Mixed Segmental Uniparental Disomy of Chromosome 15q11-q1 Coexists with Homozygous Variant in GNB5 Gene in Child with Prader–Willi and Lodder–Merla Syndrome
Abstract
1. Introduction
2. Case Report
3. Genetics Study Results
4. Discussion
4.1. Prader–Willi Syndrome
4.2. GNB5-Related Neurodevelopmental Disorder
4.3. Neurodevelopmental Issues and Epilepsy in Patients with GNB5-Related Neurodevelopmental Disorder
4.4. Cardiac Issues
4.5. Eye Issues
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Fermin Gutierrez, M.A.; Daley, S.F.; Mendez, M.D. Prader-Willi Syndrome. Available online: https://www.ncbi.nlm.nih.gov/books/NBK553161/ (accessed on 25 January 2025).
- Butler, M.G. Prader-Willi Syndrome and Chromosome 15q11.2 BP1-BP2 Region: A Review. Int. J. Mol. Sci. 2023, 24, 4271. [Google Scholar] [CrossRef] [PubMed]
- Engel, E. A fascination with chromosome rescue in uniparental disomy: Mendelian recessive outlaws and imprinting copyrights infringements. Eur. J. Hum. Genet. 2006, 14, 1158–1169. [Google Scholar] [CrossRef] [PubMed]
- Del Gaudio, D.; Shinawi, M.; Astbury, C.; Tayeh, M.K.; Deak, K.L.; Raca, G.; ACMG Laboratory Quality Assurance Committee. Diagnostic testing for uniparental disomy: A points to consider statement from the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 2020, 22, 1133–1141. [Google Scholar] [CrossRef] [PubMed]
- Erger, F.; Burau, K.; Elsser, M.; Zimmermann, K.; Moog, U.; Netzer, C. Uniparental isodisomy as a cause of recessive Mendelian disease: A diagnostic pitfall with a quick and easy solution in medium/large NGS analyses. Eur. J. Hum. Genet. 2018, 26, 1392–1395. [Google Scholar] [CrossRef]
- Höybye, C.; Tauber, M. Approach to the Patient with Prader-Willi Syndrome. J. Clin. Endocrinol. Metab. 2022, 107, 1698–1705. [Google Scholar] [CrossRef]
- Wikiera, B.; Marczyk, T.; Libura, M.; Góralska, M.; Pollak, A.; Płoski, R.; Śmigiel, R. Mixed segmental uniparental disomy of chromosome 15q11-q1 with homozygous variant in GNB5 gene in child with Prader-Willi and Lodder-Merla syndrome. Endocr. Abstr. 2025, 110, EP752. [Google Scholar] [CrossRef]
- Available online: https://www.who.int/tools/child-growth-standards (accessed on 25 January 2025).
- Stawiński, P.; Płoski, R. Genebe.net: Implementation and validation of an automatic ACMG variant pathogenicity criteria assignment. Clin Genet. 2024, 106, 119–126. [Google Scholar] [CrossRef]
- Mendiola, A.J.P.; LaSalle, J.M. Epigenetics in Prader-Willi Syndrome. Front Genet. 2021, 12, 624581. [Google Scholar] [CrossRef]
- Shelkowitz, E.; Gantz, M.G.; Ridenour, T.A.; Scheimann, A.O.; Strong, T.; Bohonowych, J.; Duis, J. Neuropsychiatric features of Prader-Willi syndrome. Am. J. Med. Genet. A 2022, 188, 1457–1463. [Google Scholar] [CrossRef]
- Alves, C.; Franco, R.R. Prader-Willi syndrome: Endocrine manifestations and management. Arch. Endocrinol. Metab. 2020, 64, 223–234. [Google Scholar] [CrossRef]
- Ma, V.K.; Mao, R.; Toth, J.N.; Fulmer, M.L.; Egense, A.S.; Shankar, S.P. Prader-Willi and Angelman Syndromes: Mechanisms and Management. Appl. Clin. Genet. 2023, 16, 41–52. [Google Scholar] [PubMed]
- Muthusamy, K.; Macke, E.L.; Klee, E.W.; Tebben, P.J.; Hand, J.L.; Hasadsri, L.; Marcou, C.A.; Schimmenti, L.A. Congenital ichthyosis in Prader-Willi syndrome associated with maternal chromosome 15 uniparental disomy: Case report and review of autosomal recessive conditions unmasked by UPD. Am. J. Med. Genet. A 2020, 182, 2442–2449. [Google Scholar] [CrossRef] [PubMed]
