Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (873)

Search Parameters:
Keywords = impacts of closures

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1027 KiB  
Article
Persistent Pharmaceuticals in a South African Urban Estuary and Bioaccumulation in Endobenthic Sandprawns (Kraussillichirus kraussi)
by Olivia Murgatroyd, Leslie Petrik, Cecilia Y. Ojemaye and Deena Pillay
Water 2025, 17(15), 2289; https://doi.org/10.3390/w17152289 (registering DOI) - 1 Aug 2025
Abstract
Pharmaceuticals are increasingly being detected in coastal ecosystems globally, but contamination and bioaccumulation levels are understudied in temporarily closed estuaries. In these systems, limited freshwater inputs and periodic closure may predispose them to pharmaceutical accumulation. We quantified in situ water column pharmaceutical levels [...] Read more.
Pharmaceuticals are increasingly being detected in coastal ecosystems globally, but contamination and bioaccumulation levels are understudied in temporarily closed estuaries. In these systems, limited freshwater inputs and periodic closure may predispose them to pharmaceutical accumulation. We quantified in situ water column pharmaceutical levels at five sites in a temporarily closed model urban estuary (Zandvlei Estuary) in Cape Town, South Africa, that has been heavily anthropogenically modified. The results indicate an almost 100-fold greater concentration of pharmaceuticals in the estuary relative to False Bay, into which the estuary discharges, with acetaminophen (max: 2.531 µg/L) and sulfamethoxazole (max: 0.138 µg/L) being the primary pollutants. Acetaminophen was potentially bioaccumulative, while nevirapine, carbamazepine and sulfamethoxazole were bioaccumulated (BAF > 5000 L/kg) by sandprawns (Kraussillichirus kraussi), which are key coastal endobenthic ecosystem engineers in southern Africa. The assimilative capacity of temporarily closed estuarine environments may be adversely impacted by wastewater discharges that contain diverse pharmaceuticals, based upon the high bioaccumulation detected in key benthic engineers. Full article
Show Figures

Figure 1

18 pages, 3315 KiB  
Article
Real-Time Geo-Localization for Land Vehicles Using LIV-SLAM and Referenced Satellite Imagery
by Yating Yao, Jing Dong, Songlai Han, Haiqiao Liu, Quanfu Hu and Zhikang Chen
Appl. Sci. 2025, 15(15), 8257; https://doi.org/10.3390/app15158257 - 24 Jul 2025
Viewed by 187
Abstract
Existing Simultaneous Localization and Mapping (SLAM) algorithms provide precise local pose estimation and real-time scene reconstruction, widely applied in autonomous navigation for land vehicles. However, the odometry of SLAM algorithms exhibits localization drift and error divergence over long-distance operations due to the lack [...] Read more.
Existing Simultaneous Localization and Mapping (SLAM) algorithms provide precise local pose estimation and real-time scene reconstruction, widely applied in autonomous navigation for land vehicles. However, the odometry of SLAM algorithms exhibits localization drift and error divergence over long-distance operations due to the lack of inherent global constraints. In this paper, we propose a real-time geo-localization method for land vehicles, which only relies on a LiDAR-inertial-visual SLAM (LIV-SLAM) and a referenced image. The proposed method enables long-distance navigation without requiring GPS or loop closure, while eliminating accumulated localization errors. To achieve this, the local map constructed by SLAM is real-timely projected onto a downward-view image, and a highly efficient cross modal matching algorithm is proposed to estimate the global position by aligning the projected local image to a geo-referenced satellite image. The cross-modal algorithm leverages dense texture orientation features, ensuring robustness against cross-modal distortion and local scene changes, and supports efficient correlation in the frequency domain for real-time performance. We also propose a novel adaptive Kalman filter (AKF) to integrate the global position provided by the cross-modal matching and the pose estimated by LIV-SLAM. The proposed AKF is designed to effectively handle observation delays and asynchronous updates while simultaneously rejecting the impact of erroneous matches through an Observation-Aware Gain Scaling (OAGS) mechanism. We verify the proposed algorithm through R3LIVE and NCLT datasets, demonstrating superior computational efficiency, reliability, and accuracy compared to existing methods. Full article
(This article belongs to the Special Issue Navigation and Positioning Based on Multi-Sensor Fusion Technology)
Show Figures

