Mixed Segmental Uniparental Disomy of Chromosome 15q11-q1 Coexists with Homozygous Variant in GNB5 Gene in Child with Prader–Willi and Lodder–Merla Syndrome
Abstract
:1. Introduction
2. Case Report
3. Genetics Study Results
4. Discussion
4.1. Prader–Willi Syndrome
4.2. GNB5-Related Neurodevelopmental Disorder
4.3. Neurodevelopmental Issues and Epilepsy in Patients with GNB5-Related Neurodevelopmental Disorder
4.4. Cardiac Issues
4.5. Eye Issues
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Fermin Gutierrez, M.A.; Daley, S.F.; Mendez, M.D. Prader-Willi Syndrome. Available online: https://www.ncbi.nlm.nih.gov/books/NBK553161/ (accessed on 25 January 2025).
- Butler, M.G. Prader-Willi Syndrome and Chromosome 15q11.2 BP1-BP2 Region: A Review. Int. J. Mol. Sci. 2023, 24, 4271. [Google Scholar] [CrossRef] [PubMed]
- Engel, E. A fascination with chromosome rescue in uniparental disomy: Mendelian recessive outlaws and imprinting copyrights infringements. Eur. J. Hum. Genet. 2006, 14, 1158–1169. [Google Scholar] [CrossRef] [PubMed]
- Del Gaudio, D.; Shinawi, M.; Astbury, C.; Tayeh, M.K.; Deak, K.L.; Raca, G.; ACMG Laboratory Quality Assurance Committee. Diagnostic testing for uniparental disomy: A points to consider statement from the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 2020, 22, 1133–1141. [Google Scholar] [CrossRef] [PubMed]
- Erger, F.; Burau, K.; Elsser, M.; Zimmermann, K.; Moog, U.; Netzer, C. Uniparental isodisomy as a cause of recessive Mendelian disease: A diagnostic pitfall with a quick and easy solution in medium/large NGS analyses. Eur. J. Hum. Genet. 2018, 26, 1392–1395. [Google Scholar] [CrossRef]
- Höybye, C.; Tauber, M. Approach to the Patient with Prader-Willi Syndrome. J. Clin. Endocrinol. Metab. 2022, 107, 1698–1705. [Google Scholar] [CrossRef]
- Wikiera, B.; Marczyk, T.; Libura, M.; Góralska, M.; Pollak, A.; Płoski, R.; Śmigiel, R. Mixed segmental uniparental disomy of chromosome 15q11-q1 with homozygous variant in GNB5 gene in child with Prader-Willi and Lodder-Merla syndrome. Endocr. Abstr. 2025, 110, EP752. [Google Scholar] [CrossRef]
- Available online: https://www.who.int/tools/child-growth-standards (accessed on 25 January 2025).
- Stawiński, P.; Płoski, R. Genebe.net: Implementation and validation of an automatic ACMG variant pathogenicity criteria assignment. Clin Genet. 2024, 106, 119–126. [Google Scholar] [CrossRef]
- Mendiola, A.J.P.; LaSalle, J.M. Epigenetics in Prader-Willi Syndrome. Front Genet. 2021, 12, 624581. [Google Scholar] [CrossRef]
- Shelkowitz, E.; Gantz, M.G.; Ridenour, T.A.; Scheimann, A.O.; Strong, T.; Bohonowych, J.; Duis, J. Neuropsychiatric features of Prader-Willi syndrome. Am. J. Med. Genet. A 2022, 188, 1457–1463. [Google Scholar] [CrossRef]
- Alves, C.; Franco, R.R. Prader-Willi syndrome: Endocrine manifestations and management. Arch. Endocrinol. Metab. 2020, 64, 223–234. [Google Scholar] [CrossRef]
- Ma, V.K.; Mao, R.; Toth, J.N.; Fulmer, M.L.; Egense, A.S.; Shankar, S.P. Prader-Willi and Angelman Syndromes: Mechanisms and Management. Appl. Clin. Genet. 2023, 16, 41–52. [Google Scholar] [PubMed]
- Muthusamy, K.; Macke, E.L.; Klee, E.W.; Tebben, P.J.; Hand, J.L.; Hasadsri, L.; Marcou, C.A.; Schimmenti, L.A. Congenital ichthyosis in Prader-Willi syndrome associated with maternal chromosome 15 uniparental disomy: Case report and review of autosomal recessive conditions unmasked by UPD. Am. J. Med. Genet. A 2020, 182, 2442–2449. [Google Scholar] [CrossRef] [PubMed]
