Genetic and Epigenetic Risks of Male Infertility in ART
Abstract
1. Introduction
2. Genetic Basis of Male Infertility
2.1. Overview of Genetic Contributions to Male Infertility
2.2. Single-Gene Disorders and Monogenic Infertility
2.2.1. Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Mutations and Congenital Bilateral Absence of the Vas Deferens (CBAVD)
2.2.2. Ciliary Dyskinesia and Flagellar Disorders
2.2.3. Endocrine and Neurologic Genetic Disorders
2.2.4. Neuromuscular Repeat Expansion Disorders
2.3. Chromosomal Abnormalities
2.4. Y-Chromosome Microdeletions
2.5. Sperm Chromosomal Aneuploidy and Genetic Instability
3. Epigenetic Control and Dangers in Assisted Reproductive Technologies
3.1. Epigenetic Reprogramming in the Male Germ Line
3.2. Environmental and Lifestyle Impacts on the Sperm Epigenome
3.3. ART-Induced Epigenetic Perturbations
3.4. Genomic Imprinting and Parent-of-Origin Effects
3.5. Sperm Small RNAs and Transgenerational Inheritance
3.6. Interaction Between Epigenetic and Genetic Mechanisms
3.7. Clinical Implications and Risk Mitigation
4. Molecular Mechanisms Bridging Genetics and Epigenetics in Male Infertility
4.1. Oxidative Stress as a Common Pathogenic Driver
4.2. DNA Damage Response and Chromatin Remodeling
4.3. Sperm Energy Metabolism and Mitochondrial Dysfunction
4.4. DNA Methylation Drift and Epimutation Propagation
4.5. Dysregulation of Noncoding RNA and Post-Transcriptional Regulation
4.6. Oxidative-Epigenetic Feedback Loops in ART
4.7. Multi-Omics Integration and Systems-Level Insights
5. Clinical and Ethical Implications in ART
5.1. Integration of Molecular Diagnostics in Infertility Investigation
5.2. Preimplantation Genetic and Epigenetic Testing
5.3. Genetic Counselling and Risk Communication
5.4. Sperm Selection and Processing Advances
5.5. Lifestyle, Nutritional, and Pharmacologic Interventions
5.6. Offspring Outcomes and Long-Term Follow-Up
5.7. Ethical and Regulatory Considerations
5.8. Future Directions in Clinical Translation
6. Future Perspectives
6.1. The Era of Multi-Omics and Systems Reproductive Biology
6.2. Artificial Gametogenesis and In Vitro Spermatogenesis
6.3. CRISPR-Based Functional Genomics and Gene Correction
6.4. Artificial Intelligence in Reproductive Genomics
6.5. Epigenetic Therapies and Reproductive Precision Medicine
6.6. Transgenerational Health and Longitudinal Cohorts
6.7. The Path Toward Molecularly Guided Reproduction
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AI | Artificial intelligence |
| AIS | Androgen insensitivity syndrome |
| AR | Androgen receptor |
| ART | Assisted reproductive technologies |
| AZF | Azoospermia factor |
| BRDT | Bromodomain Testis Associated |
| CBAVD | Congenital bilateral absence of the vas deferens |
| CCDC39 | Coiled-Coil Domain 39 Molecular Ruler Complex Subunit |
| CCDC40 | Coiled-Coil Domain 40 Molecular Ruler Complex Subunit |
| CFAP43 | Cilia and Flagella Associated Protein 43 |
| CFAP44 | Cilia and Flagella Associated Protein 44 |
| CFAP300 | Cilia and Flagella Associated Protein 300 |
| CFTR | Cystic Fibrosis Transmembrane Conductance Regulator |
| CHD5 | Chromodomain Helicase DNA Binding Protein 5 |
| CNVs | Copy number variations |
| CREBBP | cAMP Responsive Element Binding Lysine Acetyltransferase |
| CYP21A2 | Cytochrome P450 Family 21 Subfamily A Member 2 |
| DMPK | Dystrophia Myotonica Protein Kinase |
| DNAH1 | Dynein Axonemal Heavy Chain 1 |
| DNAH5 | Dynein Axonemal Heavy Chain 5 |
| DNAH11 | Dynein Axonemal Heavy Chain 11 |
| DNAI1 | Dynein Axonemal Intermediate Chain 1 |
| DNMT | DNA Methyltransferase |
| FGFR1 | Fibroblast Growth Factor Receptor 1 |
| FISH | Fluorescence in situ hybridization |
| GPX4 | Glutathione Peroxidase 4 |
| HA | Hyaluronic acid |
| HDAC1 | Histone Deacetylase 1 |
| ICSI | Intracytoplasmic sperm injection |
| IGF2 | Insulin-Like Growth Factor 2 |
| iPSC | Induced pluripotent stem cell |
| KAL1 | Anosmin 1 |
| KAT8 | Lysine Acetyltransferase 8 |
| KCNQ1OT1 | Potassium Voltage-Gated Channel Subfamily Q Member 1 Opposite Strand/Antisense Transcript 1 |
| MACS | Magnetic-activated cell sorting |
| MEG3 | Maternally Expressed 3 |
| miRNAs | microRNAs |
| ML | Machine learning |
| MMAF | Multiple morphological abnormalities of the sperm flagella |