Figure 1

14 pages, 728 KiB  
Article
Groundwater Quality Analysis: Assessing the Impact of a Closed Landfill—A Case Study on Physico-Chemical and Microplastic Contaminants
by Grzegorz Przydatek, Józef Ciuła, Narcis Barsan, Diana Mirila and Emilian Mosnegutu
Appl. Sci. 2025, 15(15), 8223; https://doi.org/10.3390/app15158223 - 24 Jul 2025
Viewed by 293
Abstract
In the context of increasing concern over long-term environmental impacts of closed landfill sites, this study investigates the composition of groundwater and leachate at a municipal waste landfill in southwestern Poland, two decades after its closure. The research, conducted in 2023, aimed to [...] Read more.
In the context of increasing concern over long-term environmental impacts of closed landfill sites, this study investigates the composition of groundwater and leachate at a municipal waste landfill in southwestern Poland, two decades after its closure. The research, conducted in 2023, aimed to assess groundwater quality using 11 physico-chemical and 13 microplastic indicators. Groundwater and leachate samples were collected seasonally to assess of groundwater quality around landfill, including presence of heavy metals (Cd, Cr6+, Cu, Pb), PAHs and TOC, and microplastics. The results revealed persistent environmental degradation, with elevated concentrations of total organic carbon (24.8 mg/L) and cadmium (0.0211 mg/L), particularly in the second half of the year. Additionally, PET microplastics were detected in correlation with increased precipitation and leachate generation. These findings indicate that pollutants continue to migrate from the waste deposit into the surrounding groundwater, with seasonal patterns amplifying their presence. The study confirms that even decades after closure, municipal landfills can remain significant sources of both chemical and microplastic contamination, underlining the need for long-term monitoring and remediation strategies to protect groundwater resources. Full article
Show Figures

Figure 1

10 pages, 528 KiB  
Article
The Impact of Down Syndrome on Perioperative Anesthetic Management and Outcomes in Infants Undergoing Isolated Ventricular Septal Defect Closure
by Serife Ozalp and Funda Gumus Ozcan
Diagnostics 2025, 15(15), 1839; https://doi.org/10.3390/diagnostics15151839 - 22 Jul 2025
Viewed by 228
Abstract
Background: Down syndrome (DS) is associated with unique anatomical and physiological characteristics that complicate the perioperative management of infants undergoing cardiac surgery. While ventricular septal defect (VSD) repair is commonly performed in this population, detailed data comparing perioperative outcomes in DS versus non-syndromic [...] Read more.
Background: Down syndrome (DS) is associated with unique anatomical and physiological characteristics that complicate the perioperative management of infants undergoing cardiac surgery. While ventricular septal defect (VSD) repair is commonly performed in this population, detailed data comparing perioperative outcomes in DS versus non-syndromic infants remain limited. Methods: This retrospective matched study analysed 100 infants (50 with DS and 50 without DS) who underwent isolated VSD closure between January 2021 and January 2025. Patients were matched by age and surgical date. Intraoperative anesthetic management, complications, postoperative outcomes, and mortality were compared between groups. Results: DS patients had lower age, weight, and height at surgery. They required significantly smaller endotracheal tube sizes, more intubation and vascular access attempts. The DS group had significantly lower rates of extubation in the operating room and experienced longer durations of mechanical ventilation and ICU stay. However, no significant differences were observed in total hospital stay or mortality between groups. Conclusions: Although DS infants present with increased anesthetic complexity and respiratory challenges, they do not exhibit higher surgical mortality following isolated VSD closure. Tailored perioperative strategies may improve respiratory outcomes in this high-risk group. Full article
(This article belongs to the Section Clinical Diagnosis and Prognosis)
Show Figures

