Exploring the Aroma Profile of Traditional Sparkling Wines: A Review on Yeast Selection in Second Fermentation, Aging, Closures, and Analytical Strategies
Abstract
1. Introduction
2. Secondary Fermentation of Sparkling Wines
2.1. Yeast Strain Selection
2.2. Influence of Bottle Closure During Tirage
2.3. Autolysis and Aging on Lees
2.4. Riddling, Disgorgement, and Commercialization
3. Identification and Quantification of Volatile and Semi-Volatile Compounds in Sparkling Wines
3.1. Sample Preparation
3.1.1. Liquid-Liquid Extraction (LLE)
3.1.2. Solid-Phase Extraction (SPE)
3.1.3. Solid-Phase Microextraction (SPME)
3.1.4. Stir Bar Sorptive Extraction (SBSE)
3.1.5. Thin-Film Solid-Phase Microextraction (TF-SPME)
3.1.6. QuEChERS
3.2. Analytical Techniques
Alternative Analytical Techniques for the Identification of Target Compounds in Sparkling Wines
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Organisation of Vine and Wine Sparkling Wines|OIV. Available online: https://www.oiv.int/standards/international-code-of-oenological-practices/part-i-definitions/special-wines/sparkling-wines (accessed on 14 April 2025).
- Amaro, F.; Almeida, J.; Oliveira, A.S.; Furtado, I.; de Lourdes Bastos, M.; de Pinho, P.G.; Pinto, J. Impact of Cork Closures on the Volatile Profile of Sparkling Wines during Bottle Aging. Foods 2022, 11, 293. [Google Scholar] [CrossRef] [PubMed]
- Pozo-Bayón, M.Á.; Martínez-Rodríguez, A.; Pueyo, E.; Moreno-Arribas, M.V. Chemical and Biochemical Features Involved in Sparkling Wine Production: From a Traditional to an Improved Winemaking Technology. Trends Food Sci. Technol. 2009, 20, 289–299. [Google Scholar] [CrossRef]
- International Organisation of Vine and Wine The Global Sparkling Wine Market. Available online: https://www.oiv.int/public/medias/7291/oiv-sparkling-focus-2020.pdf (accessed on 14 April 2025).
- International Organisation of Vine and Wine State of the World Vine and Wine Sector in 2024. Available online: https://www.oiv.int/sites/default/files/2025-04/OIV-State_of_the_World_Vine-and-Wine-Sector-in-2024.pdf (accessed on 14 April 2025).
- Di Gianvito, P.; Arfelli, G.; Suzzi, G.; Tofalo, R. New Trends in Sparkling Wine Production: Yeast Rational Selection. In Alcoholic Beverages; Elsevier: Amsterdam, The Netherlands, 2019; pp. 347–386. [Google Scholar]
- Cravero, M.C. Innovations in Sparkling Wine Production: A Review on the Sensory Aspects and the Consumer’s Point of View. Beverages 2023, 9, 80. [Google Scholar] [CrossRef]
- Kemp, B.; Alexandre, H.; Robillard, B.; Marchal, R. Effect of Production Phase on Bottle-Fermented Sparkling Wine Quality. J. Agric. Food Chem. 2015, 63, 19–38. [Google Scholar] [CrossRef]
- Torresi, S.; Frangipane, M.T.; Anelli, G. Biotechnologies in Sparkling Wine Production. Interesting Approaches for Quality Improvement: A Review. Food Chem. 2011, 129, 1232–1241. [Google Scholar] [CrossRef]
- Luchian, C.E.; Grosaru, D.; Scutarașu, E.C.; Colibaba, L.C.; Scutarașu, A.; Cotea, V.V. Advancing Sparkling Wine in the 21st Century: From Traditional Methods to Modern Innovations and Market Trends. Fermentation 2025, 11, 174. [Google Scholar] [CrossRef]
- Torrens, J.; Urpí, P.; Riu-Aumatell, M.; Vichi, S.; López-Tamames, E.; Buxaderas, S. Different Commercial Yeast Strains Affecting the Volatile and Sensory Profile of Cava Base Wine. Int. J. Food Microbiol. 2008, 124, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Ivit, N.N.; Kemp, B. The Impact of Non-Saccharomyces Yeast on Traditional Method Sparkling Wine. Fermentation 2018, 4, 73. [Google Scholar] [CrossRef]
- Gallardo-Chacón, J.J.; Vichi, S.; Urpí, P.; López-Tamames, E.; Buxaderas, S. Antioxidant Activity of Lees Cell Surface during Sparkling Wine Sur Lie Aging. Int. J. Food Microbiol. 2010, 143, 48–53. [Google Scholar] [CrossRef]
- Raymond Eder, M.L.; Rosa, A.L. Non-Conventional Grape Varieties and Yeast Starters for First and Second Fermentation in Sparkling Wine Production Using the Traditional Method. Fermentation 2021, 7, 321. [Google Scholar] [CrossRef]
- Di Gianvito, P.; Perpetuini, G.; Tittarelli, F.; Schirone, M.; Arfelli, G.; Piva, A.; Patrignani, F.; Lanciotti, R.; Olivastri, L.; Suzzi, G.; et al. Impact of Saccharomyces Cerevisiae Strains on Traditional Sparkling Wines Production. Food Res. Int. 2018, 109, 552–560. [Google Scholar] [CrossRef]
- Benucci, I.; Liburdi, K.; Cerreti, M.; Esti, M. Characterization of Active Dry Wine Yeast During Starter Culture (Pied de Cuve) Preparation for Sparkling Wine Production. J. Food Sci. 2016, 81, M2015–M2020. [Google Scholar] [CrossRef]
- Berbegal, C.; Polo, L.; García-Esparza, M.J.; Álvarez, I.; Zamora, F.; Ferrer, S.; Pardo, I. Influence of the Dry Yeast Preparation Method on Final Sparkling Wine Characteristics. Fermentation 2022, 8, 313. [Google Scholar] [CrossRef]