| MOV10L1 | Mov10 Like RNA Helicase 1 |
| ncRNAs | Noncoding RNAs |
| NGS | Next-generation sequencing |
| NOA | Non-obstructive azoospermia |
| PCD | Primary ciliary dyskinesia |
| PGT | Preimplantation genetic testing |
| PGT-A | Preimplantation genetic testing for aneuploidy |
| PGT-M | Preimplantation genetic testing for monogenic disorders |
| PGT-SR | Preimplantation genetic testing for structural rearrangements |
| piRNAs | PIWI-interacting RNAs |
| PIWIL1 | Piwi Like RNA-Mediated Gene Silencing 1 |
| PRM2 | Protamine 2 |
| ROS | Reactive oxygen species |
| SIRT1 | Sirtuin 1 |
| SMARCA4 | SWI/SNF Related BAF Chromatin Remodeling Complex Subunit ATPase 4 |
| SOD2 | Superoxide Dismutase 2 |
| SRD5A2 | Steroid 5 Alpha-Reductase 2 |
| SYCP3 | Synaptonemal Complex Protein 3 |
| TDRD9 | Tudor Domain Containing 9 |
| TEX11 | Testis Expressed 11 |
| TNP1 | Transition Protein 1 |
| tsRNAs | tRNA-derived fragments |
| 8-OHdG | 8-hydroxy-2′-deoxyguanosine |
References
- Assidi, M. Infertility in Men: Advances towards a Comprehensive and Integrative Strategy for Precision Theranostics. Cells 2022, 11, 1711. [Google Scholar] [CrossRef] [PubMed]
- Henningsen, A.-K.A.; Opdahl, S.; Wennerholm, U.-B.; Tiitinen, A.; Rasmussen, S.; Romundstad, L.B.; Bergh, C.; Gissler, M.; Forman, J.L.; Pinborg, A. Risk of Congenital Malformations in Live-Born Singletons Conceived after Intracytoplasmic Sperm Injection: A Nordic Study from the CoNARTaS Group. Fertil. Steril. 2023, 120, 1033–1041. [Google Scholar] [CrossRef] [PubMed]
- Sciorio, R.; Esteves, S.C. Contemporary Use of ICSI and Epigenetic Risks to Future Generations. J. Clin. Med. 2022, 11, 2135. [Google Scholar] [CrossRef] [PubMed]
- Tesarik, J. Lifestyle and Environmental Factors Affecting Male Fertility, Individual Predisposition, Prevention, and Intervention. Int. J. Mol. Sci. 2025, 26, 2797. [Google Scholar] [CrossRef]
- Sudhakar, D.V.S.; Shah, R.; Gajbhiye, R.K. Genetics of Male Infertility—Present and Future: A Narrative Review. J. Hum. Reprod. Sci. 2021, 14, 217–227. [Google Scholar] [CrossRef]
- Wagner, A.O.; Turk, A.; Kunej, T. Towards a Multi-Omics of Male Infertility. World J. Men’s Health 2023, 41, 272–288. [Google Scholar] [CrossRef]
- Huang, X.-Y.; Sha, J.-H. Proteomics of Spermatogenesis: From Protein Lists to Understanding the Regulation of Male Fertility and Infertility. Asian J. Androl. 2011, 13, 18–23. [Google Scholar] [CrossRef]
- Cui, Y.; Deng, J.; Zhang, Y.; Du, L.; Jiang, F.; Li, C.; Chen, W.; Zhang, H.; He, Z. Epigenetic Regulation by DNA Methylation, Histone Modifications and Chromatin Remodeling Complexes in Controlling Spermatogenesis and Their Dysfunction with Male Infertility. Cell. Mol. Life Sci. 2025, 82, 343. [Google Scholar] [CrossRef]
- Siebert-Kuss, L.M.; Dietrich, V.; Di Persio, S.; Bhaskaran, J.; Stehling, M.; Cremers, J.-F.; Sandmann, S.; Varghese, J.; Kliesch, S.; Schlatt, S.; et al. Genome-Wide DNA Methylation Changes in Human Spermatogenesis. Am. J. Hum. Genet. 2024, 111, 1125–1139. [Google Scholar] [CrossRef]
- Hosseini, M.; Khalafiyan, A.; Zare, M.; Karimzadeh, H.; Bahrami, B.; Hammami, B.; Kazemi, M. Sperm Epigenetics and Male Infertility: Unraveling the Molecular Puzzle. Hum. Genom. 2024, 18, 57. [Google Scholar] [CrossRef]
- Yang, C.; Zeng, Q.-X.; Liu, J.-C.; Yeung, W.S.-B.; Zhang, J.V.; Duan, Y.-G. Role of Small RNAs Harbored by Sperm in Embryonic Development and Offspring Phenotype. Andrology 2023, 11, 770–782. [Google Scholar] [CrossRef] [PubMed]
- Kaltsas, A.; Markou, E.; Kyrgiafini, M.-A.; Zikopoulos, A.; Symeonidis, E.N.; Dimitriadis, F.; Zachariou, A.; Sofikitis, N.; Chrisofos, M. Oxidative-Stress-Mediated Epigenetic Dysregulation in Spermatogenesis: Implications for Male Infertility and Offspring Health. Genes 2025, 16, 93. [Google Scholar] [CrossRef]
- Donkin, I.; Barrès, R. Sperm Epigenetics and Influence of Environmental Factors. Mol. Metab. 2018, 14, 1–11. [Google Scholar] [CrossRef]
- Hattori, H.; Hiura, H.; Kitamura, A.; Miyauchi, N.; Kobayashi, N.; Takahashi, S.; Okae, H.; Kyono, K.; Kagami, M.; Ogata, T.; et al. Association of Four Imprinting Disorders and ART. Clin. Epigenetics 2019, 11, 21. [Google Scholar] [CrossRef]