Figure 1

16 pages, 4683 KiB  
Article
Abscisic Acid Enhances Ex Vitro Acclimatization Performance in Hop (Humulus lupulus L.)
by Luciana Di Sario, David Navarro-Payá, María F. Zubillaga, José Tomás Matus, Patricia A. Boeri and Gastón A. Pizzio
Int. J. Mol. Sci. 2025, 26(14), 6923; https://doi.org/10.3390/ijms26146923 - 18 Jul 2025
Viewed by 184
Abstract
Humulus lupulus L. (hop) is a multipurpose crop valued for its essential role in beer production and for its bioactive compounds with recognized medicinal properties. Otherwise, climate change represents a major challenge to agriculture, particularly impacting the cultivation of crops with stenoecious characteristics, [...] Read more.
Humulus lupulus L. (hop) is a multipurpose crop valued for its essential role in beer production and for its bioactive compounds with recognized medicinal properties. Otherwise, climate change represents a major challenge to agriculture, particularly impacting the cultivation of crops with stenoecious characteristics, such as hop. This highlights the urgent need to enhance crop resilience to adverse environmental conditions. The phytohormone abscisic acid (ABA) is a key regulator of plant responses to abiotic stress, yet the ABA signaling pathway remains poorly characterized in hop. Harnessing the publicly available hop genomics resources, we identified eight members of the PYRABACTIN RESISTANCE 1 LIKE ABA receptor family (HlPYLs). Phylogenetic and gene structure analyses classified these HlPYLs into the three canonical ABA receptor subfamilies. Furthermore, all eight HlPYLs are likely functional, as suggested by the protein sequence visual analysis. Expression profiling indicates that ABA perception in hop is primarily mediated by the HlPYL1-like and HlPYL8-like subfamilies, while the HlPYL4-like group appears to play a more limited role. Structure modeling and topology predictions of HlPYL1b and HlPYL2 provided insights into their potential functional mechanisms. To assess the physiological relevance of ABA signaling in hop, we evaluated the impact of exogenous ABA application during the ex vitro acclimatization phase. ABA-treated plants exhibited more robust growth, reduced stress symptoms, and improved acclimatization success. These effects were associated with reduced leaf transpiration and enhanced stomatal closure, consistent with ABA-mediated drought tolerance mechanisms. Altogether, this study provides the first comprehensive characterization of ABA receptor components in hop and demonstrates the practical utility of ABA in improving plant performance under ex vitro conditions. These findings lay the groundwork for further functional studies and highlight ABA signaling as a promising target for enhancing stress resilience in hop, with broader implications for sustainable agriculture in the face of climate change. Full article
(This article belongs to the Special Issue The Role of Phytohormones in Plant Biotic/Abiotic Stress Tolerance)
Show Figures

Figure 1

23 pages, 9204 KiB  
Article
Hydrochemical Characteristics and Genesis Analysis of Closed Coal Mining Areas in Southwestern Shandong Province, China
by Xiaoqing Wang, Jinxian He, Guchun Zhang, Jianguo He, Heng Zhao, Meng Wu, Xuejuan Song and Dongfang Liu
Eng 2025, 6(7), 164; https://doi.org/10.3390/eng6070164 - 18 Jul 2025
Viewed by 251
Abstract
With the large-scale closure of coal mines leading to groundwater pollution, in order to systematically identify the sources of major chemical ions in surface water and groundwater. This study comprehensively applied methods such as Piper’s trilinear diagram, linear fitting, and correlation analysis to [...] Read more.
With the large-scale closure of coal mines leading to groundwater pollution, in order to systematically identify the sources of major chemical ions in surface water and groundwater. This study comprehensively applied methods such as Piper’s trilinear diagram, linear fitting, and correlation analysis to quantitatively analyze the hydrochemical characteristics of closed coal mining areas in southwest Shandong and to clarify the sources of geochemical components in surface water and groundwater, and the PMF model was used to analyze the sources of chemical components in mine water and karst water. The results show that the concentrations of TDS ( Total Dissolved Solids), SO42−, Fe, and Mn in the mine water of the closed coal mine area are higher than in the karst water. Both water bodies are above groundwater quality standards. Ca2+, SO42−, and HCO3 dominate the ionic components in surface water and different types of groundwater. The hydrochemical types of surface, pore, and mine waters are mainly SO4-HCO3-Ca, whereas SO4-HCO3-Ca and HCO3-SO4-Ca dominate karst waters. SO42− is the leading ion in the TDS of water bodies. The mineralization process of surface water is mainly controlled by the weathering of silicate minerals, while that of the groundwater is mainly controlled by the dissolution of carbonate minerals. The impact of mining activities on surface water and groundwater is significant, while the impact of agricultural activities on surface water and groundwater is relatively small. The degree of impact of coal mining activities on SO42− concentrations in surface water, pore water, and karst water, in descending order, is karst water, surface water, and pore water. The PMF (Positive Matrix Factorization) model analysis results indicate that dissolution of carbonate minerals with sulphate and oxidation dissolution of sulfide minerals are the main sources of chemical constituents in mine waters. Carbonate dissolution, oxidation dissolution of sulfide minerals, domestic sewage, and dissolution of carbonate minerals with sulphate are ranked as the main sources of chemical constituents in karst water from highest to lowest. These findings provide a scientific basis for the assessment and control of groundwater pollution in the areas of closed coal mines. Full article
Show Figures