- Polubothu, S.; Glover, M.; Holder, S.E.; Kinsler, V.A. Uniparental disomy as a mechanism for CERS3-mutated autosomal recessive congenital ichthyosis. Br. J. Dermatol. 2018, 179, 1214–1215. [Google Scholar] [CrossRef]
- Verrotti, A.; Soldani, C.; Laino, D.; d’Alonzo, R.; Grosso, S. Epilepsy in Prader-Willi syndrome: Clinical, diagnostic and treatment aspects. World J. Pediatr. 2014, 10, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Pascual-Morena, C.; Martínez-Vizcaíno, V.; Cavero-Redondo, I.; Álvarez-Bueno, C.; Martínez-García, I.; Rodríguez-Gutiérrez, E.; Otero-Luis, I.; Del Saz-Lara, A.; Saz-Lara, A. Prevalence and genotypic associations of epilepsy in Prader-Willi Syndrome: A systematic review and meta-analysis. Epilepsy Behav. 2024, 155, 109803. [Google Scholar] [CrossRef]
- Verrotti, A.; Cusmai, R.; Laino, D.; Carotenuto, M.; Esposito, M.; Falsaperla, R.; Margari, L.; Rizzo, R.; Savasta, S.; Grosso, S.; et al. Long-term outcome of epilepsy in patients with Prader-Willi syndrome. J. Neurol. 2015, 262, 116–123. [Google Scholar] [CrossRef]
- Vendrame, M.; Maski, K.P.; Chatterjee, M.; Heshmati, A.; Krishnamoorthy, K.; Tan, W.H.; Kothare, S.V. Epilepsy in Prader-Willi syndrome: Clinical characteristics and correlation to genotype. Epilepsy Behav. 2010, 19, 306–310. [Google Scholar] [CrossRef]
- Mao, S.; Yang, L.; Gao, Y.; Zou, C. Genotype-phenotype correlation in Prader-Willi syndrome: A large-sample analysis in China. Clin. Genet. 2024, 105, 415–422. [Google Scholar] [CrossRef]
- Yamada, K.; Watanabe, M.; Suzuki, K.; Suzuki, Y. Cerebellar Volumes Associate with Behavioral Phenotypes in Prader-Willi Syndrome. Cerebellum 2020, 19, 778–787. [Google Scholar] [CrossRef]
- Iughetti, L.; Bosio, L.; Corrias, A.; Gargantini, L.; Ragusa, L.; Livieri, C.; Predieri, B.; Bruzzi, P.; Caselli, G.; Grugni, G. Pituitary height and neuroradiological alterations in patients with Prader-Labhart-Willi syndrome. Eur. J. Pediatr. 2008, 167, 701–702. [Google Scholar] [CrossRef]
- Huang, Z.; Cai, J. Progress in Brain Magnetic Resonance Imaging of Individuals with Prader-Willi Syndrome. J. Clin. Med. 2023, 12, 1054. [Google Scholar] [CrossRef] [PubMed]
- Xie, K.; Ge, S.; Collins, V.E.; Haynes, C.L.; Renner, K.J.; Meisel, R.L.; Lujan, R.; Martemyanov, K.A. Gβ5-RGS complexes are gatekeepers of hyperactivity involved in control of multiple neurotransmitter systems. Psychopharmacology 2012, 219, 823–834. [Google Scholar] [CrossRef]
- Zhang, J.H.; Pandey, M.; Seigneur, E.M.; Panicker, L.M.; Koo, L.; Schwartz, O.M.; Chen, W.; Chen, C.K.; Simonds, W.F. Knockout of G protein β5 impairs brain development and causes multiple neurologic abnormalities in mice. J. Neurochem. 2011, 119, 544–554. [Google Scholar] [CrossRef]
- Zhang, J.; Pandey, M.; Awe, A.; Lue, N.; Kittock, C.; Fikse, E.; Degner, K.; Staples, J.; Mokhasi, N.; Chen, W.; et al. The association of GNB5 with Alzheimer disease revealed by genomic analysis restricted to variants impacting gene function. Am. J. Hum. Genet. 2024, 111, 473–486. [Google Scholar] [CrossRef]