- James, E.R.; Tasnim, M.; Riera-Escamilla, A.; Vigh-Conrad, K.; Emery, B.R.; Conrad, D.F.; Aston, K.I. Genetic and Epigenetic Landscape of Male Infertility. Trends Genet. 2025, 41, 883–898. [Google Scholar] [CrossRef] [PubMed]
- Montjean, D.; Beaumont, M.; Natiq, A.; Louanjli, N.; Hazout, A.; Miron, P.; Liehr, T.; Cabry, R.; Ratbi, I.; Benkhalifa, M. Genome and Epigenome Disorders and Male Infertility: Feedback from 15 Years of Clinical and Research Experience. Genes 2024, 15, 377. [Google Scholar] [CrossRef]
- Ikbal Atli, E.; Yalcintepe, S.; Atli, E.; Demir, S.; Gurkan, H. Next-Generation Sequencing Infertility Panel in Turkey: First Results. Balkan J. Med. Genet. 2024, 27, 49–57. [Google Scholar] [CrossRef]
- Gudmundsson, S.; Singer-Berk, M.; Watts, N.A.; Phu, W.; Goodrich, J.K.; Solomonson, M.; Genome Aggregation Database Consortium; Rehm, H.L.; MacArthur, D.G.; O’Donnell-Luria, A. Variant Interpretation Using Population Databases: Lessons from gnomAD. Hum. Mutat. 2022, 43, 1012–1030. [Google Scholar] [CrossRef]
- Cui, X.; Wu, X.; Li, Q.; Jing, X. Mutations of the Cystic Fibrosis Transmembrane Conductance Regulator Gene in Males with Congenital Bilateral Absence of the Vas Deferens: Reproductive Implications and Genetic Counseling (Review). Mol. Med. Rep. 2020, 22, 3587–3596. [Google Scholar] [CrossRef] [PubMed]
- Sorrentino, U.; Menegazzo, M.; Gabbiato, I.; Calosci, D.; Zambon, C.F.; Zuccarello, D. Challenges of Preimplantation Genetic Counselling in the Context of Cystic Fibrosis and Other CFTR-Related Disorders: A Monocentric Experience in a Cohort of 92 Couples. Genes 2024, 15, 937. [Google Scholar] [CrossRef]
- Anjankar, N.; More, A.; Anjankar, A.P.; Mahajan, S.S.; Nawale, N. CFTR Gene Mutations and Their Role in Male Infertility: A Case Study. J. Pharm. Bioallied Sci. 2025, 17, S1008–S1010. [Google Scholar] [CrossRef] [PubMed]
- Wosnitzer, M.S. Genetic Evaluation of Male Infertility. Transl. Androl. Urol. 2014, 3, 17–26. [Google Scholar] [CrossRef]
- Sironen, A.; Shoemark, A.; Patel, M.; Loebinger, M.R.; Mitchison, H.M. Sperm Defects in Primary Ciliary Dyskinesia and Related Causes of Male Infertility. Cell. Mol. Life Sci. 2020, 77, 2029–2048. [Google Scholar] [CrossRef]
- Aprea, I.; Wilken, A.; Krallmann, C.; Nöthe-Menchen, T.; Olbrich, H.; Loges, N.T.; Dougherty, G.W.; Bracht, D.; Brenker, C.; Kliesch, S.; et al. Pathogenic Gene Variants in CCDC39, CCDC40, RSPH1, RSPH9, HYDIN, and SPEF2 Cause Defects of Sperm Flagella Composition and Male Infertility. Front. Genet. 2023, 14, 1117821. [Google Scholar] [CrossRef]
- Yin, H.-Y.; Zhou, Y.-Q.; Shen, Q.-S.; Chen, Z.-W.; Li, J.-R.; Wu, H.; Cao, Y.-X.; Guo, R.; Song, B. CFAP300 Loss-of-Function Variant Causes Primary Ciliary Dyskinesia and Male Infertility via Disrupting Sperm Flagellar Assembly and Acrosome Formation. Asian J. Androl. 2025, 27, 743–750. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, B.; Lei, C.; Yang, D.; Ding, S.; Lu, C.; Wang, L.; Guo, T.; Wang, R.; Luo, H. Novel Compound Heterozygous Variants in CCDC40 Associated with Primary Ciliary Dyskinesia and Multiple Morphological Abnormalities of the Sperm Flagella. Pharmgenom. Pers. Med. 2022, 15, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Liang, Y.; Li, J.; Zhang, X.; Zheng, R.; Wang, X.; Zhang, H.; Shen, Y. A Novel CCDC39 Mutation Causes Multiple Morphological Abnormalities of the Flagella in a Primary Ciliary Dyskinesia Patient. Reprod. Biomed. Online 2021, 43, 920–930. [Google Scholar] [CrossRef]
- Castleman, V.H.; Romio, L.; Chodhari, R.; Hirst, R.A.; de Castro, S.C.P.; Parker, K.A.; Ybot-Gonzalez, P.; Emes, R.D.; Wilson, S.W.; Wallis, C.; et al. Mutations in Radial Spoke Head Protein Genes RSPH9 and RSPH4A Cause Primary Ciliary Dyskinesia with Central-Microtubular-Pair Abnormalities. Am. J. Hum. Genet. 2009, 84, 197–209. [Google Scholar] [CrossRef]
- Gileles-Hillel, A.; Mor-Shaked, H.; Shoseyov, D.; Reiter, J.; Tsabari, R.; Hevroni, A.; Cohen-Cymberknoh, M.; Amirav, I.; Brammli-Greenberg, S.; Horani, A.; et al. Whole-Exome Sequencing Accuracy in the Diagnosis of Primary Ciliary Dyskinesia. ERJ Open Res. 2020, 6, 00213–02020. [Google Scholar] [CrossRef]
- Newman, L.; Chopra, J.; Dossett, C.; Shepherd, E.; Bercusson, A.; Carroll, M.; Walker, W.; Lucas, J.S.; Cheong, Y. The Impact of Primary Ciliary Dyskinesia on Female and Male Fertility: A Narrative Review. Hum. Reprod. Update 2023, 29, 347–367. [Google Scholar] [CrossRef] [PubMed]