Figure 1

24 pages, 11312 KiB  
Article
Effect of Thermomechanical Processing on Porosity Evolution and Mechanical Properties of L-PBF AISI 316L Stainless Steel
by Patrik Petroušek, Róbert Kočiško, Andrea Kasperkevičová, Dávid Csík and Róbert Džunda
Metals 2025, 15(7), 789; https://doi.org/10.3390/met15070789 - 12 Jul 2025
Viewed by 307
Abstract
Thermomechanical processing has a significant impact on the porosity and mechanical properties of AISI 316L stainless steel produced by laser powder bed fusion (L-PBF). This work evaluated the effect of three heat treatment conditions: as-built (HT0), annealed at 650 °C for 3 h [...] Read more.
Thermomechanical processing has a significant impact on the porosity and mechanical properties of AISI 316L stainless steel produced by laser powder bed fusion (L-PBF). This work evaluated the effect of three heat treatment conditions: as-built (HT0), annealed at 650 °C for 3 h with air cooling (HT1), and annealed at 1050 °C for 1 h followed by water quenching (HT2), combined with cold and hot rolling at different strain levels. The most pronounced improvement was observed after 20% hot rolling followed by water quenching (HR + WQ), which reduced porosity to 0.05% and yielded the most spherical pores, with a circularity factor (fcircle) of 0.90 and an aspect ratio (AsR) of 1.57. At elevated temperatures, the matrix becomes more pliable, which promotes pore closure and helps reduce stress concentrations. On the other hand, applying heat treatment without causing deformation resulted in the pores growing and increasing porosity in the build direction. The fractography supported these findings, showing a transition from brittle to more ductile fracture surfaces. Heat treatment combined with plastic deformation effectively reduced internal defects and improved both structural integrity and strength. Full article
(This article belongs to the Special Issue Metal Forming and Additive Manufacturing)
Show Figures

