Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (669)

Search Parameters:
Keywords = immobilization of molecules

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2338 KiB  
Article
Singlet Oxygen-Mediated Micropollutant Degradation Using an FePc-Modified CNT Filter via Peroxymonosulfate Activation
by Chenxin Xie, Yifan Ren and Yanbiao Liu
Catalysts 2025, 15(8), 747; https://doi.org/10.3390/catal15080747 (registering DOI) - 5 Aug 2025
Abstract
Herein, we rationally designed a molecular catalytic filter for effective micropollutants decontamination via peroxymonosulfate (PMS) activation. Specifically, iron phthalocanine (FePc) molecules with defined Fe–N4 coordination were immobilized onto carbon nanotubes (CNTs), forming a hybrid catalyst that integrated molecular precision with heterogeneous catalytic [...] Read more.
Herein, we rationally designed a molecular catalytic filter for effective micropollutants decontamination via peroxymonosulfate (PMS) activation. Specifically, iron phthalocanine (FePc) molecules with defined Fe–N4 coordination were immobilized onto carbon nanotubes (CNTs), forming a hybrid catalyst that integrated molecular precision with heterogeneous catalytic properties. The resulting CNT-FePc filter achieved a 98.4% removal efficiency for bisphenol A (10 ppm) in a single-pass operation system, significantly outperforming the CNT/PMS system without FePc (41.6%). Additionally, the CNT-FePc/PMS system demonstrated remarkable resistance to performance inhibition by common water matrix components. Unlike typical radical-dominated PMS activation processes, mechanistic investigations confirmed that the CNT-FePc/PMS system selectively promoted singlet oxygen (1O2) generation as the primary oxidative pathway. Density functional theory (DFT) calculations revealed that PMS exhibited stronger adsorption on FePc (−3.05 eV) compared to CNT (−2.86 eV), and that FePc effectively facilitated O–O bond elongation in PMS, thereby facilitating 1O2 generation. Additionally, seed germination assays indicated a significant reduction in the biotoxicity of the treated effluents. Overall, this work presents a catalyst design strategy that merges molecular-level coordination chemistry with practical flow-through configuration, enabling rapid, selective, and environmentally benign micropollutant removal. Full article
(This article belongs to the Collection Advanced Catalysts for Wastewater Remediation Technologies)
Show Figures

Graphical abstract

11 pages, 1936 KiB  
Communication
Diffusion of C-O-H Fluids in a Sub-Nanometer Pore Network: Role of Pore Surface Area and Its Ratio with Pore Volume
by Siddharth Gautam and David Cole
C 2025, 11(3), 57; https://doi.org/10.3390/c11030057 - 1 Aug 2025
Viewed by 154
Abstract
Porous materials are characterized by the pore surface area (S) and volume (V) accessible to a confined fluid. For mesoporous materials NMR measurements of diffusion are used to assess the S/V ratio, because at short times, only [...] Read more.
Porous materials are characterized by the pore surface area (S) and volume (V) accessible to a confined fluid. For mesoporous materials NMR measurements of diffusion are used to assess the S/V ratio, because at short times, only the diffusivity of molecules in the adsorbed layer is affected by confinement and the fractional population of these molecules is proportional to the S/V ratio. For materials with sub-nanometer pores, this might not be true, as the adsorbed layer can encompass the entire pore volume. Here, using molecular simulations, we explore the role played by S and S/V in determining the dynamical behavior of two carbon-bearing fluids—CO2 and ethane—confined in sub-nanometer pores of silica. S and V in a silicalite model representing a sub-nanometer porous material are varied by selectively blocking a part of the pore network by immobile methane molecules. Three classes of adsorbents were thus obtained with either all of the straight (labeled ‘S-major’) or zigzag channels (‘Z-major’) remaining open or a mix of a fraction of both types of channel blocked, resulting in half of the total pore volume being blocked (‘Half’). While the adsorption layers from opposite surfaces overlap, encompassing the entire pore volume for all pores except the intersections, the diffusion coefficient is still found to be reduced at high S/V, especially for CO2, albeit not so strongly as would be expected in the case of wider pores. This is because of the presence of channel intersections that provide a wider pore space with non-overlapping adsorption layers. Full article
(This article belongs to the Section Carbon Cycle, Capture and Storage)
Show Figures