- Hwang, K.; Yatsenko, A.N.; Jorgez, C.J.; Mukherjee, S.; Nalam, R.L.; Matzuk, M.M.; Lamb, D.J. Mendelian Genetics of Male Infertility. Ann. N. Y. Acad. Sci. 2010, 1214, E1–E17. [Google Scholar] [CrossRef]
- Millar, A.C.; Faghfoury, H.; Bieniek, J.M. Genetics of Hypogonadotropic Hypogonadism. Transl. Androl. Urol. 2021, 10, 1401–1409. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.B.; Jeong, J.Y.; Doo, S.W.; Yang, W.J.; Song, Y.S.; Lee, S.R.; Park, J.W.; Kim, D.W. Myotonic Dystrophy Type 1 Presenting as Male Infertility. Korean J. Urol. 2012, 53, 134–136. [Google Scholar] [CrossRef] [PubMed]
- Lian, M.; Lee, C.G.; Chong, S.S. Robust Preimplantation Genetic Testing Strategy for Myotonic Dystrophy Type 1 by Bidirectional Triplet-Primed Polymerase Chain Reaction Combined with Multi-Microsatellite Haplotyping Following Whole-Genome Amplification. Front. Genet. 2019, 10, 589. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.W.; Khadilkar, A.C.; Ko, E.Y.; Sabanegh, E.S. 47,XYY Syndrome and Male Infertility. Rev. Urol. 2013, 15, 188–196. [Google Scholar]
- Maiburg, M.; Repping, S.; Giltay, J. The Genetic Origin of Klinefelter Syndrome and Its Effect on Spermatogenesis. Fertil. Steril. 2012, 98, 253–260. [Google Scholar] [CrossRef]
- Lamb, D.J. Chromosome Defects and Male Factor Infertility. Fertil. Steril. 2025, 123, 933–942. [Google Scholar] [CrossRef]
- Verdoni, A.; Hu, J.; Surti, U.; Babcock, M.; Sheehan, E.; Clemens, M.; Drewes, S.; Walsh, L.; Clark, R.; Katari, S.; et al. Reproductive Outcomes in Individuals with Chromosomal Reciprocal Translocations. Genet. Med. 2021, 23, 1753–1760. [Google Scholar] [CrossRef]
- Wang, H.; Jia, Z.; Mao, A.; Xu, B.; Wang, S.; Wang, L.; Liu, S.; Zhang, H.; Zhang, X.; Yu, T.; et al. Analysis of Balanced Reciprocal Translocations in Patients with Subfertility Using Single-Molecule Optical Mapping. J. Assist. Reprod. Genet. 2020, 37, 509–516. [Google Scholar] [CrossRef]
- Shetty, S.; Nair, J.; Johnson, J.; Shetty, N.; J, A.K.; Thondehalmath, N.; Ganesh, D.; Bhat, V.R.; M, S.; R, A.; et al. Preimplantation Genetic Testing for Couples with Balanced Chromosomal Rearrangements. J. Reprod. Infertil. 2022, 23, 213–223. [Google Scholar] [CrossRef]
- Rabinowitz, M.J.; Huffman, P.J.; Haney, N.M.; Kohn, T.P. Y-Chromosome Microdeletions: A Review of Prevalence, Screening, and Clinical Considerations. Appl. Clin. Genet. 2021, 14, 51–59. [Google Scholar] [CrossRef]
- Liu, X.; Qiao, J.; Li, R.; Yan, L.; Chen, L. Y Chromosome AZFc Microdeletion May Not Affect the Outcomes of ICSI for Infertile Males with Fresh Ejaculated Sperm. J. Assist. Reprod. Genet. 2013, 30, 813–819. [Google Scholar] [CrossRef]
- Navarro-Costa, P.; Plancha, C.E.; Gonçalves, J. Genetic Dissection of the AZF Regions of the Human Y Chromosome: Thriller or Filler for Male (in)Fertility? J. Biomed. Biotechnol. 2010, 2010, 936569. [Google Scholar] [CrossRef]
- Dai, B.; Zhao, D.; Sha, R.-N.; Cang, M. The Selection of Y Chromosome Microdeletion Detection Methods Based on Seminal Analysis Results: A Comparison of High-Throughput Sequencing and Fluorescence Quantitative Polymerase Chain Reaction (qPCR) Applications. Transl. Androl. Urol. 2025, 14, 619–626. [Google Scholar] [CrossRef]
- Luongo, F.P.; Annunzi, E.; Girolamo, F.; Belmonte, G.; Ponchia, R.; Piomboni, P.; Luddi, A. Assessment of Sperm Chromosomal Abnormalities Using Fluorescence in Situ Hybridization (FISH): Implications for Reproductive Potential. J. Assist. Reprod. Genet. 2024, 41, 2787–2793. [Google Scholar] [CrossRef]
- Elnahas, R.F.; Behery, A.K.; Kholeif, S.; Orief, Y.I.; Elhady, G.M. Sperm Chromosomal Abnormalities in Infertile Men with Failed Intracytoplasmic Sperm Injection (ICSI). Middle East. Fertil. Soc. J. 2023, 28, 18. [Google Scholar] [CrossRef]
- Sassanarakkit, S.; Chamnankran, S.; Singwongsa, A.; Sukprasert, M.; Satirapod, C. Chromosomal Analysis of Single Sperm Cells from Infertile Couples with Severe Oligoteratozoospermia: A Cross-Sectional Prospective Study. PLoS ONE 2024, 19, e0303350. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Gao, L.; Song, J. Structural Basis of DNMT1 and DNMT3A-Mediated DNA Methylation. Genes 2018, 9, 620. [Google Scholar] [CrossRef] [PubMed]
