispositions underlying the development of PASC (Postacute Sequelae of COVID), often referred to as Long COVID. The hypothesis described here proposes that Long COVID is best understood [...] Read more.
This review article attempts to provide a unifying hypothesis to explain the myriad of symptoms and predispositions underlying the development of PASC (Postacute Sequelae of COVID), often referred to as Long COVID. The hypothesis described here proposes that Long COVID is best understood as a disorder of persistent immune dysregulation, with chronic macrophage activation representing the fundamental underlying pathophysiology. Unlike transient post-viral syndromes, Long COVID involves a sustained innate immune response, particularly within monocyte-derived macrophages, driven by persistent spike protein (peripherally in MAIT cells and centrally in Microglial cells), epigenetic imprinting, and gut-related viral reservoirs. These macrophages are not merely activated temporarily but also become epigenetically “trained” into a prolonged inflammatory state, as demonstrated by enduring histone acetylation markers such as H3K27acDNA Reprogramming. It is proposed that recognizing macrophage activation as the central axis of Long COVID pathology offers a framework for personalized risk assessment, targeted intervention, and therapeutic recalibration. Full article
(This article belongs to the Special Issue Host Responses to Virus Infection)
Show Figures

Figure 1

21 pages, 512 KB  
Review
Genetic and Epigenetic Risks of Male Infertility in ART
by Athanasios Zikopoulos, Periklis Katopodis, Maria Filiponi, Athanasios Zachariou, Athanasia Sesse, Ioanna Bouba, Charilaos Kostoulas, Sofia Markoula and Ioannis Georgiou
Int. J. Mol. Sci. 2025, 26(24), 11812; https://doi.org/10.3390/ijms262411812 - 7 Dec 2025
Viewed by 524
Abstract
Assisted reproductive technologies (ART) and, in particular, intracytoplasmic sperm injection (ICSI) transformed the management of male infertility by making fertility possible in previously untreatable cases. However, the bypassing of natural selection mechanisms at fertilization is fraught with the danger of transmission of genetic [...] Read more.
Assisted reproductive technologies (ART) and, in particular, intracytoplasmic sperm injection (ICSI) transformed the management of male infertility by making fertility possible in previously untreatable cases. However, the bypassing of natural selection mechanisms at fertilization is fraught with the danger of transmission of genetic and epigenetic abnormalities. Male infertility is now a multifactorial disorder with notable contributions from single-gene defects, chromosomal abnormalities, and Y-chromosome microdeletions. The recent advances in next-generation sequencing and sperm omics have identified mutations and copy-number variations in genes critical for spermatogenesis, flagellar structure, and endocrine regulation. Along with these findings, an increasing body of evidence suggests that ART procedures can lead to a disruption of epigenetic reprogramming during gametogenesis and early embryogenesis, resulting in imprinting disorders and altered patterns of gene expression in the offspring. This review synthesizes recent progress in the molecular underpinnings of genetic and epigenetic hazards of ART, with an emphasis on clinical significance for reproductive counselling and ethical considerations for future generations. Full article
(This article belongs to the Special Issue Molecular Pathways to Infertility)
Show Figures

Figure 1

14 pages, 2234 KB  
Article
A Novel Approach for Optimizing Molecularly Imprinted Polymer Composition in Electrochemical Detection of Collagen Peptides
by Naphatsawan Vongmanee, Jindapa Nampeng, Katesirin Rattanapithan, Phuritasinee Sriwichai, Chuchart Pintavirooj and Sarinporn Visitsattapongse
Bioengineering 2025, 12(11), 1272; https://doi.org/10.3390/bioengineering12111272 - 19 Nov 2025
Viewed by 623
Abstract
Collagen peptides are key structural proteins that play an important role in maintaining the integrity and proper function of multiple tissues in the human body. Their breakdown is recognized as an important biomarker for various degenerative conditions, including the loss of muscle mass, [...] Read more.
Collagen peptides are key structural proteins that play an important role in maintaining the integrity and proper function of multiple tissues in the human body. Their breakdown is recognized as an important biomarker for various degenerative conditions, including the loss of muscle mass, joint and bone disorders, and compromised skin health. Current analytical approaches for collagen detection, such as ultraviolet spectrometry, enzyme-linked immunosorbent assay (ELISA), high-performance liquid chromatography (HPLC), and histochemical staining, are widely used but often expensive, time-consuming, and reliant on specific laboratory instrumentation, limiting their practicality for routine or rapid diagnostics. This study reports a novel biosensor for collagen peptide detection based on molecularly imprinted polymers (MIPs) integrated with screen-printed electrodes (SPEs). Electrochemical measurements revealed a clear correlation between collagen concentration and current response, confirming effective molecular binding within the imprinted matrix. The optimized MIP-modified electrode exhibited a detection range of 0.1–1000 µg/mL with a limit of detection (LOD) of 1.0106 µg/mL, limit of quantification (LOQ) of 4.46 µg/mL, sensitivity of 8.3816, and correlation coefficient (R2 = 0.9436). These results highlight strong selectivity and sensitivity toward collagen peptides. The proposed MIP-based biosensor provides a rapid, low-cost platform for detecting collagen degradation products and holds potential for early diagnosis and future clinical applications in degenerative disease monitoring. Full article
(This article belongs to the Special Issue Microfluidics and Sensor Technologies in Biomedical Engineering)
Show Figures