- López de Lerma, N.; Peinado, R.A.; Puig-Pujol, A.; Mauricio, J.C.; Moreno, J.; García-Martínez, T. Influence of Two Yeast Strains in Free, Bioimmobilized or Immobilized with Alginate Forms on the Aromatic Profile of Long Aged Sparkling Wines. Food Chem. 2018, 250, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Fernández, E.; Rodríguez-Nogales, J.M.; Vila-Crespo, J.; Falqué-López, E. Application of Immobilized Yeasts for Improved Production of Sparkling Wines. Fermentation 2022, 8, 559. [Google Scholar] [CrossRef]
- Garofalo, C.; Arena, M.P.; Laddomada, B.; Cappello, M.S.; Bleve, G.; Grieco, F.; Beneduce, L.; Berbegal, C.; Spano, G.; Capozzi, V. Starter Cultures for Sparkling Wine. Fermentation 2016, 2, 21. [Google Scholar] [CrossRef]
- Tofalo, R.; Perpetuini, G.; Di Gianvito, P.; Arfelli, G.; Schirone, M.; Corsetti, A.; Suzzi, G. Characterization of Specialized Flocculent Yeasts to Improve Sparkling Wine Fermentation. J. Appl. Microbiol. 2016, 120, 1574–1584. [Google Scholar] [CrossRef]
- Martínez-Rodríguez, A.; Carrascosa, A.V.; Barcenilla, J.M.; Angeles Pozo-Bayón, M.; Carmen Polo, M. Autolytic Capacity and Foam Analysis as Additional Criteria for the Selection of Yeast Strains for Sparkling Wine Production. Food Microbiol. 2001, 18, 183–191. [Google Scholar] [CrossRef]
- Vigentini, I.; Cardenas, S.B.; Valdetara, F.; Faccincani, M.; Panont, C.A.; Picozzi, C.; Foschino, R. Use of Native Yeast Strains for In-Bottle Fermentation to Face the Uniformity in Sparkling Wine Production. Front. Microbiol. 2017, 8, 1225. [Google Scholar] [CrossRef]
- Garofalo, C.; Berbegal, C.; Grieco, F.; Tufariello, M.; Spano, G.; Capozzi, V. Selection of Indigenous Yeast Strains for the Production of Sparkling Wines from Native Apulian Grape Varieties. Int. J. Food Microbiol. 2018, 285, 7–17. [Google Scholar] [CrossRef]
- Tufariello, M.; Palombi, L.; Rizzuti, A.; Musio, B.; Capozzi, V.; Gallo, V.; Mastrorilli, P.; Grieco, F. Volatile and Chemical Profiles of Bombino Sparkling Wines Produced with Autochthonous Yeast Strains. Food Control 2023, 145, 109462. [Google Scholar] [CrossRef]
- Petruzzi, L.; Capozzi, V.; Berbegal, C.; Corbo, M.R.; Bevilacqua, A.; Spano, G.; Sinigaglia, M. Microbial Resources and Enological Significance: Opportunities and Benefits. Front. Microbiol. 2017, 8, 995. [Google Scholar] [CrossRef]
- Ivit, N.N.; Loira, I.; Morata, A.; Benito, S.; Palomero, F.; Suárez-Lepe, J.A. Making Natural Sparkling Wines with Non-Saccharomyces Yeasts. Eur. Food Res. Technol. 2018, 244, 925–935. [Google Scholar] [CrossRef]
- Jane Lombardi, S.; De Leonardis, A.; Lustrato, G.; Testa, B.; Iorizzo, M. Yeast Autolysis in Sparkling Wine Aging: Use of Killer and Sensitive Saccharomyces Cerevisiae Strains in Co-Culture. Recent. Pat. Biotechnol. 2016, 9, 223–230. [Google Scholar] [CrossRef]
- la Gatta, B.; Picariello, G.; Rutigliano, M.; Lopriore, G.; Petrella, G.; Rusco, G.; Tremonte, P.; Di Luccia, A. Addition of Lees from Base Wine in the Production of Bombino Sparkling Wine. Eur. Food Res. Technol. 2016, 242, 1307–1317. [Google Scholar] [CrossRef]
- Velázquez, R.; Zamora, E.; Álvarez, M.L.; Ramírez, M. Using Torulaspora delbrueckii Killer Yeasts in the Elaboration of Base Wine and Traditional Sparkling Wine. Int. J. Food Microbiol. 2019, 289, 134–144. [Google Scholar] [CrossRef]
- Basile, T.; Debiase, G.; Mazzone, F.; Scarano, L.; Marsico, A.D.; Cardone, M.F. New Sparkling Wines from Traditional Grape Varieties and Native Yeasts: Focusing on Wine Identity to Address the Industry’s Crisis. Beverages 2025, 11, 25. [Google Scholar] [CrossRef]
- Minnaar, P.P.; Gerber, P.; Booyse, M.; Jolly, N. Phenolic Compounds in Cork-Closed Bottle-Fermented Sparkling Wines. S. Afr. J. Enol. Vitic. 2021, 42, 19–24. [Google Scholar] [CrossRef]
- Jolly, N.; Minnaar, P.; Booyse, M.; Gerber, P. Bottle Fermented Sparkling Wine: Cork or Crown Closures During the Second Fermentation? S. Afr. J. Enol. Vitic. 2021, 42, 136–153. [Google Scholar] [CrossRef]
- Silva, M.A.; Julien, M.; Jourdes, M.; Teissedre, P.L. Impact of Closures on Wine Post-Bottling Development: A Review. Eur. Food Res. Technol. 2011, 233, 905–914. [Google Scholar] [CrossRef]
- Jové, P.; Mateu-Figueras, G.; Bustillos, J.; Martín-Fernández, J.A. Analysis of Aromatic Fraction of Sparkling Wine Manufactured by Second Fermentation and Aging in Bottles Using Different Types of Closures. Processes 2024, 12, 2165. [Google Scholar] [CrossRef]
- Debastiani, R.; Iochims dos Santos, C.E.; Ferraz Dias, J. Elemental Characterization of Sparkling Wine and Cork Stoppers. Curr. Res. Food Sci. 2021, 4, 670–678. [Google Scholar] [CrossRef] [PubMed]
- Jordão, A.M.; Gonçalves, F.J.; Correia, A.C.; Cantão, J.; Rivero-Pérez, M.D.; SanJosé, M.L.G. Proanthocyanidin Content, Antioxidant Capacity and Scavenger Activity of Portuguese Sparkling Wines (Bairrada Appellation of Origin). J. Sci. Food Agric. 2010, 90, 2144–2152. [Google Scholar] [CrossRef] [PubMed]
- Buxaderas, S.; López-Tamames, E. Sparkling Wines: Features and Trends from Tradition. Adv. Food Nutr. Res. 2012, 66, 1–45. [Google Scholar] [CrossRef]