Figure 1

20 pages, 1471 KiB  
Article
A New Approach for Interferent-Free Amperometric Biosensor Production Based on All-Electrochemically Assisted Procedures
by Rosanna Ciriello, Maria Assunta Acquavia, Giuliana Bianco, Angela Di Capua and Antonio Guerrieri
Biosensors 2025, 15(8), 470; https://doi.org/10.3390/bios15080470 - 22 Jul 2025
Viewed by 295
Abstract
A new approach in amperometric enzyme electrodes production based on all-electrochemically assisted procedures will be described. Enzyme (glucose oxidase) immobilization was performed by in situ co-crosslinking of enzyme molecules through electrophoretic protein deposition, assuring enzyme immobilization exclusively onto the transducer surface (Pt electrode). [...] Read more.
A new approach in amperometric enzyme electrodes production based on all-electrochemically assisted procedures will be described. Enzyme (glucose oxidase) immobilization was performed by in situ co-crosslinking of enzyme molecules through electrophoretic protein deposition, assuring enzyme immobilization exclusively onto the transducer surface (Pt electrode). Analogously, the poor selectivity of the transducer was dramatically improved by the electrosynthesis of non-conducting polymers with built-in permselectivity, permitting the formation of a thin permselective film onto the transducer surface, able to reject common interferents usually found in real samples. Since both approaches required a proper and distinct electrochemical perturbation (a pulsed current sequence for electrophoretic protein deposition and cyclic voltammetry for the electrosynthesis of non-conducting polymers), an appropriate coupling of the two all-electrochemical approaches was assured by a thorough study of the likely combinations of the electrosynthesis of permselective polymers with enzyme immobilization by electrophoretic protein deposition and by the use of several electrosynthesized polymers. For each investigated combination and for each polymer, the analytical performances and the rejection capabilities of the resulting biosensor were acquired so to gain information about their sensing abilities eventually in real sample analysis. This study shows that the proper coupling of the two all-electrochemical approaches and the appropriate choice of the electrosynthesized, permselective polymer permits the easy fabrication of novel glucose oxidase biosensors with good analytical performance and low bias in glucose measurement from typical interferent in serum. This novel approach, resembling classical electroplating procedures, is expected to allow all the advantages expected from such procedures like an easy preparation biosensor, a bi-dimensional control of enzyme immobilization and thickness, interferent- and fouling-free transduction of the electrodic sensor and, last but not the least, possibility of miniaturization of the biosensing device. Full article
(This article belongs to the Special Issue Novel Designs and Applications for Electrochemical Biosensors)
Show Figures

Figure 1

34 pages, 2259 KiB  
Review
Unveiling the Molecular Mechanism of Azospirillum in Plant Growth Promotion
by Bikash Ranjan Giri, Sourav Chattaraj, Subhashree Rath, Mousumi Madhusmita Pattnaik, Debasis Mitra and Hrudayanath Thatoi
Bacteria 2025, 4(3), 36; https://doi.org/10.3390/bacteria4030036 - 18 Jul 2025
Viewed by 365
Abstract
Azospirillum is a well-studied genus of plant growth-promoting rhizobacteria (PGPR) and one of the most extensively researched diazotrophs. This genus can colonize rhizosphere soil and enhance plant growth and productivity by supplying essential nutrients to the host. Azospirillum–plant interactions involve multiple mechanisms, [...] Read more.
Azospirillum is a well-studied genus of plant growth-promoting rhizobacteria (PGPR) and one of the most extensively researched diazotrophs. This genus can colonize rhizosphere soil and enhance plant growth and productivity by supplying essential nutrients to the host. Azospirillum–plant interactions involve multiple mechanisms, including nitrogen fixation, the production of phytohormones (auxins, cytokinins, indole acetic acid (IAA), and gibberellins), plant growth regulators, siderophore production, phosphate solubilization, and the synthesis of various bioactive molecules, such as flavonoids, hydrogen cyanide (HCN), and catalase. Thus, Azospirillum is involved in plant growth and development. The genus Azospirillum also enhances membrane activity by modifying the composition of membrane phospholipids and fatty acids, thereby ensuring membrane fluidity under water deficiency. It promotes the development of adventitious root systems, increases mineral and water uptake, mitigates environmental stressors (both biotic and abiotic), and exhibits antipathogenic activity. Biological nitrogen fixation (BNF) is the primary mechanism of Azospirillum, which is governed by structural nif genes present in all diazotrophic species. Globally, Azospirillum spp. are widely used as inoculants for commercial crop production. It is considered a non-pathogenic bacterium that can be utilized as a biofertilizer for a variety of crops, particularly cereals and grasses such as rice and wheat, which are economically significant for agriculture. Furthermore, Azospirillum spp. influence gene expression pathways in plants, enhancing their resistance to biotic and abiotic stressors. Advances in genomics and transcriptomics have provided new insights into plant-microbe interactions. This review explored the molecular mechanisms underlying the role of Azospirillum spp. in plant growth. Additionally, BNF phytohormone synthesis, root architecture modification for nutrient uptake and stress tolerance, and immobilization for enhanced crop production are also important. A deeper understanding of the molecular basis of Azospirillum in biofertilizer and biostimulant development, as well as genetically engineered and immobilized strains for improved phosphate solubilization and nitrogen fixation, will contribute to sustainable agricultural practices and help to meet global food security demands. Full article
Show Figures