Graphical abstract

12 pages, 2177 KB  
Article
A Sweat Cortisol Sensor Based on Gold-Modified Molecularly Imprinted Polymer
by Ziyu Liu, Guangzhong Xie, Jing Li, Hong Yuan and Yuanjie Su
Nanomaterials 2025, 15(21), 1654; https://doi.org/10.3390/nano15211654 - 30 Oct 2025
Viewed by 1276
Abstract
Approximately 3.8% of the global population suffers from depressive disorders, posing a substantial public health challenge exacerbated by the COVID-19 pandemic due to widespread unemployment and prolonged social isolation. The difficulty in objectively quantifying psychological states underscores the need for effective stress assessment [...] Read more.
Approximately 3.8% of the global population suffers from depressive disorders, posing a substantial public health challenge exacerbated by the COVID-19 pandemic due to widespread unemployment and prolonged social isolation. The difficulty in objectively quantifying psychological states underscores the need for effective stress assessment methods. Herein, we developed a portable electrochemical cortisol sensor (PECS) for accurate mental stress assessment. The PECS consists of a screen-printed carbon electrode decorated with gold nanoparticles and a molecularly imprinted polymer (MIP) synthesized via electropolymerization. The as-prepared PECS demonstrates a wide and linear detection range from 1 fM to 1 μM, an ultra-low detection limit of 0.4112 fM and a high sensitivity of 15.518 nA∙lg(nM−1)∙cm−2. This work provides new possibility of developing soft bioelectronics for non-invasive and real-time mental health monitoring. Full article
(This article belongs to the Special Issue Application of Nanoscale Smart Textiles in Wearable Sensors)
Show Figures

Figure 1

18 pages, 545 KB  
Review
Imprinting Disorders and Epigenetic Alterations in Children Conceived by Assisted Reproductive Technologies: Mechanisms, Clinical Outcomes, and Prenatal Diagnosis
by Antonella Gambadauro, Valeria Chirico, Francesca Galletta, Ferdinando Gulino, Roberto Chimenz, Giorgia Serraino, Immacolata Rulli, Alessandro Manganaro, Eloisa Gitto and Lucia Marseglia
Genes 2025, 16(10), 1242; https://doi.org/10.3390/genes16101242 - 21 Oct 2025
Viewed by 2601
Abstract
Assisted reproductive technologies (ARTs) have revolutionized infertility treatment, leading to the birth of over 10 million children worldwide. Despite their success, increasing concerns have been expressed regarding the potential long-term outcomes of ART-conceived individuals, particularly in relation to imprinting disorders (IDs). IDs result [...] Read more.
Assisted reproductive technologies (ARTs) have revolutionized infertility treatment, leading to the birth of over 10 million children worldwide. Despite their success, increasing concerns have been expressed regarding the potential long-term outcomes of ART-conceived individuals, particularly in relation to imprinting disorders (IDs). IDs result from the abnormal expression of imprinted genes, which are expressed in a parent-of-origin-specific manner and regulated by epigenetic mechanisms (e.g., DNA methylation). Disruption of these processes, through environmental, genetic, or procedural factors, can lead to disorders such as Beckwith–Wiedemann syndrome (BWS), Silver–Russell syndrome (SRS), Angelman syndrome (AS), and Prader–Willi syndrome (PWS). These syndromes are characterized by distinct clinical features, including growth abnormalities, neurodevelopmental delay, endocrine dysfunction, and cancer predisposition. ART procedures, especially ovarian hyperstimulation, in vitro fertilization (IVF), and embryo culture, coincide with critical periods of epigenetic reprogramming and may contribute to epimutations in imprinting control regions. In this review, we explored epidemiology, molecular mechanisms, and prenatal diagnostic strategies related to these four IDs in the context of ART. The findings suggest a higher prevalence of BWS and SRS in ART-conceived children. The data regarding AS and PWS are more controversial, with conflicting results across populations and methodologies. Although a causal link between ART and IDs remains debated, evidence suggests the potential contribution of ART procedures to epigenetic dysregulation in susceptible individuals. Further large-scale, methodologically rigorous studies will be essential to clarify this association and inform safer ART practices. Full article
(This article belongs to the Special Issue Genes and Pediatrics)
Show Figures