- Alexandre, H.; Guilloux-Benatier, M. Yeast Autolysis in Sparkling Wine—A Review. Aust. J. Grape Wine Res. 2006, 12, 119–127. [Google Scholar] [CrossRef]
- Alexandre, H. Autolysis of Yeasts. In Comprehensive Biotechnology, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2011; Volume 2, pp. 641–649. ISBN 9780080885049. [Google Scholar]
- Ubeda, C.; Kania-Zelada, I.; del Barrio-Galán, R.; Medel-Marabolí, M.; Gil, M.; Peña-Neira, Á. Study of the Changes in Volatile Compounds, Aroma and Sensory Attributes during the Production Process of Sparkling Wine by Traditional Method. Food Res. Int. 2019, 119, 554–563. [Google Scholar] [CrossRef]
- Torrens, J.; Rlu-Aumatell, M.; Vichi, S.; López-Tamames, E.; Buxaderas, S. Assessment of Volatile and Sensory Profiles between Base and Sparkling Wines. J. Agric. Food Chem. 2010, 58, 2455–2461. [Google Scholar] [CrossRef] [PubMed]
- Sommer, S.; Sommer, S.J.; Liu, C.; Burken, O.; Anderson, A.F. The Impact of Microbial Activity on the Chemical Composition and Aroma Profile of Traditional Sparkling Wines. Fermentation 2024, 10, 212. [Google Scholar] [CrossRef]
- Martín-Garcia, A.; Abarca-Rivas, C.; Riu-Aumatell, M.; López-Tamames, E. Comparison of Volatile Compounds during Biological Ageing and Commercial Storage of Cava (Spanish Sparkling Wine): The Role of Lees. Heliyon 2023, 9, e19306. [Google Scholar] [CrossRef]
- Escudero, A.; Charpentier, M.; Etievant, P. Characterization of Aged Champagne Wine Aroma by GC-O and Descriptive Profile Analyses. Sci. Aliment. 2000, 20, 331–346. [Google Scholar] [CrossRef]
- Sartor, S.; Burin, V.M.; Caliari, V.; Bordignon-Luiz, M.T. Profiling of Free Amino Acids in Sparkling Wines during Over-Lees Aging and Evaluation of Sensory Properties. LWT 2021, 140, 110847. [Google Scholar] [CrossRef]
- Sawyer, S.; Longo, R.; Solomon, M.; Nicolotti, L.; Westmore, H.; Merry, A.; Gnoinski, G.; Ylia, A.; Dambergs, R.; Kerslake, F. Autolysis and the Duration of Ageing on Lees Independently Influence the Aroma Composition of Traditional Method Sparkling Wine. Aust. J. Grape Wine Res. 2022, 28, 146–159. [Google Scholar] [CrossRef]
- Ruipérez, V.; Rodríguez-Nogales, J.M.; Fernández-Fernández, E.; Vila-Crespo, J. Impact of β-Glucanases and Yeast Derivatives on Chemical and Sensory Composition of Long-Aged Sparkling Wines. J. Food Compos. Anal. 2022, 107, 104385. [Google Scholar] [CrossRef]
- Blanco-Huerta, C.; Fernández-Fernández, E.; Vila-Crespo, J.; Ruipérez, V.; Moyano, R.; Rodríguez-Nogales, J.M. Impact of Ageing on Ultrasound-Treated Lees on Volatile Composition and Sensory Properties of Red Sparkling Base Wine. Beverages 2023, 9, 23. [Google Scholar] [CrossRef]
- Torresi, S.; Frangipane, M.T.; Garzillo, A.M.V.; Massantini, R.; Contini, M. Effects of a β-Glucanase Enzymatic Preparation on Yeast Lysis during Aging of Traditional Sparkling Wines. Food Res. Int. 2014, 55, 83–92. [Google Scholar] [CrossRef]
- Rodriguez-Nogales, J.M.; Fernández-Fernández, E.; Gómez, M.; Vila-Crespo, J. Antioxidant Properties of Sparkling Wines Produced with β-Glucanases and Commercial Yeast Preparations. J. Food Sci. 2012, 77, C1005–C1010. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Nogales, J.M.; Fernández-Fernández, E.; Vila-Crespo, J. Effect of the Addition of β-Glucanases and Commercial Yeast Preparations on the Chemical and Sensorial Characteristics of Traditional Sparkling Wine. Eur. Food Res. Technol. 2012, 235, 729–744. [Google Scholar] [CrossRef]
- Sartor, S.; Toaldo, I.M.; Panceri, C.P.; Caliari, V.; Luna, A.S.; de Gois, J.S.; Bordignon-Luiz, M.T. Changes in Organic Acids, Polyphenolic and Elemental Composition of Rosé Sparkling Wines Treated with Mannoproteins during over-Lees Aging. Food Res. Int. 2019, 124, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Moyano-Gracia, R.; Vila-Crespo, J.; Ruipérez, V.; Rodríguez-Nogales, J.M.; Fernández-Fernández, E. Effect of Yeast Derivatives and β-Glucanases on Ageing over Lees Process of Tempranillo Red Sparkling Wine. Fermentation 2023, 9, 1012. [Google Scholar] [CrossRef]
- Nunez, Y.P.; Carrascosa, A.V.; González, R.; Polo, M.C.; Martínez-Rodríguez, A.J. Effect of Accelerated Autolysis of Yeast on the Composition and Foaming Properties of Sparkling Wines Elaborated by a Champenoise Method. J. Agric. Food Chem. 2005, 53, 7232–7237. [Google Scholar] [CrossRef]
- Silva Ferreira, A.C.; Guedes de Pinho, P. Nor-Isoprenoids Profile during Port Wine Ageing—Influence of Some Technological Parameters. Anal. Chim. Acta 2004, 513, 169–176. [Google Scholar] [CrossRef]
- Silva Ferreira, A.C.; Guedes de Pinho, P.; Rodrigues, P.; Hogg, T. Kinetics of Oxidative Degradation of White Wines and How They Are Affected by Selected Technological Parameters. J. Agric. Food Chem. 2002, 50, 5919–5924. [Google Scholar] [CrossRef] [PubMed]
- Herbst-Johnstone, M.; Nicolau, L.; Kilmartin, P.A. Stability of Varietal Thiols in Commercial Sauvignon Blanc Wines. Am. J. Enol. Vitic. 2011, 62, 495–502. [Google Scholar] [CrossRef]