- Akhatova, A.; Jones, C.; Coward, K.; Yeste, M. How Do Lifestyle and Environmental Factors Influence the Sperm Epigenome? Effects on Sperm Fertilising Ability, Embryo Development, and Offspring Health. Clin. Epigenetics 2025, 17, 7. [Google Scholar] [CrossRef]
- Sudhakaran, G.; Kesavan, D.; Kandaswamy, K.; Guru, A.; Arockiaraj, J. Unravelling the Epigenetic Impact: Oxidative Stress and Its Role in Male Infertility-Associated Sperm Dysfunction. Reprod. Toxicol. 2024, 124, 108531. [Google Scholar] [CrossRef] [PubMed]
- Sciorio, R.; Cantatore, C.; D’Amato, G.; Smith, G.D. Cryopreservation, Cryoprotectants, and Potential Risk of Epigenetic Alteration. J. Assist. Reprod. Genet. 2024, 41, 2953–2967. [Google Scholar] [CrossRef]
- Ye, M.; Reyes Palomares, A.; Iwarsson, E.; Oberg, A.S.; Rodriguez-Wallberg, K.A. Imprinting Disorders in Children Conceived with Assisted Reproductive Technology in Sweden. Fertil. Steril. 2024, 122, 706–714. [Google Scholar] [CrossRef]
- Cortessis, V.K.; Azadian, M.; Buxbaum, J.; Sanogo, F.; Song, A.Y.; Sriprasert, I.; Wei, P.C.; Yu, J.; Chung, K.; Siegmund, K.D. Comprehensive Meta-Analysis Reveals Association between Multiple Imprinting Disorders and Conception by Assisted Reproductive Technology. J. Assist. Reprod. Genet. 2018, 35, 943–952. [Google Scholar] [CrossRef] [PubMed]
- Lazaraviciute, G.; Kauser, M.; Bhattacharya, S.; Haggarty, P.; Bhattacharya, S. A Systematic Review and Meta-Analysis of DNA Methylation Levels and Imprinting Disorders in Children Conceived by IVF/ICSI Compared with Children Conceived Spontaneously. Hum. Reprod. Update 2014, 20, 840–852. [Google Scholar] [CrossRef] [PubMed]
- Kopca, T.; Tulay, P. Association of Assisted Reproductive Technology Treatments with Imprinting Disorders. Glob. Med. Genet. 2021, 8, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Håberg, S.E.; Page, C.M.; Lee, Y.; Nustad, H.E.; Magnus, M.C.; Haftorn, K.L.; Carlsen, E.Ø.; Denault, W.R.P.; Bohlin, J.; Jugessur, A.; et al. DNA Methylation in Newborns Conceived by Assisted Reproductive Technology. Nat. Commun. 2022, 13, 1896. [Google Scholar] [CrossRef]
- Rotondo, J.C.; Lanzillotti, C.; Mazziotta, C.; Tognon, M.; Martini, F. Epigenetics of Male Infertility: The Role of DNA Methylation. Front. Cell Dev. Biol. 2021, 9, 689624. [Google Scholar] [CrossRef]
- Rahimi, S.; Shao, X.; Chan, D.; Martel, J.; Bérard, A.; Fraser, W.D.; Simon, M.-M.; Kwan, T.; Bourque, G.; Trasler, J. Capturing Sex-Specific and Hypofertility-Linked Effects of Assisted Reproductive Technologies on the Cord Blood DNA Methylome. Clin. Epigenetics 2023, 15, 82. [Google Scholar] [CrossRef]
- Liu, S.; Sharma, U. Sperm RNA Payload: Implications for Intergenerational Epigenetic Inheritance. Int. J. Mol. Sci. 2023, 24, 5889. [Google Scholar] [CrossRef]
- Sciorio, R.; Rinaudo, P. Culture Conditions in the IVF Laboratory: State of the ART and Possible New Directions. J. Assist. Reprod. Genet. 2023, 40, 2591–2607. [Google Scholar] [CrossRef]
- Menezo, Y.; Dale, B.; Elder, K. Time to Re-Evaluate ART Protocols in the Light of Advances in Knowledge about Methylation and Epigenetics: An Opinion Paper. Hum. Fertil. 2018, 21, 156–162. [Google Scholar] [CrossRef]
- Aitken, R.J. Impact of Oxidative Stress on Male and Female Germ Cells: Implications for Fertility. Reproduction 2020, 159, R189–R201. [Google Scholar] [CrossRef]
- Chakraborty, S.; Roychoudhury, S. Pathological Roles of Reactive Oxygen Species in Male Reproduction. Adv. Exp. Med. Biol. 2022, 1358, 41–62. [Google Scholar] [CrossRef] [PubMed]
- Deng, T.; Xiao, Y.; Dai, Y.; Xie, L.; Li, X. Roles of Key Epigenetic Regulators in the Gene Transcription and Progression of Prostate Cancer. Front. Mol. Biosci. 2021, 8, 743376. [Google Scholar] [CrossRef]
- Hart, H.M.; Nixon, B.; Martin, J.H.; Aitken, R.J.; De Iuliis, G.N. Improving Sperm Selection Strategies for Assisted Reproduction through Closing the Knowledge Gap in Sperm Maturation Mechanics. Hum. Reprod. Open 2025, 2025, hoaf040. [Google Scholar] [CrossRef] [PubMed]
- Mai, Z.; Yang, D.; Wang, D.; Zhang, J.; Zhou, Q.; Han, B.; Sun, Z. A Narrative Review of Mitochondrial Dysfunction and Male Infertility. Transl. Androl. Urol. 2024, 13, 2134–2145. [Google Scholar] [CrossRef] [PubMed]