Figure 1

26 pages, 633 KiB  
Systematic Review
Quality of Life in Rectal Cancer Treatments: An Updated Systematic Review of Randomized Controlled Trials (2013–2023)
by Silvia Negro, Francesca Bergamo, Lorenzo Dell’Atti, Alessandra Anna Prete, Sara Galuppo, Marco Scarpa, Quoc Riccardo Bao, Stefania Ferrari, Sara Lonardi, Gaya Spolverato and Emanuele Damiano Luca Urso
Cancers 2025, 17(14), 2310; https://doi.org/10.3390/cancers17142310 - 11 Jul 2025
Viewed by 319
Abstract
Background: Rectal cancer management involves surgery, chemotherapy (CT), radiotherapy (RT), and patient care strategies, all of which significantly affect health-related quality of life (HRQoL). Understanding these effects is critical for optimizing treatment protocols. This review aimed to systematically analyze the impact of rectal [...] Read more.
Background: Rectal cancer management involves surgery, chemotherapy (CT), radiotherapy (RT), and patient care strategies, all of which significantly affect health-related quality of life (HRQoL). Understanding these effects is critical for optimizing treatment protocols. This review aimed to systematically analyze the impact of rectal cancer treatment on HRQoL. Methods: Four databases, Scopus, EMBASE, MEDLINE, and the Cochrane Central Register of Controlled Trials, were searched for randomized controlled trials (RCTs) published between January 2013 and December 2023. RCTs specifically focusing on rectal cancer treatments (surgical interventions, pre- and/or post-CT and/or RT, and patient care strategies) were included. An abstract review, data extraction, and a risk-of-bias assessment were independently conducted by two reviewers. Results: The 41 included studies comprised 9240 patients: 16 evaluated surgical interventions (3507 patients), 15 evaluated pre- and/or post-CT and/or RT protocols (5114 patients), and 10 focused on patient-care strategies (619 patients). Sphincter-sparing procedures were associated with better HRQoL than abdominoperineal resection, and rectal-sparing techniques were associated with better overall HRQoL than rectal resection. RT was associated with a poorer HRQoL. Continuity-of-care interventions improved HRQoL in ostomy patients, whereas transanal irrigation improved HRQoL after ostomy closure. Conclusions: This systematic review of RCTs underscores the importance of organ-sparing strategies, such as rectum-sparing approaches and continuity-of-care packages, in improving HRQoL in patients with rectal cancer. Although RT negatively affects HRQoL, treatment regimens should be individualized. Tailored organ-preservation approaches and structured follow-up care are essential for optimizing HRQoL in patients with rectal cancer. Full article
(This article belongs to the Section Systematic Review or Meta-Analysis in Cancer Research)
Show Figures

Figure 1

30 pages, 1496 KiB  
Article
Effect of Deficit Irrigation on Agronomic and Physiological Performance of Young Persimmon (Diospyros kaki Thunb.) Trees
by Rossana Porras-Jorge, José Mariano Aguilar, Carlos Baixauli, Bernardo Pascual and Nuria Pascual-Seva
Agronomy 2025, 15(7), 1671; https://doi.org/10.3390/agronomy15071671 - 10 Jul 2025
Viewed by 600
Abstract
This article addresses the impact of deficit irrigation on the agronomic and physiological performance of “Rojo Brillante” persimmon trees in a Mediterranean climate. It compares the effect of a sustained deficit irrigation (SDI; imposing water deficit uniformly throughout the entire crop cycle) strategy [...] Read more.
This article addresses the impact of deficit irrigation on the agronomic and physiological performance of “Rojo Brillante” persimmon trees in a Mediterranean climate. It compares the effect of a sustained deficit irrigation (SDI; imposing water deficit uniformly throughout the entire crop cycle) strategy and two regulated deficit irrigation (RDI; enforcing a water deficit during the phenological phases that are less sensitive to water stress) strategies. Field trials were conducted from 2022 to 2024 at the Cajamar Experimental Center in Paiporta, Valencia, Spain. The trees respond to mild water stress reducing transpiration through stomatal closure. RDI resulted in modest irrigation water savings (11–16%), minimizing fruit drop, leading to an increased number of fruits per tree and a higher marketable yield, although this came at the cost of a reduced unit fruit weight. SDI achieved a 30% reduction in irrigation water usage without impacting on the marketable yield, but it also caused a decrease in unit fruit weight. RDI increased water productivity (yield obtained per amount of water applied) primarily through higher yields, while SDI improved productivity mainly by lowering the amount of irrigation water applied. Both irrigation strategies are recommended for cultivating “Rojo Brillante” persimmons. RDI is especially advisable in years with lower fruit loads as more intensive thinning may be necessary in years with higher fruit loads. Conversely, SDI is recommended in situations where water availability is limited. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