- Cejudo-Bastante, M.J.; Hermosín-Gutiérrez, I.; Pérez-Coello, M.S. Accelerated Aging against Conventional Storage: Effects on the Volatile Composition of Chardonnay White Wines. J. Food Sci. 2013, 78, C507–C513. [Google Scholar] [CrossRef]
- Serra-Cayuela, A.; Jourdes, M.; Riu-Aumatell, M.; Buxaderas, S.; Teissedre, P.L.; López-Tamames, E. Kinetics of Browning, Phenolics, and 5-Hydroxymethylfurfural in Commercial Sparkling Wines. J. Agric. Food Chem. 2014, 62, 1159–1166. [Google Scholar] [CrossRef]
- Riu-Aumatell, M.; Bosch-Fusté, J.; López-Tamames, E.; Buxaderas, S. Development of Volatile Compounds of Cava (Spanish Sparkling Wine) during Long Ageing Time in Contact with Lees. Food Chem. 2006, 95, 237–242. [Google Scholar] [CrossRef]
- Moreno-Arribas, V.; Pueyo, E.; Polo, M.C. Peptides in Musts and Wines. Changes during the Manufacture of Cavas (Sparkling Wines). J. Agric. Food Chem. 1996, 44, 3783–3788. [Google Scholar] [CrossRef]
- Komes, D.; Ulrich, D.; Lovric, T.; Schippel, K. Isolation of White Wine Volatiles Using Different Sample Preparation Methods. Vitis 2005, 44, 187–193. [Google Scholar]
- Krug, F.; Lovine, B.; Mullin, S. Liquid-Liquid Extraction and AnaLysis of the Antioxidant Resveratrol from Wine Varietals of Different Geographic Vineyards. J. Undergrad. Chem. Res. 2020, 19, 1. [Google Scholar]
- Voce, S.; Škrab, D.; Vrhovsek, U.; Battistutta, F.; Comuzzo, P.; Sivilotti, P. Compositional Characterization of Commercial Sparkling Wines from Cv. Ribolla Gialla Produced in Friuli Venezia Giulia. Eur. Food Res. Technol. 2019, 245, 2279–2292. [Google Scholar] [CrossRef]
- Pérez-Magariño, S.; Ortega-Heras, M.; Martínez-Lapuente, L.; Guadalupe, Z.; Ayestarán, B. Multivariate Analysis for the Differentiation of Sparkling Wines Elaborated from Autochthonous Spanish Grape Varieties: Volatile Compounds, Amino Acids and Biogenic Amines. Eur. Food Res. Technol. 2013, 236, 827–841. [Google Scholar] [CrossRef]
- Costa Freitas, A.M.; Gomes da Silva, M.D.R.; Cabrita, M.J. Sampling Techniques for the Determination of Volatile Components in Grape Juice, Wine and Alcoholic Beverages. In Comprehensive Sampling and Sample Preparation; Elsevier: Amsterdam, The Netherlands, 2012; pp. 27–41. [Google Scholar]
- Ferreira, V.; Rapp, A.; Cacho, J.F.; Hastrich, H.; Yavas, I. Fast and Quantitative Determination of Wine Flavor Compounds Using Microextraction with Freon 113. J. Agric. Food Chem. 1993, 41, 1413–1420. [Google Scholar] [CrossRef]
- Katugampala Appuhamilage, D.; Jelley, R.E.; Sherman, E.; Pilkington, L.I.; Pinu, F.R.; Fedrizzi, B. Development of a Dispersive Liquid–Liquid Microextraction Method for Quantification of Volatile Compounds in Wines Using Gas Chromatography—Mass Spectrometry. Metabolites 2025, 15, 129. [Google Scholar] [CrossRef] [PubMed]
- Badawy, M.E.I.; El-Nouby, M.A.M.; Kimani, P.K.; Lim, L.W.; Rabea, E.I. A Review of the Modern Principles and Applications of Solid-Phase Extraction Techniques in Chromatographic Analysis. Anal. Sci. 2022, 38, 1457–1487. [Google Scholar] [CrossRef]
- Slaghenaufi, D.; Luzzini, G.; Borgato, M.; Boscaini, A.; Dal Cin, A.; Zandonà, V.; Ugliano, M. Characterization of the Aroma Profile of Commercial Prosecco Sparkling Wines. Appl. Sci. 2023, 13, 3609. [Google Scholar] [CrossRef]
- Binati, R.L.; Lemos Junior, W.J.F.; Luzzini, G.; Slaghenaufi, D.; Ugliano, M.; Torriani, S. Contribution of Non-Saccharomyces Yeasts to Wine Volatile and Sensory Diversity: A Study on Lachancea thermotolerans, Metschnikowia Spp. and Starmerella bacillaris Strains Isolated in Italy. Int. J. Food Microbiol. 2020, 318, 108470. [Google Scholar] [CrossRef] [PubMed]
- Herrero, P.; Sáenz-Navajas, P.; Culleré, L.; Ferreira, V.; Chatin, A.; Chaperon, V.; Litoux-Desrues, F.; Escudero, A. Chemosensory Characterization of Chardonnay and Pinot Noir Base Wines of Champagne. Two Very Different Varieties for a Common Product. Food Chem. 2016, 207, 239–250. [Google Scholar] [CrossRef]
- Lukić, I.; Horvat, I.; Radeka, S.; Vrhovsek, U. Solid-Phase Extraction Followed by Gas Chromatography–Mass Spectrometry for Revealing the Effects of the Application of Bentonite, Tannins, and Their Combination during Fermentation in the Production of White Wine. Chemosensors 2023, 11, 545. [Google Scholar] [CrossRef]
- Vrhovsek, U.; Lotti, C.; Masuero, D.; Carlin, S.; Weingart, G.; Mattivi, F. Quantitative Metabolic Profiling of Grape, Apple and Raspberry Volatile Compounds (VOCs) Using a GC/MS/MS Method. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2014, 966, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Wieczorek, M.N. Comparison of Different Solid-Phase Microextraction Formats Dedicated to the Analysis of Volatile Compounds—A Comprehensive Study. Molecules 2024, 29, 5137. [Google Scholar] [CrossRef]
- Jalili, V.; Barkhordari, A.; Ghiasvand, A. A Comprehensive Look at Solid-Phase Microextraction Technique: A Review of Reviews. Microchem. J. 2020, 152, 104319. [Google Scholar] [CrossRef]