- Vahedi Raad, M.; Firouzabadi, A.M.; Tofighi Niaki, M.; Henkel, R.; Fesahat, F. The Impact of Mitochondrial Impairments on Sperm Function and Male Fertility: A Systematic Review. Reprod. Biol. Endocrinol. 2024, 22, 83. [Google Scholar] [CrossRef]
- Zeng, Y.; Chen, T. DNA Methylation Reprogramming during Mammalian Development. Genes 2019, 10, 257. [Google Scholar] [CrossRef]
- Chan, S.Y.; Wan, C.W.T.; Law, T.Y.S.; Chan, D.Y.L.; Fok, E.K.L. The Sperm Small RNA Transcriptome: Implications beyond Reproductive Disorder. Int. J. Mol. Sci. 2022, 23, 15716. [Google Scholar] [CrossRef]
- Agarwal, A.; Maldonado Rosas, I.; Anagnostopoulou, C.; Cannarella, R.; Boitrelle, F.; Munoz, L.V.; Finelli, R.; Durairajanayagam, D.; Henkel, R.; Saleh, R. Oxidative Stress and Assisted Reproduction: A Comprehensive Review of Its Pathophysiological Role and Strategies for Optimizing Embryo Culture Environment. Antioxidants 2022, 11, 477. [Google Scholar] [CrossRef]
- Li, W.; Wu, J.; Kim, S.-Y.; Zhao, M.; Hearn, S.A.; Zhang, M.Q.; Meistrich, M.L.; Mills, A.A. Chd5 Orchestrates Chromatin Remodelling during Sperm Development. Nat. Commun. 2014, 5, 3812. [Google Scholar] [CrossRef]
- Jin, J.; Li, K.; Du, Y.; Gao, F.; Wang, Z.; Li, W. Multi-Omics Study Identifies That PICK1 Deficiency Causes Male Infertility by Inhibiting Vesicle Trafficking in Sertoli Cells. Reprod. Biol. Endocrinol. 2023, 21, 114. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Swerdloff, R.S. Limitations of Semen Analysis as a Test of Male Fertility and Anticipated Needs from Newer Tests. Fertil. Steril. 2014, 102, 1502–1507. [Google Scholar] [CrossRef] [PubMed]
- Giuliano, R.; Maione, A.; Vallefuoco, A.; Sorrentino, U.; Zuccarello, D. Preimplantation Genetic Testing for Genetic Diseases: Limits and Review of Current Literature. Genes 2023, 14, 2095. [Google Scholar] [CrossRef] [PubMed]
- Del Arco de la Paz, A.; Giménez-Rodríguez, C.; Selntigia, A.; Meseguer, M.; Galliano, D. Advancements and Challenges in Preimplantation Genetic Testing for Aneuploidies: In the Pathway to Non-Invasive Techniques. Genes 2024, 15, 1613. [Google Scholar] [CrossRef]
- De Die-Smulders, C.; Van Golde, R. Genetic Counseling in Assisted Reproductive Treatment. In Textbook of Human Reproductive Genetics; Viville, S., Sermon, K.D., Eds.; Cambridge University Press: Cambridge, UK, 2023; pp. 155–168. ISBN 978-1-009-19770-0. [Google Scholar]
- Muthuswamy, V. Ethical Issues in Genetic Counselling with Special Reference to Haemoglobinopathies. Indian J. Med. Res. 2011, 134, 547–551. [Google Scholar]
- Marzano, G.; Chiriacò, M.S.; Primiceri, E.; Dell’Aquila, M.E.; Ramalho-Santos, J.; Zara, V.; Ferramosca, A.; Maruccio, G. Sperm Selection in Assisted Reproduction: A Review of Established Methods and Cutting-Edge Possibilities. Biotechnol. Adv. 2020, 40, 107498. [Google Scholar] [CrossRef]
- Ribas-Maynou, J.; Barranco, I.; Sorolla-Segura, M.; Llavanera, M.; Delgado-Bermúdez, A.; Yeste, M. Advanced Sperm Selection Strategies as a Treatment for Infertile Couples: A Systematic Review. Int. J. Mol. Sci. 2022, 23, 13859. [Google Scholar] [CrossRef]
- Lepine, S.; McDowell, S.; Searle, L.M.; Kroon, B.; Glujovsky, D.; Yazdani, A. Advanced Sperm Selection Techniques for Assisted Reproduction. Cochrane Database Syst. Rev. 2019, 7, CD010461. [Google Scholar] [CrossRef]
- Pacheco, A.; Blanco, A.; Bronet, F.; Cruz, M.; García-Fernández, J.; García-Velasco, J.A. Magnetic-Activated Cell Sorting (MACS): A Useful Sperm-Selection Technique in Cases of High Levels of Sperm DNA Fragmentation. J. Clin. Med. 2020, 9, 3976. [Google Scholar] [CrossRef]
- Skoracka, K.; Eder, P.; Łykowska-Szuber, L.; Dobrowolska, A.; Krela-Kaźmierczak, I. Diet and Nutritional Factors in Male (In)Fertility-Underestimated Factors. J. Clin. Med. 2020, 9, 1400. [Google Scholar] [CrossRef]
- Hart, R.J.; Wijs, L.A. The Longer-Term Effects of IVF on Offspring from Childhood to Adolescence. Front. Reprod. Health 2022, 4, 1045762. [Google Scholar] [CrossRef]
- Policy and Global Affairs; National Academies of Sciences, Engineering, and Medicine. Third International Summit on Human Genome Editing: Expanding Capabilities, Participation, and Access: Proceedings of a Workshop—In Brief; Olson, S., Ed.; National Academies Press: Washington, DC, USA, 2023; p. 27066. ISBN 978-0-309-70392-5. [Google Scholar]