23 pages, 1259 KiB  
Review
Integrative Review of Molecular, Metabolic, and Environmental Factors in Spina Bifida and Congenital Diaphragmatic Hernia: Insights into Mechanisms and Emerging Therapeutics
by Angelika Buczyńska, Iwona Sidorkiewicz, Przemysław Kosiński, Adam Jacek Krętowski and Monika Zbucka-Krętowska
Cells 2025, 14(14), 1059; https://doi.org/10.3390/cells14141059 - 10 Jul 2025
Viewed by 510
Abstract
Spina Bifida (SB) and Congenital Diaphragmatic Hernia (CDH) are complex congenital anomalies that pose significant challenges in pediatric healthcare. This review synthesizes recent advancements in understanding the genetic, metabolic, and environmental factors contributing to these conditions, with the aim of integrating mechanistic insights [...] Read more.
Spina Bifida (SB) and Congenital Diaphragmatic Hernia (CDH) are complex congenital anomalies that pose significant challenges in pediatric healthcare. This review synthesizes recent advancements in understanding the genetic, metabolic, and environmental factors contributing to these conditions, with the aim of integrating mechanistic insights into therapeutic innovations. In SB, key findings highlight the roles of KCND3, a critical regulator of spinal cord development, and VANGL2, essential for planar cell polarity and neural tube closure. MicroRNAs such as miR-765 and miR-142-3p are identified as key regulators of these genes, influencing neural development. Additionally, telomere shortening—a marker of cellular senescence—alongside disruptions in folate metabolism and maternal nutritional deficiencies, significantly increases the risk of SB. These findings underscore the crucial role of telomere integrity in maintaining neural tissue homeostasis during embryonic development. For CDH, genetic deletions, including those on chromosome 15q26, and chromosomal abnormalities have been shown to disrupt lung and vascular development, profoundly impacting neonatal outcomes. MicroRNAs miR-379-5p and miR-889-3p are implicated in targeting essential genes such as IGF1 and FGFR2, which play pivotal roles in pulmonary function. Promising emerging therapies, including degradable tracheal plugs and fibroblast growth factor-based treatments, offer potential strategies for mitigating pulmonary hypoplasia and improving clinical outcomes. This review underscores the intricate interplay of genetic, metabolic, and environmental pathways in SB and CDH, identifying critical molecular targets for diagnostics and therapeutic intervention. By integrating findings from genetic profiling, in vitro models, and clinical studies, it aims to inform future research directions and optimize patient outcomes through collaborative, multidisciplinary approaches. Full article
Show Figures

Figure 1

26 pages, 18598 KiB  
Article
Fractal Feature of Manufactured Sand Ultra-High-Performance Concrete (UHPC) Based on MIP
by Xinlin Wang, Tinghong Pan, Yang Yang, Rongqing Qi, Dian Guan, Kaihe Dong, Run-Sheng Lin and Rongxin Guo
Fractal Fract. 2025, 9(7), 448; https://doi.org/10.3390/fractalfract9070448 - 5 Jul 2025
Viewed by 464
Abstract
To alleviate environmental pressures, manufactured sand (MS) are increasingly being used in the production of ultra-high-performance concrete (UHPC) due to their consistent supply and environmental benefits. However, manufactured sand properties are critically influenced by processing and production techniques, resulting in substantial variations in [...] Read more.
To alleviate environmental pressures, manufactured sand (MS) are increasingly being used in the production of ultra-high-performance concrete (UHPC) due to their consistent supply and environmental benefits. However, manufactured sand properties are critically influenced by processing and production techniques, resulting in substantial variations in fundamental characteristics that directly impact UHPC matrix pore structure and ultimately compromise performance. Traditional testing methods inadequately characterize UHPC’s pore structure, necessitating multifractal theory implementation to enhance pore structural interpretation capabilities. In this study, UHPC specimens were fabricated with five types of MS exhibiting distinct properties and at varying water to binder (w/b) ratios. The flowability, mechanical strength, and pore structure of the specimens were systematically evaluated. Additionally, multifractal analysis was conducted on each specimen group using mercury intrusion porosimetry (MIP) data to characterize pore complexity. SM-type sands have a more uniform distribution of pores of different scales, better pore structure and matrix homogeneity due to their finer particles, moderate stone powder content, and better cleanliness. Both excessively high and low stone powder content, as well as low cleanliness, will lead to pore aggregation and poor closure, degrading the pore structure. Full article
(This article belongs to the Special Issue Fractal and Fractional in Construction Materials)
Show Figures