- Welke, J.E.; Zanus, M.; Lazarotto, M.; Schmitt, K.G.; Zini, C.A. Volatile Characterization by Multivariate Optimization of Headspace-Solid Phase Microextraction and Sensorial Evaluation of Chardonnay Base Wines. J. Braz. Chem. Soc. 2012, 23, 678–687. [Google Scholar] [CrossRef]
- Marín-San Román, S.; Rubio-Bretón, P.; Pérez-Álvarez, E.P.; Garde-Cerdán, T. Advancement in Analytical Techniques for the Extraction of Grape and Wine Volatile Compounds. Food Res. Int. 2020, 137, 109712. [Google Scholar] [CrossRef]
- Gallardo-Chacón, J.; Vichi, S.; López-Tamames, E.; Buxaderas, S. Analysis of Sparkling Wine Lees Surface Volatiles by Optimized Headspace Solid-Phase Microextraction. J. Agric. Food Chem. 2009, 57, 3279–3285. [Google Scholar] [CrossRef]
- Hickert, L.R.; Cattani, A.; Manfroi, L.; Wagner, R.; Furlan, J.M.; Sant’Anna, V. Strategies on Aroma Formation in Chardonnay Sparkling Base Wine: Different Saccharomyces Cerevisiae Strains, Co-Inoculation with Torulaspora delbrueckii and Utilization of Bentonite. Biotechnol. Appl. Biochem. 2024, 71, 96–109. [Google Scholar] [CrossRef] [PubMed]
- Carlin, S.; Vrhovsek, U.; Franceschi, P.; Lotti, C.; Bontempo, L.; Camin, F.; Toubiana, D.; Zottele, F.; Toller, G.; Fait, A.; et al. Regional Features of Northern Italian Sparkling Wines, Identified Using Solid-Phase Micro Extraction and Comprehensive Two-Dimensional Gas Chromatography Coupled with Time-of-Flight Mass Spectrometry. Food Chem. 2016, 208, 68–80. [Google Scholar] [CrossRef]
- Welke, J.E.; Zanus, M.; Lazzarotto, M.; Pulgati, F.H.; Zini, C.A. Main Differences between Volatiles of Sparkling and Base Wines Accessed through Comprehensive Two Dimensional Gas Chromatography with Time-of-Flight Mass Spectrometric Detection and Chemometric Tools. Food Chem. 2014, 164, 427–437. [Google Scholar] [CrossRef]
- Ganss, S.; Kirsch, F.; Winterhalter, P.; Fischer, U.; Schmarr, H.G. Aroma Changes Due to Second Fermentation and Glycosylated Precursors in Chardonnay and Riesling Sparkling Wines. J. Agric. Food Chem. 2011, 59, 2524–2533. [Google Scholar] [CrossRef]
- Muñoz-Redondo, J.M.; Ruiz-Moreno, M.J.; Puertas, B.; Cantos-Villar, E.; Moreno-Rojas, J.M. Multivariate Optimization of Headspace Solid-Phase Microextraction Coupled to Gas Chromatography-Mass Spectrometry for the Analysis of Terpenoids in Sparkling Wines. Talanta 2020, 208, 120483. [Google Scholar] [CrossRef]
- Fedrizzi, B.; Magno, F.; Finato, F.; Versini, G. Variation of Some Fermentative Sulfur Compounds in Italian “Millesimè” Classic Sparkling Wines during Aging and Storage on Lees. J. Agric. Food Chem. 2010, 58, 9716–9722. [Google Scholar] [CrossRef]
- Fonseca, D.; Martins, N.; Garcia, R.; Cabrita, M.J. Comprehensive Two-Dimensional Gas Chromatography with a TOF MS Detector—An Effective Tool to Trace the Signature of Grape Varieties. Molecules 2024, 29, 1989. [Google Scholar] [CrossRef] [PubMed]
- Tufariello, M.; Pati, S.; D’Amico, L.; Bleve, G.; Losito, I.; Grieco, F. Quantitative Issues Related to the Headspace-SPME-GC/MS Analysis of Volatile Compounds in Wines: The Case of Maresco Sparkling Wine. LWT 2019, 108, 268–276. [Google Scholar] [CrossRef]
- Davis, P.M.; Qian, M.C. Effect of Wine Matrix Composition on the Quantification of Volatile Sulfur Compounds by Headspace Solid-Phase Microextraction-Gas Chromatography-Pulsed Flame Photometric Detection. Molecules 2019, 24, 3320. [Google Scholar] [CrossRef] [PubMed]
- Bosch-Fusté, J.; Riu-Aumatell, M.; Guadayol, J.M.; Caixach, J.; López-Tamames, E.; Buxaderas, S. Volatile Profiles of Sparkling Wines Obtained by Three Extraction Methods and Gas Chromatography-Mass Spectrometry (GC-MS) Analysis. Food Chem. 2007, 105, 428–435. [Google Scholar] [CrossRef]
- Nogueira, J.M.F. Novel Sorption-Based Methodologies for Static Microextraction Analysis: A Review on SBSE and Related Techniques. Anal. Chim. Acta 2012, 757, 1–10. [Google Scholar] [CrossRef]
- Hjelmeland, A.K.; Wylie, P.L.; Ebeler, S.E. A Comparison of Sorptive Extraction Techniques Coupled to a New Quantitative, Sensitive, High Throughput GC–MS/MS Method for Methoxypyrazine Analysis in Wine. Talanta 2016, 148, 336–345. [Google Scholar] [CrossRef]
- Castro, R.; Natera, R.; Durán, E.; García-Barroso, C. Application of Solid Phase Extraction Techniques to Analyse Volatile Compounds in Wines and Other Enological Products. Eur. Food Res. Technol. 2008, 228, 1–18. [Google Scholar] [CrossRef]
- Coelho, E.; Coimbra, M.A.; Nogueira, J.M.F.; Rocha, S.M. Quantification Approach for Assessment of Sparkling Wine Volatiles from Different Soils, Ripening Stages, and Varieties by Stir Bar Sorptive Extraction with Liquid Desorption. Anal. Chim. Acta 2009, 635, 214–221. [Google Scholar] [CrossRef]
- Vararu, F.; Moreno-García, J.; Cotea, V.V.; Moreno, J. Grape Musts Differentiation Based on Selected Aroma Compounds Using SBSE-GC-MS and Statistical Analysis. Vitis 2015, 54, 97–105. [Google Scholar] [CrossRef]