- Polubothu, S.; Glover, M.; Holder, S.E.; Kinsler, V.A. Uniparental disomy as a mechanism for CERS3-mutated autosomal recessive congenital ichthyosis. Br. J. Dermatol. 2018, 179, 1214–1215. [Google Scholar] [CrossRef]
- Verrotti, A.; Soldani, C.; Laino, D.; d’Alonzo, R.; Grosso, S. Epilepsy in Prader-Willi syndrome: Clinical, diagnostic and treatment aspects. World J. Pediatr. 2014, 10, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Pascual-Morena, C.; Martínez-Vizcaíno, V.; Cavero-Redondo, I.; Álvarez-Bueno, C.; Martínez-García, I.; Rodríguez-Gutiérrez, E.; Otero-Luis, I.; Del Saz-Lara, A.; Saz-Lara, A. Prevalence and genotypic associations of epilepsy in Prader-Willi Syndrome: A systematic review and meta-analysis. Epilepsy Behav. 2024, 155, 109803. [Google Scholar] [CrossRef]
- Verrotti, A.; Cusmai, R.; Laino, D.; Carotenuto, M.; Esposito, M.; Falsaperla, R.; Margari, L.; Rizzo, R.; Savasta, S.; Grosso, S.; et al. Long-term outcome of epilepsy in patients with Prader-Willi syndrome. J. Neurol. 2015, 262, 116–123. [Google Scholar] [CrossRef]
- Vendrame, M.; Maski, K.P.; Chatterjee, M.; Heshmati, A.; Krishnamoorthy, K.; Tan, W.H.; Kothare, S.V. Epilepsy in Prader-Willi syndrome: Clinical characteristics and correlation to genotype. Epilepsy Behav. 2010, 19, 306–310. [Google Scholar] [CrossRef]
- Mao, S.; Yang, L.; Gao, Y.; Zou, C. Genotype-phenotype correlation in Prader-Willi syndrome: A large-sample analysis in China. Clin. Genet. 2024, 105, 415–422. [Google Scholar] [CrossRef]
- Yamada, K.; Watanabe, M.; Suzuki, K.; Suzuki, Y. Cerebellar Volumes Associate with Behavioral Phenotypes in Prader-Willi Syndrome. Cerebellum 2020, 19, 778–787. [Google Scholar] [CrossRef]
- Iughetti, L.; Bosio, L.; Corrias, A.; Gargantini, L.; Ragusa, L.; Livieri, C.; Predieri, B.; Bruzzi, P.; Caselli, G.; Grugni, G. Pituitary height and neuroradiological alterations in patients with Prader-Labhart-Willi syndrome. Eur. J. Pediatr. 2008, 167, 701–702. [Google Scholar] [CrossRef]
- Huang, Z.; Cai, J. Progress in Brain Magnetic Resonance Imaging of Individuals with Prader-Willi Syndrome. J. Clin. Med. 2023, 12, 1054. [Google Scholar] [CrossRef] [PubMed]
- Xie, K.; Ge, S.; Collins, V.E.; Haynes, C.L.; Renner, K.J.; Meisel, R.L.; Lujan, R.; Martemyanov, K.A. Gβ5-RGS complexes are gatekeepers of hyperactivity involved in control of multiple neurotransmitter systems. Psychopharmacology 2012, 219, 823–834. [Google Scholar] [CrossRef]
- Zhang, J.H.; Pandey, M.; Seigneur, E.M.; Panicker, L.M.; Koo, L.; Schwartz, O.M.; Chen, W.; Chen, C.K.; Simonds, W.F. Knockout of G protein β5 impairs brain development and causes multiple neurologic abnormalities in mice. J. Neurochem. 2011, 119, 544–554. [Google Scholar] [CrossRef]
- Zhang, J.; Pandey, M.; Awe, A.; Lue, N.; Kittock, C.; Fikse, E.; Degner, K.; Staples, J.; Mokhasi, N.; Chen, W.; et al. The association of GNB5 with Alzheimer disease revealed by genomic analysis restricted to variants impacting gene function. Am. J. Hum. Genet. 2024, 111, 473–486. [Google Scholar] [CrossRef]