Figure 1

16 pages, 1038 KiB  
Article
Impact of COVID-19 School Closures on German High-School Graduates’ Perceived Stress: A Structural Equation Modeling Study of Personal and Contextual Resources
by Tim Rogge and Andreas Seifert
Educ. Sci. 2025, 15(7), 844; https://doi.org/10.3390/educsci15070844 - 2 Jul 2025
Viewed by 263
Abstract
COVID-19 school closures forced German high-school graduates (Abitur 2022 cohort) to prepare for their final examinations with lengthy learning times at home. Guided by transactional stress theory, we tested how personal resources—self-regulated learning (SRL) skills and academic self-efficacy—and contextual resources—perceived teacher support and [...] Read more.
COVID-19 school closures forced German high-school graduates (Abitur 2022 cohort) to prepare for their final examinations with lengthy learning times at home. Guided by transactional stress theory, we tested how personal resources—self-regulated learning (SRL) skills and academic self-efficacy—and contextual resources—perceived teacher support and teacher digital competence—jointly predicted perceived stress during exam preparation. A cross-sectional online survey (June–July 2022) yielded complete data from N = 2379 students (68% female; Mage = 18.3). Six latent constructs were measured with 23 items and showed adequate reliability (0.71 ≤ α/ω ≤ 0.89). A six-factor CFA fit the data acceptably (CFI = 0.909, RMSEA = 0.064). The structural equation model (CFI = 0.935, RMSEA = 0.064) explained 35% of the variance in stress and 23% of the variance in SRL—action. Academic self-efficacy (β = −0.31, p < 0.001), perceived support (β = −0.28, p < 0.001), teacher digital competence (β = −0.08, p < 0.001), COVID-19 learning disruptions (β = +0.13, p < 0.001), and gender (male = 0.32 SD lower stress, p < 0.001) had direct effects on stress. SRL—action’s direct path was small and non-significant (β = −0.02). Teacher digital competence also reduced stress indirectly through greater perceived support (standardized indirect β = −0.11, p < 0.001). The results highlight self-efficacy and perceived instructional support as the most potent buffers of pandemic-related stress, whereas cancelled lessons added strain. Boosting teachers’ digital pedagogical skills has a dual payoff—raising students’ sense of support and lowering their stress. Full article
Show Figures

Figure 1

23 pages, 1137 KiB  
Review
Exploring the Aroma Profile of Traditional Sparkling Wines: A Review on Yeast Selection in Second Fermentation, Aging, Closures, and Analytical Strategies
by Sara Sofia Pinheiro, Francisco Campos, Maria João Cabrita and Marco Gomes da Silva
Molecules 2025, 30(13), 2825; https://doi.org/10.3390/molecules30132825 - 30 Jun 2025
Viewed by 406
Abstract
Sparkling wine is a complex alcoholic beverage with high economic value, produced through a secondary fermentation of a still wine, followed by a prolonged aging period that may last from nine months to several years. With the growing global demand for high-quality sparkling [...] Read more.
Sparkling wine is a complex alcoholic beverage with high economic value, produced through a secondary fermentation of a still wine, followed by a prolonged aging period that may last from nine months to several years. With the growing global demand for high-quality sparkling wines, understanding the biochemical mechanisms related to aroma development has become increasingly relevant. This review provides a comprehensive overview of the secondary fermentation process, with particular emphasis on yeast selection, types of closure, and the impact of aging on the volatile composition. Special attention is also given to the analytical strategies employed for the identification and quantification of target compounds in sparkling wine matrices. Due to the presence of volatile compounds at trace levels, effective extraction and pre-concentration techniques are essential. Extraction methods such as solid-phase microextraction (SPME), stir-bar sorptive extraction (SBSE), and thin-film SPME (TF-SPME) are discussed, as well as chromatographic techniques, such as gas chromatography (GC) and liquid chromatography (LC). Full article
(This article belongs to the Topic Advances in Analysis of Food and Beverages, 2nd Edition)
Show Figures