- Martínez-García, R.; García-Martínez, T.; Puig-Pujol, A.; Mauricio, J.C.; Moreno, J. Changes in Sparkling Wine Aroma during the Second Fermentation under CO2 Pressure in Sealed Bottle. Food Chem. 2017, 237, 1030–1040. [Google Scholar] [CrossRef]
- Prieto, A.; Basauri, O.; Rodil, R.; Usobiaga, A.; Fernández, L.A.; Etxebarria, N.; Zuloaga, O. Stir-Bar Sorptive Extraction: A View on Method Optimisation, Novel Applications, Limitations and Potential Solutions. J. Chromatogr. A 2010, 1217, 2642–2666. [Google Scholar] [CrossRef] [PubMed]
- Grazioso, T.; Javanmardi, H.; Pawliszyn, J. Sequential Thin Film Microextraction and Overcoated Thin Film Microextraction Devices for Characterization of Sparkling Wine Aroma Profiles and Partitioning Equilibria. Food Chem. 2024, 458, 140225. [Google Scholar] [CrossRef]
- Marín-San Román, S.; Carot, J.M.; Sáenz de Urturi, I.; Rubio-Bretón, P.; Pérez-Álvarez, E.P.; Garde-Cerdán, T. Optimization of Thin Film-Microextraction (TF-SPME) Method in Order to Determine Musts Volatile Compounds. Anal. Chim. Acta 2022, 1226, 340254. [Google Scholar] [CrossRef] [PubMed]
- Sykalia, D.L.; Trantopoulos, E.P.; Tsoutsi, C.S.; Albanis, T.A. Optimization and Validation of Analytical Methodology for Determination of Pesticides in Grape, Must and Wine Samples with QuEChERS Extraction and Gas Chromatography—Mass Spectrometry. Beverages 2024, 10, 53. [Google Scholar] [CrossRef]
- International Organisation of Vine and Wine Assay of Pesticide Residues in Wine Following Extraction Using the Quechers Method (Type-II). Available online: https://www.oiv.int/standards/annex-a-methods-of-analysis-of-wines-and-musts/section-3-chemical-analysis/section-3-2-non-organic-compounds/section-3-2-3-other-non-organic-compounds/assay-of-pesticide-residues-in-wine-following-extraction-using-the-quechers-method-%28typ (accessed on 14 April 2025).
- Korenika, A.M.J.; Preiner, D.; Tomaz, I.; Jeromel, A. Volatile Profile Characterization of Croatian Commercial Sparkling Wines. Molecules 2020, 25, 4349. [Google Scholar] [CrossRef] [PubMed]
- Le Menn, N.; Marchand, S.; De Revel, G.; Demarville, D.; Laborde, D.; Marchal, R. N,S,O-Heterocycles in Aged Champagne Reserve Wines and Correlation with Free Amino Acid Concentrations. J. Agric. Food Chem. 2017, 65, 2345–2356. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Moreno, M.J.; Muñoz-Redondo, J.M.; Cuevas, F.J.; Marrufo-Curtido, A.; León, J.M.; Ramírez, P.; Moreno-Rojas, J.M. The Influence of Pre-Fermentative Maceration and Ageing Factors on Ester Profile and Marker Determination of Pedro Ximenez Sparkling Wines. Food Chem. 2017, 230, 697–704. [Google Scholar] [CrossRef]
- Ruiz-Delgado, A.; Arrebola-Liébanas, F.J.; Romero-González, R.; López-Ruiz, R.; Garrido Frenich, A. Headspace Solid-Phase Microextraction Coupled to Gas Chromatography-Tandem Mass Spectrometry for the Determination of Haloanisoles in Sparkling (Cava and Cider) and Non-Sparkling (Wine) Alcoholic Beverages. Food Addit. Contam. Part. A Chem. Anal. Control Expo. Risk Assess. 2016, 33, 1535–1544. [Google Scholar] [CrossRef]
- Priser, C.; Etiévant, P.X.; Nicklaus, S.; Brun, O. Representative Champagne Wine Extracts for Gas Chromatography Olfactometry Analysis. J. Agric. Food Chem. 1997, 45, 3511–3514. [Google Scholar] [CrossRef]
- Escudero, A.; Etiévant, P. Effect of Antioxidants on the Flavor Characteristics and the Gas Chromatography/Olfactometry Profiles of Champagne Extracts. J. Agric. Food Chem. 1999, 47, 3303–3308. [Google Scholar] [CrossRef]
- Zhang, M.; Pan, Q.; Yan, G.; Duan, C. Using Headspace Solid Phase Micro-Extraction for Analysis of Aromatic Compounds during Alcoholic Fermentation of Red Wine. Food Chem. 2011, 125, 743–749. [Google Scholar] [CrossRef]
- Zhang, P.; Carlin, S.; Lotti, C.; Mattivi, F.; Vrhovsek, U. On Sample Preparation Methods for Fermented Beverage VOCs Profiling by GCxGC-TOFMS. Metabolomics 2020, 16, 102. [Google Scholar] [CrossRef] [PubMed]
- Soares, R.D.; Welke, J.E.; Nicolli, K.P.; Zanus, M.; Caramão, E.B.; Manfroi, V.; Zini, C.A. Monitoring the Evolution of Volatile Compounds Using Gas Chromatography during the Stages of Production of Moscatel Sparkling Wine. Food Chem. 2015, 183, 291–304. [Google Scholar] [CrossRef] [PubMed]
- Stefenon, C.A.; Colombo, M.; Bonesi, C.d.M.; Marzarotto, V.; Vanderlinde, R.; Salvador, M.; Henriques, J.A.P. Antioxidant Activity of Sparkling Wines Produced by Champenoise and Charmat Methods. Food Chem. 2010, 119, 12–18. [Google Scholar] [CrossRef]
- Marín, A.C.; Riponi, C.; Chinnici, F. Chitosan in Sparkling Wines Produced by the Traditional Method: Influence of Its Presence during the Secondary Fermentation. Foods 2020, 9, 1174. [Google Scholar] [CrossRef]
- Mir-cerdà, A.; Granell, B.; Izquierdo-llopart, A.; Sahuquillo, À.; López-sánchez, J.F.; Saurina, J.; Sentellas, S. Data Fusion Approaches for the Characterization of Musts and Wines Based on Biogenic Amine and Elemental Composition. Sensors 2022, 22, 2132. [Google Scholar] [CrossRef]