- Guttinger, S. Trust in Science: CRISPR-Cas9 and the Ban on Human Germline Editing. Sci. Eng. Ethics 2018, 24, 1077–1096. [Google Scholar] [CrossRef]
- Ayanoğlu, F.B.; Elçin, A.E.; Elçin, Y.M. Bioethical Issues in Genome Editing by CRISPR-Cas9 Technology. Turk. J. Biol. 2020, 44, 110–120. [Google Scholar] [CrossRef]
- Koplin, J.J.; Johnston, M.; Webb, A.N.S.; Whittaker, A.; Mills, C. Ethics of Artificial Intelligence in Embryo Assessment: Mapping the Terrain. Hum. Reprod. 2025, 40, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Rolfes, V.; Bittner, U.; Gerhards, H.; Krüssel, J.-S.; Fehm, T.; Ranisch, R.; Fangerau, H. Artificial Intelligence in Reproductive Medicine—An Ethical Perspective. Geburtshilfe Frauenheilkd. 2023, 83, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Ishii, T. Human iPS Cell-Derived Germ Cells: Current Status and Clinical Potential. J. Clin. Med. 2014, 3, 1064–1083. [Google Scholar] [CrossRef]
- Stewart, K.R.; Veselovska, L.; Kelsey, G. Establishment and Functions of DNA Methylation in the Germline. Epigenomics 2016, 8, 1399–1413. [Google Scholar] [CrossRef]
- Wang, H.-Q.; Wang, T.; Gao, F.; Ren, W.-Z. Application of CRISPR/Cas Technology in Spermatogenesis Research and Male Infertility Treatment. Genes 2022, 13, 1000. [Google Scholar] [CrossRef]
- More, A.; Chimurkar, V.; Mahajan, S.; Dakre, S.; Anjankar, N.; More, D. The Integration of Artificial Intelligence in In Vitro Fertilization: A Comprehensive Narrative Review. J. Pharm. Bioallied Sci. 2025, 17, S155–S158. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, H.; Aghebati-Maleki, L.; Rashidiani, S.; Csabai, T.; Nnaemeka, O.B.; Szekeres-Bartho, J. Long-Term Effects of ART on the Health of the Offspring. Int. J. Mol. Sci. 2023, 24, 13564. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, M.; Badini, G.; Sferruzzi-Perri, A.N.; Albrecht, C. The Consequences of Assisted Reproduction Technologies on the Offspring Health Throughout Life: A Placental Contribution. Front. Cell Dev. Biol. 2022, 10, 906240, Erratum in Front. Cell Dev. Biol. 2023, 11, 1182847. [Google Scholar] [CrossRef] [PubMed]
- Orovou, E.; Tzimourta, K.D.; Tzitiridou-Chatzopoulou, M.; Kakatosi, A.; Sarantaki, A. Artificial Intelligence in Assisted Reproductive Technology: A New Era in Fertility Treatment. Cureus 2025, 17, e81568. [Google Scholar] [CrossRef] [PubMed]

| Mechanism/Theme | Key Processes and Players | Molecular Consequences | Epigenetic/Genetic Links | Clinical/ART Implications |
|---|---|---|---|---|
| Epigenetic reprogramming in the male germ line | Histone → transition proteins → protamines: DNMT1, DNMT3A/B; histone marks (H3K4me3, H3K27me3) | Defective chromatin condensation and spermatogenic arrest | Aberrant DNA methylation, histone modification loss, heritable epimutations | Reduced sperm quality and fertilizing ability; age/environment-sensitive vulnerability [8] |
| Environmental and lifestyle impacts | Smoking, obesity, EDCs, pollution, paternal age; oxidative stress; nutrients (folate, zinc, ω-3) | DNA base oxidation, protamine disruption | Altered CpG methylation at H19/IGF2; histone retention; small-RNA reprogramming | Lifestyle modulates sperm epigenome and ART outcome; nutritional buffering feasible [49,50] |
| ART-induced epigenetic perturbations | Ovarian stimulation, culture media, cryopreservation, micromanipulation | Subtle imprinting defects; increased oxidative stress | Methylation changes at imprinted loci; culture-dependent remodeling | Slight ↑ incidence of imprinting syndromes (BWS, SRS, AS); dependent on culture & O2 [52,55,56] |
| Genomic imprinting and parent-of-origin effects | H19, KCNQ1OT1, MEG3 imprints; fetal and perinatal methylation establishment | Loss of imprint stability; monoallelic-expression failure | Aberrant sperm methylation transmitted to embryos and offspring tissues | Rare but transmissible imprint disorders; need for long-term offspring follow-up [57,58] |
| Sperm small RNAs and transgenerational inheritance | miRNAs, piRNAs, tRNA-derived fragments; RNA cargo reshaping by stress/diet/toxins | Altered embryonic transcription, metabolism, and behavior | Small-RNA-mediated epigenetic inheritance without DNA change | Sperm RNA signature as biomarkers of fertility and ART success [11,59] |