- Lodder, E.M.; De Nittis, P.; Koopman, C.D.; Wiszniewski, W.; Moura de Souza, C.F.; Lahrouchi, N.; Guex, N.; Napolioni, V.; Tessadori, F.; Beekman, L.; et al. GNB5 Mutations Cause an Autosomal-Recessive Multisystem Syndrome with Sinus Bradycardia and Cognitive Disability. Am. J. Hum. Genet. 2016, 99, 704–710. [Google Scholar] [CrossRef] [PubMed]
- Shamseldin, H.E.; Masuho, I.; Alenizi, A. GNB5 mutation causes a novel neuropsychiatric disorder featuring attention deficit hyperactivity disorder, severely impaired language development and normal cognition. Genome Biol. 2016, 17, 195. [Google Scholar] [CrossRef]
- Poke, G.; Sadleir, L.G.; Merla, G. GNB5-Related Neurodevelopmental Disorder; GeneReviews, Adam, M.P., Feldman, J., Mirzaa, G.M., Eds.; University of Washington: Seattle, WA, USA, 2021. [Google Scholar]
- Sciacca, F.L.; Ciaccio, C.; Fontana, F.; Strano, C.; Gilardoni, F.; Pantaleoni, C.; D’Arrigo, S. Severe Phenotype in a Patient With Homozygous 15q21.2 Microdeletion Involving BCL2L10, GNB5, and MYO5C Genes, Resembling Infantile Developmental Disorder with Cardiac Arrhythmias (IDDCA). Front. Genet. 2020, 11, 399. [Google Scholar] [CrossRef]
- De Nittis, P.; Efthymiou, S.; Sarre, A.; Guex, N.; Chrast, J.; Putoux, A.; Sultan, T.; Raza Alvi, J.; Ur Rahman, Z.; Zafar, F.; et al. Inhibition of G-protein signalling in cardiac dysfunction of intellectual developmental disorder with cardiac arrhythmia (IDDCA) syndrome. J. Med. Genet. 2021, 58, 815–831. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; Wang, Y.; Xu, Y.; Tong, W.; Jin, D.; Yang, X.A. IDDCA syndrome in a Chinese infant due to GNB5 biallelic mutations. J. Hum. Genet. 2020, 65, 627–631. [Google Scholar] [CrossRef]
- Malerba, N.; Towner, S.; Keating, K.; Squeo, G.M.; Wilson, W.; Merla, G. A NGS-Targeted Autism/ID Panel Reveals Compound Heterozygous GNB5 Variants in a Novel Patient. Front. Genet. 2018, 9, 626. [Google Scholar] [CrossRef]
- Poke, G.; King, C.; Muir, A.; de Valles-Ibáñez, G.; Germano, M.; Moura de Souza, C.F.; Fung, J.; Chung, B.; Fung, C.W.; Mignot, C.; et al. The epileptology of GNB5 encephalopathy. Epilepsia 2019, 60, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Deng, X.J.; Xu, D. Gene mutations in comorbidity of epilepsy and arrhythmia. J. Neurol. 2023, 270, 1229–1248. [Google Scholar] [CrossRef] [PubMed]
- Veerman, C.C.; Mengarelli, I.; Koopman, C.D.; Wilders, R.; van Amersfoorth, S.C.; Bakker, D.; Wolswinkel, R.; Hababa, M.; de Boer, T.P.; Guan, K.; et al. Genetic variation in GNB5 causes bradycardia by augmenting the cholinergic response via increased acetylcholine-activated potassium current (IK,ACh). Dis. Model. Mech. 2019, 12, dmm037994. [Google Scholar] [CrossRef] [PubMed]
- Ng, A.C.; Chahine, M.; Scantlebury, M.H.; Appendino, J.P. Channelopathies in epilepsy: An overview of clinical presentations, pathogenic mechanisms, and therapeutic insights. J. Neurol. 2024, 271, 3063–3094. [Google Scholar] [CrossRef]
- Khan, M.A.; Dev, S.; Kumari, M.; Mahak, F.; Umair, A.; Rasool, M.; Kumari, A.; Payal, F.; Panta, U.; Deepa, F.; et al. Respiratory Dysfunction in Epileptic Encephalopathies: Insights and Challenges. Cureus 2023, 15, e46216. [Google Scholar] [CrossRef]
- Chahal, C.A.A.; Salloum, M.N.; Alahdab, F.; Gottwald, J.A.; Tester, D.J.; Anwer, L.A.; So, E.L.; Murad, M.H.; St Louis, E.K.; Ackerman, M.J.; et al. Systematic Review of the Genetics of Sudden Unexpected Death in Epilepsy: Potential Overlap With Sudden Cardiac Death and Arrhythmia-Related Genes. J. Am. Heart Assoc. 2020, 9, e012264. [Google Scholar] [CrossRef]