- Dekker, S.; Nardin, T.; Roman, T.; Larcher, R. Analysis of Polysulfides in Aged Sparkling Wines From Different Vintages. J. Food Biochem. 2024, 2024, 3795283. [Google Scholar] [CrossRef]
- Tudela, R.; Ribas-Agustí, A.; Buxaderas, S.; Riu-Aumatell, M.; Castellari, M.; López-Tamames, E. Ultrahigh-Performance Liquid Chromatography (UHPLC)-Tandem Mass Spectrometry (MS/MS) Quantification of Nine Target Indoles in Sparkling Wines. J. Agric. Food Chem. 2016, 64, 4772–4776. [Google Scholar] [CrossRef]
- Abarca-Rivas, C.; Martín-García, A.; Riu-Aumatell, M.; López-Tamames, E. Indole Content Profiling During Biological Ageing of Cava Sparkling Wine. Foods 2025, 14, 722. [Google Scholar] [CrossRef] [PubMed]
- Pinto, J.; Oliveira, A.S.; Lopes, P.; Roseira, I.; Cabral, M.; Bastos, M.d.L.; Guedes de Pinho, P. Characterization of Chemical Compounds Susceptible to Be Extracted from Cork by the Wine Using GC-MS and 1 H NMR Metabolomic Approaches. Food Chem. 2019, 271, 639–649. [Google Scholar] [CrossRef]
- Charnock, H.M.; Pickering, G.J.; Kemp, B.S. Application of 1H NMR Metabolomics Analysis to Sparkling Wines Aged with Different Types of Sugar Added to the Liqueur de Dosage. J. Food Compos. Anal. 2024, 125, 105834. [Google Scholar] [CrossRef]
- Aleixandre-Tudo, J.L.; Nieuwoudt, H.; Aleixandre, J.L.; du Toit, W. Chemometric Compositional Analysis of Phenolic Compounds in Fermenting Samples and Wines Using Different Infrared Spectroscopy Techniques. Talanta 2018, 176, 526–536. [Google Scholar] [CrossRef]
- Cellier, R.; Berail, S.; Barre, J.; Epova, E.; Claverie, F.; Ronzani, A.L.; Milcent, S.; Ors, P.; Donard, O.F.X. Analytical Strategies for Sr and Pb Isotopic Signatures by MC-ICP-MS Applied to the Authentication of Champagne and Other Sparkling Wines. Talanta 2021, 234, 122433. [Google Scholar] [CrossRef] [PubMed]
- Vigentini, I.; Fabrizio, V.; Faccincani, M.; Picozzi, C.; Comasio, A.; Foschino, R. Dynamics of Saccharomyces Cerevisiae Populations in Controlled and Spontaneous Fermentations for Franciacorta D.O.C.G. Base Wine Production. Ann. Microbiol. 2014, 64, 639–651. [Google Scholar] [CrossRef]
- Martínez-Rodríguez, A.J.; Carrascosa, A.V.; Martín-Álvarez, P.J.; Moreno-Arribas, V.; Polo, M.C. Influence of the Yeast Strain on the Changes of the Amino Acids, Peptides and Proteins during Sparkling Wine Production by the Traditional Method. J. Ind. Microbiol. Biotechnol. 2002, 29, 314–322. [Google Scholar] [CrossRef] [PubMed]
- González-Jiménez, M.D.C.; García-Martínez, T.; Puig-Pujol, A.; Capdevila, F.; Moreno-García, J.; Moreno, J.; Mauricio, J.C. Biological Processes Highlighted in Saccharomyces Cerevisiae during the Sparkling Wines Elaboration. Microorganisms 2020, 8, 1216. [Google Scholar] [CrossRef]
- Cisilotto, B.; Scariot, F.J.; Schwarz, L.V.; Mattos Rocha, R.K.; Longaray Delamare, A.P.; Echeverrigaray, S. Differences in Yeast Behaviour during Ageing of Sparkling Wines Made with Charmat and Traditional Methods. Food Microbiol. 2023, 110, 104171. [Google Scholar] [CrossRef]
- Marangon, M.; Seeley, P.; Barocci, E.; Milanowski, T.; Mayr Marangon, C.; Ricci, A.; Bellon, J.; Parpinello, G.P. Effect of Interspecific Yeast Hybrids for Secondary In-Bottle Alcoholic Fermentation of English Sparkling Wines. Foods 2023, 12, 1995. [Google Scholar] [CrossRef]
- Ignacia Lambert-Royo, M.; Ubeda, C.; Del Barrio-Galán, R.; Sieczkowski, N.; Miquel Canals, J.; Peña-Neira, Á.; Gil i Cortiella, M. The Diversity of Effects of Yeast Derivatives during Sparkling Wine Aging. Food Chem. 2022, 390, 133174. [Google Scholar] [CrossRef]
- Martínez-Lapuente, L.; Guadalupe, Z.; Ayestarán, B.; Pérez-Magariño, S. Role of Major Wine Constituents in the Foam Properties of White and Rosé Sparkling Wines. Food Chem. 2015, 174, 330–338. [Google Scholar] [CrossRef]
- González-Royo, E.; Pascual, O.; Kontoudakis, N.; Esteruelas, M.; Esteve-Zarzoso, B.; Mas, A.; Canals, J.M.; Zamora, F. Oenological Consequences of Sequential Inoculation with Non-Saccharomyces Yeasts (Torulaspora delbrueckii or Metschnikowia pulcherrima) and Saccharomyces Cerevisiae in Base Wine for Sparkling Wine Production. Eur. Food Res. Technol. 2015, 240, 999–1012. [Google Scholar] [CrossRef]
- Medina-Trujillo, L.; González-Royo, E.; Sieczkowski, N.; Heras, J.; Canals, J.M.; Zamora, F. Effect of Sequential Inoculation (Torulaspora delbrueckii/Saccharomyces cerevisiae) in the First Fermentation on the Foaming Properties of Sparkling Wine. Eur. Food Res. Technol. 2017, 243, 681–688. [Google Scholar] [CrossRef]
- Le Menn, N.; Marchal, R.; Demarville, D.; Casenave, P.; Tempere, S.; Campbell-Sills, H.; de Revel, G.; Marchand, S. Development of a New Sensory Analysis Methodology for Predicting Wine Aging Potential. Application to Champagne Reserve Wines. Food Qual. Prefer. 2021, 94, 104316. [Google Scholar] [CrossRef]