Figure 1

36 pages, 2691 KB  
Review
Advanced Electrochemical Sensors for Rapid and Sensitive Monitoring of Tryptophan and Tryptamine in Clinical Diagnostics
by Janani Sridev, Arif R. Deen, Md Younus Ali, Wei-Ting Ting, M. Jamal Deen and Matiar M. R. Howlader
Biosensors 2025, 15(9), 626; https://doi.org/10.3390/bios15090626 - 19 Sep 2025
Viewed by 1914
Abstract
Tryptophan (Trp) and tryptamine (Tryp), critical biomarkers in mood regulation, immune function, and metabolic homeostasis, are increasingly recognized for their roles in both oral and systemic pathologies, including neurodegenerative disorders, cancers, and inflammatory conditions. Their rapid, sensitive detection in biofluids such as saliva—a [...] Read more.
Tryptophan (Trp) and tryptamine (Tryp), critical biomarkers in mood regulation, immune function, and metabolic homeostasis, are increasingly recognized for their roles in both oral and systemic pathologies, including neurodegenerative disorders, cancers, and inflammatory conditions. Their rapid, sensitive detection in biofluids such as saliva—a non-invasive, real-time diagnostic medium—offers transformative potential for early disease identification and personalized health monitoring. This review synthesizes advancements in electrochemical sensor technologies tailored for Trp and Tryp quantification, emphasizing their clinical relevance in diagnosing conditions like oral squamous cell carcinoma (OSCC), Alzheimer’s disease (AD), and breast cancer, where dysregulated Trp metabolism reflects immune dysfunction or tumor progression. Electrochemical platforms have overcome the limitations of conventional techniques (e.g., enzyme-linked immunosorbent assays (ELISA) and mass spectrometry) by integrating innovative nanomaterials and smart engineering strategies. Carbon-based architectures, such as graphene (Gr) and carbon nanotubes (CNTs) functionalized with metal nanoparticles (Ni and Co) or nitrogen dopants, amplify electron transfer kinetics and catalytic activity, achieving sub-nanomolar detection limits. Synergies between doping and advanced functionalization—via aptamers (Apt), molecularly imprinted polymers (MIPs), or metal-oxide hybrids—impart exceptional selectivity, enabling the precise discrimination of Trp and Tryp in complex matrices like saliva. Mechanistically, redox reactions at the indole ring are optimized through tailored electrode interfaces, which enhance reaction kinetics and stability over repeated cycles. Translational strides include 3D-printed microfluidics and wearable sensors for continuous intraoral health surveillance, demonstrating clinical utility in detecting elevated Trp levels in OSCC and breast cancer. These platforms align with point-of-care (POC) needs through rapid response times, minimal fouling, and compatibility with scalable fabrication. However, challenges persist in standardizing saliva collection, mitigating matrix interference, and validating biomarkers across diverse populations. Emerging solutions, such as AI-driven analytics and antifouling coatings, coupled with interdisciplinary efforts to refine device integration and manufacturing, are critical to bridging these gaps. By harmonizing material innovation with clinical insights, electrochemical sensors promise to revolutionize precision medicine, offering cost-effective, real-time diagnostics for both localized oral pathologies and systemic diseases. As the field advances, addressing stability and scalability barriers will unlock the full potential of these technologies, transforming them into indispensable tools for early intervention and tailored therapeutic monitoring in global healthcare. Full article
(This article belongs to the Special Issue Nanomaterial-Based Biosensors for Point-of-Care Testing)
Show Figures