- Li, M.C.H.; O’Brien, T.J.; Todaro, M.; Powell, K.L. Acquired cardiac channelopathies in epilepsy: Evidence, mechanisms, and clinical significance. Epilepsia 2019, 60, 1753–1767. [Google Scholar] [CrossRef]
- Turkdogan, D.; Usluer, S.; Akalin, F.; Agyuz, U.; Aslan, E.S. Familial early infantile epileptic encephalopathy and cardiac conduction disorder: A rare cause of SUDEP in infancy. Seizure 2017, 50, 171–172. [Google Scholar] [CrossRef]
- Vernon, H.; Cohen, J.; De Nittis, P.; Fatemi, A.; McClellan, R.; Goldstein, A.; Malerba, N.; Guex, N.; Reymond, A.; Merla, G. Intellectual developmental disorder with cardiac arrhythmia syndrome in a child with compound heterozygous GNB5 variants. Clin. Genet. 2018, 93, 1254–1256. [Google Scholar] [CrossRef]
- Yazdani, S.; Badjatiya, A.; Dorrani, N.; Lee, H.; Grody, W.W.; Nelson, S.F.; Dipple, K.M. Genetic characterization and long-term management of severely affected siblings with intellectual developmental disorder with cardiac arrhythmia syndrome. Mol. Genet. Metab. Rep. 2020, 23, 100582. [Google Scholar] [CrossRef]
- Rao, A.; Dallman, R.; Henderson, S.; Chen, C.K. Gbeta5 is required for normal light responses and morphology of retinal ON-bipolar cells. J. Neurosci. 2007, 27, 14199–14204. [Google Scholar] [CrossRef] [PubMed]
- Morhardt, D.R.; Guido, W.; Chen, C.K. The role of Gβ5 in vision. Prog. Mol. Biol. Transl. Sci. 2009, 86, 229–248. [Google Scholar] [PubMed]
- Shao, Z.; Tumber, A.; Maynes, J.; Tavares, E.; Kannu, P.; Heon, E.; Vincent, A. Unique retinal signaling defect in GNB5-related disease. Doc. Ophthalmol. 2020, 140, 273–277. [Google Scholar] [CrossRef] [PubMed]
- Valderas, J.M.; Starfield, B.; Sibbald, B.; Salisbury, C.; Roland, M. Defining comorbidity: Implications for understanding health and health services. Ann. Fam. Med. 2009, 7, 357–363. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marczyk, T.; Libura, M.; Wikiera, B.; Góralska, M.; Pollak, A.; Telenga, M.; Płoski, R.; Śmigiel, R. Mixed Segmental Uniparental Disomy of Chromosome 15q11-q1 Coexists with Homozygous Variant in GNB5 Gene in Child with Prader–Willi and Lodder–Merla Syndrome. Genes 2025, 16, 689. https://doi.org/10.3390/genes16060689
Marczyk T, Libura M, Wikiera B, Góralska M, Pollak A, Telenga M, Płoski R, Śmigiel R. Mixed Segmental Uniparental Disomy of Chromosome 15q11-q1 Coexists with Homozygous Variant in GNB5 Gene in Child with Prader–Willi and Lodder–Merla Syndrome. Genes. 2025; 16(6):689. https://doi.org/10.3390/genes16060689
Chicago/Turabian StyleMarczyk, Tomasz, Maria Libura, Beata Wikiera, Magdalena Góralska, Agnieszka Pollak, Marlena Telenga, Rafał Płoski, and Robert Śmigiel. 2025. "Mixed Segmental Uniparental Disomy of Chromosome 15q11-q1 Coexists with Homozygous Variant in GNB5 Gene in Child with Prader–Willi and Lodder–Merla Syndrome" Genes 16, no. 6: 689. https://doi.org/10.3390/genes16060689
APA StyleMarczyk, T., Libura, M., Wikiera, B., Góralska, M., Pollak, A., Telenga, M., Płoski, R., & Śmigiel, R. (2025). Mixed Segmental Uniparental Disomy of Chromosome 15q11-q1 Coexists with Homozygous Variant in GNB5 Gene in Child with Prader–Willi and Lodder–Merla Syndrome. Genes, 16(6), 689. https://doi.org/10.3390/genes16060689