Figure 1

8 pages, 399 KiB  
Article
Bovine Pericardium Graft as a Salvage Option in Septoplasties at Risk of Septal Perforation
by Alvaro Sánchez Barrueco, Pilar Benavent Marín, Gonzalo Díaz Tapia, Ignacio Alcalá Rueda, William Aragonés Sanzen-Baker, Luz López Flórez, Jessica Mireya Santillán Coello and José Miguel Villacampa Aubá
J. Clin. Med. 2025, 14(13), 4592; https://doi.org/10.3390/jcm14134592 - 28 Jun 2025
Viewed by 361
Abstract
Background: Septoplasty is a widely performed surgical procedure to correct nasal septal deviations and improve respiratory function. One of its most significant complications is septal perforation, which can severely impact the patient’s quality of life. This study evaluates the use of bovine pericardium [...] Read more.
Background: Septoplasty is a widely performed surgical procedure to correct nasal septal deviations and improve respiratory function. One of its most significant complications is septal perforation, which can severely impact the patient’s quality of life. This study evaluates the use of bovine pericardium grafts to enhance mucosal healing, thereby reducing the risk of postoperative septal perforation in cases with intraoperative bilateral mucosal defects. Methods: A retrospective study was conducted on patients who underwent septoplasty between January 2018 and January 2025 in whom bovine pericardium grafts were interposed due to the presence of bilateral opposing mucosal defects. Epidemiological and surgical variables were recorded, and outcomes and complications were analyzed. Results: Out of the 4151 septoplasties performed, 30 cases (0.72%) required bovine pericardium interposition. The mean patient age was 42.87 years. Postoperative absence of septal perforation was confirmed in 90% of cases, with only three postoperative perforations, all asymptomatic and approximately 2 mm in size. Complications were recorded in three patients (10%), all of which were resolved with conservative treatment and without sequelae. Conclusions: For the first time in routine surgical practice, bovine pericardium emerges as a viable option for preventing postoperative septal perforation in cases with bilateral opposing mucosal defects. With a high closure rate and a low incidence of adverse events, this material represents a promising tool in septal surgery. Full article
(This article belongs to the Special Issue Otolaryngology—Head and Neck Surgery: Current Trends and Challenges)
Show Figures

Figure 1

31 pages, 3056 KiB  
Review
A Review of Key Challenges and Evaluation of Well Integrity in CO2 Storage: Insights from Texas Potential CCS Fields
by Bassel Eissa, Marshall Watson, Nachiket Arbad, Hossein Emadi, Sugan Thiyagarajan, Abdel Rehman Baig, Abdulrahman Shahin and Mahmoud Abdellatif
Sustainability 2025, 17(13), 5911; https://doi.org/10.3390/su17135911 - 26 Jun 2025
Viewed by 751
Abstract
Increasing concern over climate change has made Carbon Capture and Storage (CCS) an important tool. Operators use deep geologic reservoirs as a form of favorable geological storage for long-term CO2 sequestration. However, the success of CCS hinges on the integrity of wells [...] Read more.
Increasing concern over climate change has made Carbon Capture and Storage (CCS) an important tool. Operators use deep geologic reservoirs as a form of favorable geological storage for long-term CO2 sequestration. However, the success of CCS hinges on the integrity of wells penetrating these formations, particularly legacy wells, which often exhibit significant uncertainties regarding cement tops in the annular space between the casing and formation, especially around or below the primary seal. Misalignment of cement plugs with the primary seal increases the risk of CO2 migrating beyond the seal, potentially creating pathways for fluid flow into upper formations, including underground sources of drinking water (USDW). These wells may not be leaking but might fail to meet the legal requirements of some federal and state agencies such as the Environmental Protection Agency (EPA), Railroad Commission of Texas (RRC), California CalGEM, and Pennsylvania DEP. This review evaluates the impact of CO2 exposure on cement and casing integrity including the fluid transport mechanisms, fracture behaviors, and operational stresses such as cyclic loading. Findings revealed that slow fluid circulation and confining pressure, primarily from overburden stress, promote self-sealing through mineral precipitation and elastic crack closure, enhancing well integrity. Sustained casing pressure can be a good indicator of well integrity status. While full-physics models provide accurate leakage prediction, surrogate models offer faster results as risk assessment tools. Comprehensive data collection on wellbore conditions, cement and casing properties, and environmental factors is essential to enhance predictive models, refine risk assessments, and develop effective remediation strategies for the long-term success of CCS projects. Full article
Show Figures

Figure 1

Back to TopTop