- Lodder, E.M.; De Nittis, P.; Koopman, C.D.; Wiszniewski, W.; Moura de Souza, C.F.; Lahrouchi, N.; Guex, N.; Napolioni, V.; Tessadori, F.; Beekman, L.; et al. GNB5 Mutations Cause an Autosomal-Recessive Multisystem Syndrome with Sinus Bradycardia and Cognitive Disability. Am. J. Hum. Genet. 2016, 99, 704–710. [Google Scholar] [CrossRef] [PubMed]
- Shamseldin, H.E.; Masuho, I.; Alenizi, A. GNB5 mutation causes a novel neuropsychiatric disorder featuring attention deficit hyperactivity disorder, severely impaired language development and normal cognition. Genome Biol. 2016, 17, 195. [Google Scholar] [CrossRef]
- Poke, G.; Sadleir, L.G.; Merla, G. GNB5-Related Neurodevelopmental Disorder; GeneReviews, Adam, M.P., Feldman, J., Mirzaa, G.M., Eds.; University of Washington: Seattle, WA, USA, 2021. [Google Scholar]
- Sciacca, F.L.; Ciaccio, C.; Fontana, F.; Strano, C.; Gilardoni, F.; Pantaleoni, C.; D’Arrigo, S. Severe Phenotype in a Patient With Homozygous 15q21.2 Microdeletion Involving BCL2L10, GNB5, and MYO5C Genes, Resembling Infantile Developmental Disorder with Cardiac Arrhythmias (IDDCA). Front. Genet. 2020, 11, 399. [Google Scholar] [CrossRef]
- De Nittis, P.; Efthymiou, S.; Sarre, A.; Guex, N.; Chrast, J.; Putoux, A.; Sultan, T.; Raza Alvi, J.; Ur Rahman, Z.; Zafar, F.; et al. Inhibition of G-protein signalling in cardiac dysfunction of intellectual developmental disorder with cardiac arrhythmia (IDDCA) syndrome. J. Med. Genet. 2021, 58, 815–831. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; Wang, Y.; Xu, Y.; Tong, W.; Jin, D.; Yang, X.A. IDDCA syndrome in a Chinese infant due to GNB5 biallelic mutations. J. Hum. Genet. 2020, 65, 627–631. [Google Scholar] [CrossRef]
- Malerba, N.; Towner, S.; Keating, K.; Squeo, G.M.; Wilson, W.; Merla, G. A NGS-Targeted Autism/ID Panel Reveals Compound Heterozygous GNB5 Variants in a Novel Patient. Front. Genet. 2018, 9, 626. [Google Scholar] [CrossRef]
- Poke, G.; King, C.; Muir, A.; de Valles-Ibáñez, G.; Germano, M.; Moura de Souza, C.F.; Fung, J.; Chung, B.; Fung, C.W.; Mignot, C.; et al. The epileptology of GNB5 encephalopathy. Epilepsia 2019, 60, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Deng, X.J.; Xu, D. Gene mutations in comorbidity of epilepsy and arrhythmia. J. Neurol. 2023, 270, 1229–1248. [Google Scholar] [CrossRef] [PubMed]
- Veerman, C.C.; Mengarelli, I.; Koopman, C.D.; Wilders, R.; van Amersfoorth, S.C.; Bakker, D.; Wolswinkel, R.; Hababa, M.; de Boer, T.P.; Guan, K.; et al. Genetic variation in GNB5 causes bradycardia by augmenting the cholinergic response via increased acetylcholine-activated potassium current (IK,ACh). Dis. Model. Mech. 2019, 12, dmm037994. [Google Scholar] [CrossRef] [PubMed]
- Ng, A.C.; Chahine, M.; Scantlebury, M.H.; Appendino, J.P. Channelopathies in epilepsy: An overview of clinical presentations, pathogenic mechanisms, and therapeutic insights. J. Neurol. 2024, 271, 3063–3094. [Google Scholar] [CrossRef]
- Khan, M.A.; Dev, S.; Kumari, M.; Mahak, F.; Umair, A.; Rasool, M.; Kumari, A.; Payal, F.; Panta, U.; Deepa, F.; et al. Respiratory Dysfunction in Epileptic Encephalopathies: Insights and Challenges. Cureus 2023, 15, e46216. [Google Scholar] [CrossRef]
- Chahal, C.A.A.; Salloum, M.N.; Alahdab, F.; Gottwald, J.A.; Tester, D.J.; Anwer, L.A.; So, E.L.; Murad, M.H.; St Louis, E.K.; Ackerman, M.J.; et al. Systematic Review of the Genetics of Sudden Unexpected Death in Epilepsy: Potential Overlap With Sudden Cardiac Death and Arrhythmia-Related Genes. J. Am. Heart Assoc. 2020, 9, e012264. [Google Scholar] [CrossRef]