Figure 1

17 pages, 631 KB  
Review
Linking Psychological Stress to Epigenetic Regulation via the Gut–Liver–Brain Axis in Irritable Bowel Syndrome and Metabolic Dysfunction-Associated Fatty Liver Disease
by Annachiara Crocetta, Maria-Anna Giannelou, Agata Benfante, Lorys Castelli and Lemonica Koumbi
Livers 2025, 5(3), 43; https://doi.org/10.3390/livers5030043 - 5 Sep 2025
Viewed by 3958
Abstract
Irritable Bowel Syndrome (IBS) and Metabolic dysfunction-associated fatty liver disease (MAFLD) have traditionally been viewed as disorders of distinct organ systems. IBS is a gut–brain axis disorder characterized by abdominal pain, altered bowel habits, and psychological comorbidities. MAFLD, recently redefined to emphasize its [...] Read more.
Irritable Bowel Syndrome (IBS) and Metabolic dysfunction-associated fatty liver disease (MAFLD) have traditionally been viewed as disorders of distinct organ systems. IBS is a gut–brain axis disorder characterized by abdominal pain, altered bowel habits, and psychological comorbidities. MAFLD, recently redefined to emphasize its metabolic underpinnings, is the hepatic manifestation of systemic metabolic dysfunction. Growing evidence suggests that these conditions share overlapping pathophysiological mechanisms linked through disruption of the gut–liver–brain axis (GLBA), including psychological stress, gut dysbiosis, impaired intestinal permeability, systemic inflammation, and altered neuroendocrine signaling. Neuroimaging studies further reveal functional alterations in brain regions responsible for interoception, emotional regulation, and stress responsiveness in both disorders. This narrative review explores how psychological distress influences the onset and progression of IBS and MAFLD via GLBA dysfunction and stress-induced epigenetic reprogramming. A targeted literature search of major biomedical databases, supplemented by manual screening, identified relevant observational, clinical, neuroimaging, and molecular studies. Findings indicate that chronic psychological distress activates the hypothalamic–pituitary–adrenal (HPA) axis, elevates cortisol, disrupts gut microbiota, and reduces vagal tone; amplifying intestinal permeability and microbial translocation. These changes promote hepatic inflammation and gastrointestinal symptoms. Stress-related epigenetic modifications further impair GLBA communication, while psychological and lifestyle interventions may reverse some of these molecular imprints. Recognizing the shared neuromodulation and epigenetic mechanisms that link IBS and MAFLD opens promising avenues for integrated therapeutic strategies targeting the GLBA to improve outcomes across both conditions. Full article
Show Figures

Graphical abstract

17 pages, 2558 KB  
Case Report
Clinical and Molecular Presentation of a Patient with Paternal Uniparental Isodisomy of Chromosome 16
by Elizaveta Panchenko, Natalia Semenova, Olga Sereda, Daria Guseva, Zhanna Markova, Nadezhda Shilova, Olga Simonova, Anton Smirnov, Dmitry Pustoshilov, Arina Khalilova, Vasilisa Udalova, Ilya Kanivets, Dmitry Zaletaev, Vladimir Strelnikov and Sergey Kutsev
Int. J. Mol. Sci. 2025, 26(17), 8521; https://doi.org/10.3390/ijms26178521 - 2 Sep 2025
Viewed by 1132
Abstract
Uniparental disomies (UPDs) are among the causes of imprinting disorders. Specific phenotypes of most causative UPDs have been described. Here, we describe the case of a 2-year-old female patient who presented a syndromic phenotype. Chromosomal microarray analysis revealed UPD of the whole chromosome [...] Read more.
Uniparental disomies (UPDs) are among the causes of imprinting disorders. Specific phenotypes of most causative UPDs have been described. Here, we describe the case of a 2-year-old female patient who presented a syndromic phenotype. Chromosomal microarray analysis revealed UPD of the whole chromosome 16. Microsatellite analysis demonstrated paternal origin of the UPD and its isodisomic pattern (UPiD (16) pat). Mosaic trisomy 16 was not detected using the FISH method. Whole-exome sequencing revealed no pathogenetic genetic variants sufficient to explain the syndromic phenotype nor unmasked pathogenic recessive genetic variants on chromosome 16. Whole-genome trio DNA sequencing revealed no additional candidate pathogenic genetic variants to those detected by whole-exome sequencing, including miRNAs and lncRNAs. Imprinting disorders at 6q24.2, 7p12.2, 7q32.2, 11p15.5, 14q32.2, 15q11.2, and 20q13.32, as well as multilocus imprinting disturbances (MLIDs), were excluded by Methylation-Specific Multiplex Ligation-Dependent Probe Amplification (MS-MLPA). At the same time, we detected abnormal hypermethylation of the ZNF597 transcription start site differentially methylated region (ZNF597:TSS-DMR), accompanied by hypomethylation of the neighbouring ZNF597:3′ DMR. Both DMRs were normally imprinted, and the DNA alterations in our patient with UPD (16) pat are opposite to those previously described for maternal uniparental disomy (UPD (16) mat). To date, several cases of UPD (16) pat have been reported. Our case report describes the syndromic phenotype of a patient with paternal uniparental disomy of chromosome 16 in contrast to the previously described patients with a normal phenotype or with abnormal phenotypes caused by acquired homozygosity of pathogenic variants at autosomal recessive genes located on this chromosome. Reporting such observations will help systematize data on the phenotypes of imprinting disorders on chromosome 16. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