| Interaction between epigenetic and genetic mechanisms | TDRD9, DNMT3L, KAT8 mutations; oxidative DNA damage; defective repair | Sequence mutation + methylation errors; chromatin instability | Feedback loop between genomic and epigenomic instability | Multi-omics profiling reveals interplay; culture stress unmasks genetic risks [6,10] |
| Clinical implications and risk mitigation | Oxygen (5%) control; antioxidants; shortened culture; methylation and RNA testing | ↓ ROS, preserved methylation, stabilized sperm RNA | Targeted reduction in ART-induced epimutations | Lifestyle optimization, antioxidant therapy, pre-conception counselling recommended [49,60,61] |
| Mechanism/Theme | Key Processes and Players | Genetic Effects | Epigenetic Effects | Clinical/ART Implications |
|---|---|---|---|---|
| Oxidative stress as a driver | ROS from inflammation, heat, or toxins; poor antioxidant defenses; lesions like 8-OHdG | Single-/double-strand breaks, point mutations, chromosomal rearrangements | CpG hypomethylation; 5mC → 5hmC; DNMT interference; epigenetic drift | High ROS ↔ sperm DNA fragmentation, hypomethylation, ↓ ICSI fertilization [62,63] |
| DNA damage response and chromatin remodeling | Histone → protamine transition; KAT8, CREBBP, HDAC1, SIRT1, SMARCA4, CHD5; P1/P2 ratio | Open chromatin, unrepaired DNA breaks, embryo arrest or de novo mutations | Incomplete protamination, aberrant imprint methylation | Chromatin-defective sperm fertilize in ART but raise embryonic risk [64,65] |
| Mitochondrial dysfunction and metabolism | mtDNA mutations/deletions; altered ATP, ROS, NAD+/NADH, one-carbon metabolism | Reduced motility and fertilizing capacity | Global hypomethylation, defective imprinting via metabolic–epigenetic crosstalk | Mitochondrial health influences ART success [66,67] |
| DNA methylation drift and epimutation propagation | Aberrant de-/re-methylation; DNMT3A/3L; aging; environmental stress | Transposon activation, double-strand breaks, meiotic errors, aneuploidy | Global hypomethylation; imprinting instability; heritable methylation errors | Aging and oxidative stress worsen drift, affecting embryos [68] |
| Noncoding RNA dysregulation | piRNAs (PIWIL1, TDRD9, MOV10L1); tRNA fragments; ncRNAs | Transposon de-repression, spermatogenic failure | Altered sperm RNA cargo; disrupted early embryonic transcriptomes | Environmental/ART effects alter sperm RNA profiles [69] |
| Oxidative-epigenetic feedback in ART | TDRD9, Centrifugation, incubation, cryo → ROS; SOD2; GPX4 promoter methylation | Local oxidative mutations; persistent DNA lesions | Epimutations from faulty methylation; reduced antioxidant gene expression | High SDF ↔ ↓ blastocysts, ↑ miscarriage; antioxidants and 5% O2 help [70] |
| Multi-omics and systems insights | Integration of methylome, transcriptome, proteome, metabolome; CHD5, BRDT | Genome maintenance failure across multiple layers | Epigenetic derangement in multiple omes | Omics-guided precision medicine for ART [71,72] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zikopoulos, A.; Katopodis, P.; Filiponi, M.; Zachariou, A.; Sesse, A.; Bouba, I.; Kostoulas, C.; Markoula, S.; Georgiou, I. Genetic and Epigenetic Risks of Male Infertility in ART. Int. J. Mol. Sci. 2025, 26, 11812. https://doi.org/10.3390/ijms262411812
Zikopoulos A, Katopodis P, Filiponi M, Zachariou A, Sesse A, Bouba I, Kostoulas C, Markoula S, Georgiou I. Genetic and Epigenetic Risks of Male Infertility in ART. International Journal of Molecular Sciences. 2025; 26(24):11812. https://doi.org/10.3390/ijms262411812
Chicago/Turabian StyleZikopoulos, Athanasios, Periklis Katopodis, Maria Filiponi, Athanasios Zachariou, Athanasia Sesse, Ioanna Bouba, Charilaos Kostoulas, Sofia Markoula, and Ioannis Georgiou. 2025. "Genetic and Epigenetic Risks of Male Infertility in ART" International Journal of Molecular Sciences 26, no. 24: 11812. https://doi.org/10.3390/ijms262411812
APA StyleZikopoulos, A., Katopodis, P., Filiponi, M., Zachariou, A., Sesse, A., Bouba, I., Kostoulas, C., Markoula, S., & Georgiou, I. (2025). Genetic and Epigenetic Risks of Male Infertility in ART. International Journal of Molecular Sciences, 26(24), 11812. https://doi.org/10.3390/ijms262411812