- Welke, J.E.; Hernandes, K.C.; Nicolli, K.P.; Barbará, J.A.; Biasoto, A.C.T.; Zini, C.A. Role of Gas Chromatography and Olfactometry to Understand the Wine Aroma: Achievements Denoted by Multidimensional Analysis. J. Sep. Sci. 2021, 44, 135–168. [Google Scholar] [CrossRef]
- Ma, Y.; Xu, Y.; Tang, K. Olfactory Perception Complexity Induced by Key Odorants Perceptual Interactions of Alcoholic Beverages: Wine as a Focus Case Example. Food Chem. 2025, 463, 141433. [Google Scholar] [CrossRef]
Technique | Detector Type | Analytical Purpose | Reference |
---|---|---|---|
Chromatographic Methods | |||
Gas Chromatography (GC) | Flame Ionization Detector (FID) | Identification of volatile compounds through retention times and quantification using external calibration standards | [11,19,27,78] |
Mass Spectrometry (MS) | Volatile profile of sparkling wines in different research areas: aroma characterization, varietal differences (Cava, Champagne, Italian SW), aging on lees, sulfur compounds, influence of yeast strains and vinification practices. | [2,11,18,19,29,41,42,44,47,49,61,65,66,71,73,78,80,81,84,85,86,88,90,96,98,102,103,104] | |
Mass Spectrometry tandem (MS/MS) | Effects of bottle closures, autolysis and aging, and the presence of haloanisoles | [35,47,105] | |
Olfactometry (O) | Identification of key aroma compounds; evaluation of antioxidants impact on flavor | [45,73,106,107] | |
Pulsed-Flame Photometric Detection (PFPD) | Characterization of volatile sulfur compounds | [73,89] | |
Multidimensional GC (GCxGC) | Time-of-flight detector (TOF/MS) | VOCs profiling in Italian and Moscatel sparkling wines. | [65,108,109,110] |
High-Performance Liquid Chromatography (HPLC) or Ultra-High-Performance Liquid Chromatography (UHPLC) * | Diode Array Detector (DAD) | Used for monitoring organic acids, sugars, glycerol, amino acids, and amines during aging and evaluating the effects of β-glucanases and yeast products on chemical and sensory properties | [46,50,52,60,111,112] |
Fluorescence Detector (FLD) | Monitorization of amino acids and quantification of biogenic amines | [27,113] | |
Mass spectrometry (MS) | Analysis of anthocyanins, polysulfides in aged sparkling wines, and chemical profiling of Bombino sparkling wines produced with autochthonous yeast strains | [25,27,29,114] | |
Mass spectrometry tandem (MS/MS) | Quantification of indoles, aromatic amino acid metabolites, and lipids in sparkling wines. | [65,115,116] | |
Spectroscopic Methods | |||
Proton NuclearMagnetic Resonance (1H NMR) | Radiofrequency (RF) detector | Characterization of compounds extracted from cork by wine; analysis of sparkling wines aged with different sugars in the expedition liquor | [117,118] |
Fourier Transform Infrared Spectroscopy (FTIR) | Interferometer & IR Detector | Oenological analysis of sparkling wines | [15,18,27] |
Raman spectroscopy | Photodiode detector | Elemental composition of sparkling wines treated with mannoproteins | [49] |
UV-Visible Spectrophotometry (UV-Vis) | UV-Vis Absorbance Detector | Analysis of color intensity, quantification of polyphenols, hydroxycinnamates, and flavonoids, study of antioxidant activity, and spectrophotometric analysis of phenolic compounds in sparkling wines treated with β-glucanases and mannoproteins | [19,27,50,51,52,53,60,111,119] |
Spectrometric Methods | |||
Inductively Coupled Plasma (ICP) | Multicollector-ICP-Mass spectrometry (MC-ICP-MS) | Sr and Pb isotopic marks applied to the authentication of sparkling wines | [120] |
Mass Spectrometer (ICP-MS) Quadrupole Mass Analyzer | Elemental characterization of musts and wines based on biogenic amines | [113] | |
Optical Emission Spectroscopy (OES) | Element composition of sparkling wines treated with mannoproteins, and musts based on biogenic amines | [53,113] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinheiro, S.S.; Campos, F.; Cabrita, M.J.; Silva, M.G.d. Exploring the Aroma Profile of Traditional Sparkling Wines: A Review on Yeast Selection in Second Fermentation, Aging, Closures, and Analytical Strategies. Molecules 2025, 30, 2825. https://doi.org/10.3390/molecules30132825
Pinheiro SS, Campos F, Cabrita MJ, Silva MGd. Exploring the Aroma Profile of Traditional Sparkling Wines: A Review on Yeast Selection in Second Fermentation, Aging, Closures, and Analytical Strategies. Molecules. 2025; 30(13):2825. https://doi.org/10.3390/molecules30132825
Chicago/Turabian StylePinheiro, Sara Sofia, Francisco Campos, Maria João Cabrita, and Marco Gomes da Silva. 2025. "Exploring the Aroma Profile of Traditional Sparkling Wines: A Review on Yeast Selection in Second Fermentation, Aging, Closures, and Analytical Strategies" Molecules 30, no. 13: 2825. https://doi.org/10.3390/molecules30132825
APA StylePinheiro, S. S., Campos, F., Cabrita, M. J., & Silva, M. G. d. (2025). Exploring the Aroma Profile of Traditional Sparkling Wines: A Review on Yeast Selection in Second Fermentation, Aging, Closures, and Analytical Strategies. Molecules, 30(13), 2825. https://doi.org/10.3390/molecules30132825