41 pages, 1765 KB  
Review
Probiotics and the Gut–Brain Axis: Emerging Therapeutic Strategies for Epilepsy and Depression Comorbidity
by Mustafa M. Shokr, Reem M. Eladawy, Yasmena O. Azar and Seham M. Al Raish
Foods 2025, 14(17), 2926; https://doi.org/10.3390/foods14172926 - 22 Aug 2025
Cited by 2 | Viewed by 4785
Abstract
The bidirectional relationship between epilepsy and depression illustrates shared neurobiological mechanisms of neuroinflammation, hypothalamic–pituitary–adrenal axis dysregulation, and glutamatergic dysfunction. Depression is present in 20–55% of people with epilepsy, far greater than in the general population, while depression doubles epilepsy risk 2.5-fold, indicating shared [...] Read more.
The bidirectional relationship between epilepsy and depression illustrates shared neurobiological mechanisms of neuroinflammation, hypothalamic–pituitary–adrenal axis dysregulation, and glutamatergic dysfunction. Depression is present in 20–55% of people with epilepsy, far greater than in the general population, while depression doubles epilepsy risk 2.5-fold, indicating shared pathophysiology. Neuroinflammatory mediators (interleukin-6, tumor necrosis factor alpha, high-mobility group box 1) establish a vicious cycle: seizures exacerbate inflammation and mood disruption, and stress lowers seizure thresholds. Hippocampal damage and cortisol toxicity also link these disorders, with early life stress imprinting lifelong risk via epigenetic alteration. Genetic studies identify pleiotropic genes (brain-derived neurotrophic factor) that regulate synaptic plasticity, serotonin activity, and immune responses. New treatments target shared pathways: ketamine and AMPAkines normalize glutamate tone; mGluR5 antagonists attenuate hyperexcitability and inflammation; DNA methyltransferase inhibitors reverse aberrant DNA methylation; and probiotics manipulate the gut–brain axis by boosting neuroprotective metabolites like butyrate. Despite challenges—transient effects, precision dosing, and blood–brain barrier penetration—these advances constitute a paradigm shift toward mechanistic repair rather than symptom management. The way forward includes clustered regularly interspaced short palindromic repeats (CRISPR)-based epigenome editing, biomarker-led therapies, and combination approaches (e.g., ketamine and probiotics). Such comorbidity needs to be managed holistically through integrated neuropsychiatry care, offering hope to patients with treatment-refractory symptoms. Full article
Show Figures