- Li, M.C.H.; O’Brien, T.J.; Todaro, M.; Powell, K.L. Acquired cardiac channelopathies in epilepsy: Evidence, mechanisms, and clinical significance. Epilepsia 2019, 60, 1753–1767. [Google Scholar] [CrossRef]
- Turkdogan, D.; Usluer, S.; Akalin, F.; Agyuz, U.; Aslan, E.S. Familial early infantile epileptic encephalopathy and cardiac conduction disorder: A rare cause of SUDEP in infancy. Seizure 2017, 50, 171–172. [Google Scholar] [CrossRef]
- Vernon, H.; Cohen, J.; De Nittis, P.; Fatemi, A.; McClellan, R.; Goldstein, A.; Malerba, N.; Guex, N.; Reymond, A.; Merla, G. Intellectual developmental disorder with cardiac arrhythmia syndrome in a child with compound heterozygous GNB5 variants. Clin. Genet. 2018, 93, 1254–1256. [Google Scholar] [CrossRef]
- Yazdani, S.; Badjatiya, A.; Dorrani, N.; Lee, H.; Grody, W.W.; Nelson, S.F.; Dipple, K.M. Genetic characterization and long-term management of severely affected siblings with intellectual developmental disorder with cardiac arrhythmia syndrome. Mol. Genet. Metab. Rep. 2020, 23, 100582. [Google Scholar] [CrossRef]
- Rao, A.; Dallman, R.; Henderson, S.; Chen, C.K. Gbeta5 is required for normal light responses and morphology of retinal ON-bipolar cells. J. Neurosci. 2007, 27, 14199–14204. [Google Scholar] [CrossRef] [PubMed]
- Morhardt, D.R.; Guido, W.; Chen, C.K. The role of Gβ5 in vision. Prog. Mol. Biol. Transl. Sci. 2009, 86, 229–248. [Google Scholar] [PubMed]
- Shao, Z.; Tumber, A.; Maynes, J.; Tavares, E.; Kannu, P.; Heon, E.; Vincent, A. Unique retinal signaling defect in GNB5-related disease. Doc. Ophthalmol. 2020, 140, 273–277. [Google Scholar] [CrossRef] [PubMed]
- Valderas, J.M.; Starfield, B.; Sibbald, B.; Salisbury, C.; Roland, M. Defining comorbidity: Implications for understanding health and health services. Ann. Fam. Med. 2009, 7, 357–363. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marczyk, T.; Libura, M.; Wikiera, B.; Góralska, M.; Pollak, A.; Telenga, M.; Płoski, R.; Śmigiel, R. Mixed Segmental Uniparental Disomy of Chromosome 15q11-q1 Coexists with Homozygous Variant in GNB5 Gene in Child with Prader–Willi and Lodder–Merla Syndrome. Genes 2025, 16, 689. https://doi.org/10.3390/genes16060689
Marczyk T, Libura M, Wikiera B, Góralska M, Pollak A, Telenga M, Płoski R, Śmigiel R. Mixed Segmental Uniparental Disomy of Chromosome 15q11-q1 Coexists with Homozygous Variant in GNB5 Gene in Child with Prader–Willi and Lodder–Merla Syndrome. Genes. 2025; 16(6):689. https://doi.org/10.3390/genes16060689
Chicago/Turabian StyleMarczyk, Tomasz, Maria Libura, Beata Wikiera, Magdalena Góralska, Agnieszka Pollak, Marlena Telenga, Rafał Płoski, and Robert Śmigiel. 2025. "Mixed Segmental Uniparental Disomy of Chromosome 15q11-q1 Coexists with Homozygous Variant in GNB5 Gene in Child with Prader–Willi and Lodder–Merla Syndrome" Genes 16, no. 6: 689. https://doi.org/10.3390/genes16060689
APA StyleMarczyk, T., Libura, M., Wikiera, B., Góralska, M., Pollak, A., Telenga, M., Płoski, R., & Śmigiel, R. (2025). Mixed Segmental Uniparental Disomy of Chromosome 15q11-q1 Coexists with Homozygous Variant in GNB5 Gene in Child with Prader–Willi and Lodder–Merla Syndrome. Genes, 16(6), 689. https://doi.org/10.3390/genes16060689