Figure 1

12 pages, 1684 KB  
Case Report
Biparental and Androgenetic Somatic Mosaicism with Presentation of Non-Syndromic Severe Neonatal Hyperinsulinemia
by Miguel Angel Alcántara-Ortigoza, Marcela Vela-Amieva, Ariadna González-del Angel, Miriam Erandi Reyna-Fabián, Liliana Fernández-Hernández, Bernardette Estandía-Ortega, Sara Guillén-López, Lizbeth López-Mejía, Isabel Ibarra-González, María de la Luz Ruiz-Reyes, Raúl Calzada-de León, Mauricio Rojas-Maruri, Flora Zárate-Mondragón, Go Hun-Seo, Hane Lee and Cynthia Fernández-Lainez
Int. J. Mol. Sci. 2025, 26(16), 7985; https://doi.org/10.3390/ijms26167985 - 19 Aug 2025
Viewed by 979
Abstract
Genome-wide paternal uniparental isodisomy mosaicism (GWpUPIDM) is an extremely rare condition characterized by varying proportions of an androgenetic cell line across different tissues. It is primarily associated with severe congenital hyperinsulinism (CHI), Beckwith–Wiedemann syndrome (BWS) stigmata, a high risk (69–79%) of developing neoplasia [...] Read more.
Genome-wide paternal uniparental isodisomy mosaicism (GWpUPIDM) is an extremely rare condition characterized by varying proportions of an androgenetic cell line across different tissues. It is primarily associated with severe congenital hyperinsulinism (CHI), Beckwith–Wiedemann syndrome (BWS) stigmata, a high risk (69–79%) of developing neoplasia and, in some cases, additional manifestations of multilocus paternal imprinting disorders (MPIDs). We herein report the first Mexican/Latin American female patient GWpUPIDM presenting with non-syndromic CHI requiring subtotal pancreatectomy and persistent but unexplained asymptomatic diffuse hepatopathy. When she was 8.5 years old, whole-exome sequencing (WES) in blood revealed an unexpectedly high (~92%) proportion of regions of homozygosity. DNA profiling confirmed a single haploid set of paternal chromosomes in both biparental and androgenetic cell lines, with varying proportions of the androgenetic lineage in leukocytes (84%), resected pancreas (74%), buccal cells (47%), and hair follicles (0.7%). Additional WES trio analysis using gDNA from the patient’s buccal cells and blood samples from both parents revealed an allelic frequency of ~75% for the paternally inherited variant NM_000158.4(GBE1):c.555+1G>T [ClinVar:632422; dbSNP:rs759707498]. At age 8.5, the patient exhibited no clinical features of BWS, MPIDs, or neoplasia. However, she presented persistent hepatic abnormalities that warrant further investigation to rule out an unmasked glycogen storage disease type IV (OMIM#232500). Our findings emphasize the critical need for early diagnosis of GWpUPIDM using SNP-based microarray or WES with further confirmation through DNA profiling in patients presenting with CHI, placental mesenchymal dysplasia, BWS stigmata, or other MPID-related conditions, including neoplasia, to facilitate timely cancer surveillance and management. Full article
Show Figures

Figure 1

10 pages, 345 KB  
Article
Natural History of Hyperphagia in Patients with Pseudohypoparathyroidism
by Jaclyn Tamaroff and Ashley H. Shoemaker
J. Clin. Med. 2025, 14(15), 5345; https://doi.org/10.3390/jcm14155345 - 29 Jul 2025
Cited by 1 | Viewed by 779
Abstract
Background/Objectives: Pseudohypoparathyroidism (PHP) is a group of genetic disorders characterized by end-organ resistance to multiple hormones, short stature, brachydactyly, subcutaneous ossifications, obesity, and developmental delays. The tissue specific imprinting of GNAS in the hypothalamus may lead to different eating behavior phenotypes in [...] Read more.
Background/Objectives: Pseudohypoparathyroidism (PHP) is a group of genetic disorders characterized by end-organ resistance to multiple hormones, short stature, brachydactyly, subcutaneous ossifications, obesity, and developmental delays. The tissue specific imprinting of GNAS in the hypothalamus may lead to different eating behavior phenotypes in maternally inherited (PHP1A, PHP1B) vs. paternally inherited (PPHP) variants. In this exploratory study, we aimed to evaluate differences in eating behaviors in a cohort of patients with PHP1A, PPHP and PHP1B. Methods: Assessments included caregiver-reported measures (hyperphagia questionnaire, children’s eating behavior questionnaire, child feeding questionnaire) and self-reported measures (three factor eating behavior questionnaire). Results: A total of 58 patients with PHP1A, 13 patients with PPHP and 10 patients with PHP1B contributed data, along with 124 obese pediatric controls. An increased risk of obesity was found in PHP1A vs. PPHP (adult body mass index (BMI) 39.8 ± 8.7 vs. 30.2 ± 7.4 kg/m2, p = 0.03). Parents reported significantly earlier onset of interest in food in children with PHP1A (2.0 ± 2.3 years) and PHP1B (1.1 ± 1.3 years) compared with controls (5.2 ± 3.2 years, p < 0.001). Measures of hyperphagia, satiety and other feeding behaviors were all similar to controls. The highest hyperphagia questionnaire scores were seen prior to adolescence. In a multi-year, longitudinal assessment of 11 pediatric patients with PHP1A, hyperphagia scores were stable and 25% showed an improvement in symptoms. Conclusion: Patients with PHP1A/1B may have hyperphagia symptoms from a young age but they do not worsen over time. Patients may overeat when allowed access to food, but do not usually have disruptive food seeking behaviors. Early diagnosis can give clinicians the opportunity to provide anticipatory diagnosis on the increased risk of obesity in PHP1A/1B and need for scheduled meals and controlled portions. Further studies with larger cohorts are needed to confirm these findings. Full article
(This article belongs to the Special Issue Research Progress in Pediatric Endocrinology)
Show Figures

Figure 1

11 pages, 796 KB  
Review
Prenatal Rare 16q24.1 Deletion Between Genomics and Epigenetics: A Review
by Valentina Fumini, Romina Bonora, Anna Busciglio, Francesca Cartisano, Paola Celli, Ilaria Gabbiato, Nicola Guercini, Barbara Mancini, Donatella Saccilotto, Anna Zilio and Daniela Zuccarello
Genes 2025, 16(8), 873; https://doi.org/10.3390/genes16080873 - 24 Jul 2025
Viewed by 994
Abstract
Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a rare, often fatal congenital disorder characterized by severe neonatal respiratory distress and associated with complex multisystem malformations. In approximately 90% of cases, the condition is linked to deletions or mutations affecting the [...] Read more.
Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a rare, often fatal congenital disorder characterized by severe neonatal respiratory distress and associated with complex multisystem malformations. In approximately 90% of cases, the condition is linked to deletions or mutations affecting the FOXF1 gene or its upstream enhancer region on chromosome 16q24.1. This review analyzes reported prenatal cases with 16q24.1 deletion involving FOXF1, aiming to identify recurrent sonographic features and elucidate the underlying genomic and epigenetic mechanisms. We reviewed prenatal cases reported in the literature involving deletions of the 16q24.1 region, including the FOXF1 gene. Here, we expand the case series by reporting a fetus with increased nuchal translucency measuring 8 mm and a de novo 16q24.1 deletion. We identified nine prenatal cases with a 16q24.1 deletion, all involving the FOXF1 gene or its enhancer region. The main ultrasound findings included increased nuchal translucency and cystic hygroma during the first trimester, and cardiac, renal, and intestinal malformations from 20 weeks of gestation onward. Prenatal diagnosis of ACDMPV based solely on ultrasound findings is challenging. In most reported cases, the pregnancy was carried to term, with the diagnosis being confirmed by post-mortem histopathological examination. In the only case in which the pregnancy was terminated at 14 weeks’ gestation, histological examination of the fetal lungs, despite them being in the early stages of development, revealed misaligned pulmonary veins in close proximity to the pulmonary arteries and bronchioles. Evidence highlights the significance of non-coding regulatory regions in the regulation of FOXF1 expression. Differential methylation patterns, and possible contributions of parental imprinting, highlight the complexity of FOXF1 regulation. Early detection through array comparative genomic hybridization (array CGH) or next-generation sequencing to identify point mutations in the FOXF1 gene, combined with increased awareness of ultrasound markers suggestive of the condition, could improve the accuracy of prenatal diagnosis and genetic counseling. Further research into the epigenetic regulation of FOXF1 is crucial for refining recurrence risk estimates and improving genetic counseling practices. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

17 pages, 1840 KB  
Article
Epigenomic Interactions Between Chronic Pain and Recurrent Pressure Injuries After Spinal Cord Injury
by Letitia Y. Graves, Melissa R. Alcorn, E. Ricky Chan, Katelyn Schwartz, M. Kristi Henzel, Marinella Galea, Anna M. Toth, Christine M. Olney and Kath M. Bogie
Epigenomes 2025, 9(3), 26; https://doi.org/10.3390/epigenomes9030026 - 23 Jul 2025
Viewed by 1226
Abstract
Background/Objectives: This study investigated variations in DNA methylation patterns associated with chronic pain and propensity for recurrent pressure injuries (PrI) in persons with spinal cord injury (SCI). Methods: Whole blood was collected from 81 individuals with SCI. DNA methylation was quantified using Illumina [...] Read more.
Background/Objectives: This study investigated variations in DNA methylation patterns associated with chronic pain and propensity for recurrent pressure injuries (PrI) in persons with spinal cord injury (SCI). Methods: Whole blood was collected from 81 individuals with SCI. DNA methylation was quantified using Illumina genome-wide arrays (EPIC and EPICv2). Comprehensive clinical profiles collected included secondary health complications, in particular current PrI and chronic pain. Relationships between recurrent PrI and chronic pain and whether the co-occurrence of both traits was mediated by changes in DNA methylation were investigated using R packages limma, DMRcate and mCSEA. Results: Three differentially methylated positions (DMPs) (cg09867095, cg26559694, cg24890286) and one region in the micro-imprinted locus for BLCAP/NNAT are associated with chronic pain in persons with SCI. The study cohort was stratified by PrI status to identify any sites associated with chronic pain and while the same three sites and region were replicated in the group with no recurrent PrI, two novel, hypermethylated (cg21756558, cg26217441) sites and one region in the protein-coding gene FDFT1 were identified in the group with recurrent PrI. Gene enrichment and genes associated with specific promoters using MetaScape identified several shared disorders and ontology terms between independent phenotypes of pain and recurrent PrI and interactive sub-groups. Conclusions: DMR analysis using mCSEA identified several shared genes, promoter-associated regions and CGI associated with overall pain and PrI history, as well as sub-groups based on recurrent PrI history. These findings suggest that a much larger gene regulatory network is associated with each phenotype. These findings require further validation. Full article
(This article belongs to the Special Issue Features Papers in Epigenomes 2025)
Show Figures

Figure 1

9 pages, 227 KB  
Case Report
Mixed Segmental Uniparental Disomy of Chromosome 15q11-q1 Coexists with Homozygous Variant in GNB5 Gene in Child with Prader–Willi and Lodder–Merla Syndrome
by Tomasz Marczyk, Maria Libura, Beata Wikiera, Magdalena Góralska, Agnieszka Pollak, Marlena Telenga, Rafał Płoski and Robert Śmigiel
Genes 2025, 16(6), 689; https://doi.org/10.3390/genes16060689 - 5 Jun 2025
Viewed by 1284
Abstract
Background: Uniparental disomy (UPD) refers to the condition in which both chromosomes (or part of chromosome) of a pair are inherited from the same parent. There are two types of UPD: uniparental isodisomy (both chromosomes inherited from one parent are identical copies) and [...] Read more.
Background: Uniparental disomy (UPD) refers to the condition in which both chromosomes (or part of chromosome) of a pair are inherited from the same parent. There are two types of UPD: uniparental isodisomy (both chromosomes inherited from one parent are identical copies) and uniparental heterodisomy (two different chromosomes are inherited from one parent). UPD presents two primary developmental risks: recessive trait inheritance or an imprinting disorder. These risks may coexist, leading to an ultra-rare comorbidity. Managing the comorbidities associated with rare diseases presents unique clinical challenges. Results: The existence of such phenomena is evidenced by our case report of a boy who was ultimately diagnosed with two rare diseases: Prader–Willi syndrome (PWS), due to the maternal uniparental disomy of chromosome 15 (UPD), and autosomal recessive Lodder–Merla type 1 syndrome, linked to a novel pathogenic variant in the G protein subunit β 5 (GNB5) gene, as detailed in this paper. Conclusions: An unusual or severe phenotype in a patient diagnosed with PWS should invariably prompt the consideration of a comorbid genetic disease attributable to genes located in the PWS critical region of chromosome 15q, or elsewhere on chromosome 15. In cases of epileptic encephalopathy with cardiac arrhythmia, prompt consultation with a cardiologist and comprehensive genetic testing are essential to reduce the risks associated with untreated arrhythmia and ensure the provision of appropriate and safe anti-epileptic therapy. The presented case provides further support for the hypothesis that uniparental disomy may serve as an underlying cause of Lodder–Merla syndrome. This underscores the significance of comprehensive genetic testing, encompassing parental testing and familial cascade testing (in selected cases where there is consanguinity, or the likelihood of close common ancestral background between partners) to establish the recurrence risk. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Back to TopTop