Figure 1

19 pages, 2897 KiB  
Article
Noncovalently Immobilized Glucose Oxidase/Horseradish Peroxidase Cascade on Polyamide Supports for Eco-Friendly Polyaniline Synthesis
by Nadya V. Dencheva, Joana F. Braz, Sofia A. Guimarães and Zlatan Z. Denchev
Molecules 2025, 30(14), 3003; https://doi.org/10.3390/molecules30143003 - 17 Jul 2025
Viewed by 298
Abstract
This study discloses the noncovalent immobilization of a bienzyme cascade composed of glucose oxidase (GOx) and horseradish peroxidase (HRP) onto magnetically responsive polyamide microparticles (PA MPs). Porous PA6, PA4, and PA12 MPs containing iron fillers were synthesized via activated anionic ring-opening polymerization in [...] Read more.
This study discloses the noncovalent immobilization of a bienzyme cascade composed of glucose oxidase (GOx) and horseradish peroxidase (HRP) onto magnetically responsive polyamide microparticles (PA MPs). Porous PA6, PA4, and PA12 MPs containing iron fillers were synthesized via activated anionic ring-opening polymerization in suspension, alongside neat PA6 MPs used as a reference. Four hybrid catalytic systems (GOx/HRP@PA) were prepared through sequential adsorption of HRP and GOx onto the various PA MP supports. The initial morphologies of the supports and the hybrid biocatalysts were characterized by SEM, followed by evaluation of the catalytic performance using a two-step glucose oxidation cascade process. Among all systems, the GOx/HRP@PA4-Fe complex exhibited the highest activity, being approximately 1.5 times greater than the native enzyme dyad, followed by the PA6-supported system with slightly inferior performance. All systems obeyed Michaelis–Menten kinetics, with the immobilized cascades displaying higher Kₘ and Vₘₐₓ values than the non-immobilized enzyme pair while maintaining comparable catalytic efficiencies, CE (CE = kcat/Kₘ). Subsequently, the immobilized and native enzyme systems were employed for the polymerization of aniline. According to UV–VIS, complete monomer conversion was achieved within 24 h for selected catalysts, and FTIR analysis confirmed the formation of polyaniline in the emeraldine base form without the use of template molecules. These findings highlight the potential of Fe-containing polyamide microparticles as efficient supports for the sustainable, enzyme-mediated synthesis of intrinsically conductive aromatic polymers. Full article
Show Figures

Graphical abstract

36 pages, 2877 KiB  
Article
Dual-Oriented Targeted Nanostructured SERS Label-Free Immunosensor for Detection, Quantification, and Analysis of Breast Cancer Biomarker Concentrations in Blood Serum
by Mohammad E. Khosroshahi, Christine Gaoiran, Vithurshan Umashanker, Hayagreev Veeru and Pranav Panday
Biosensors 2025, 15(7), 447; https://doi.org/10.3390/bios15070447 - 11 Jul 2025
Viewed by 378
Abstract
In clinical applications of surface-enhanced Raman spectroscopy (SERS) immunosensors, accurately determining analyte biomarker concentrations is essential. This study presents a non-invasive approach for quantifying various breast cancer biomarkers—including human epidermal growth factor receptor II (HER-II) (2+, 3+ (I), 3+ (II), 3+ (III), and [...] Read more.
In clinical applications of surface-enhanced Raman spectroscopy (SERS) immunosensors, accurately determining analyte biomarker concentrations is essential. This study presents a non-invasive approach for quantifying various breast cancer biomarkers—including human epidermal growth factor receptor II (HER-II) (2+, 3+ (I), 3+ (II), 3+ (III), and positive IV) and CA 15-3—using a directional, plasmonically active, label-free SERS sensor. Each stage of sensor functionalization, conjugation, and biomarker interaction was verified by UV–Vis spectroscopy. Atomic force microscopy (AFM) characterized the morphology of gold nanourchin (GNU)-immobilized printed circuit board (PCB) substrates. An enhancement factor of ≈ 0.5 × 105 was achieved using Rhodamine 6G as the probe molecule. Calibration curves were initially established using standard HER-II solutions at concentrations ranging from 1 to 100 ng/mL and CA 15-3 at concentrations from 10 to 100 U/mL. The SERS signal intensities in the 620–720 nm region were plotted against concentration, yielding linear sensitivity with R2 values of 0.942 and 0.800 for HER-II and CA15-3, respectively. The same procedure was applied to breast cancer serum (BCS) samples, allowing unknown biomarker concentrations to be determined based on the corresponding calibration curves. SERS data were processed using the filtfilt filter from scipy.signal for smoothing and then baseline-corrected with the Improved Asymmetric Least Squares (IASLS) algorithm from the pybaselines.Whittaker library. Principal Component Analysis (PCA) effectively distinguished the sample groups and revealed spectral differences before and after biomarker interactions. Key Raman peaks were attributed to functional groups including N–H (primary and secondary amines), C–H antisymmetric stretching, C–N (amines), C=O antisymmetric stretching, NH3+ (amines), carbohydrates, glycine, alanine, amides III, C=N stretches, and NH2 in primary amides. Full article
Show Figures

Figure 1

19 pages, 5616 KiB  
Communication
A Poly(methacrolein-co-methacrylamide)-Based Template Anchoring Strategy for the Synthesis of Fluorescent Molecularly Imprinted Polymer Nanoparticles for Highly Selective Serotonin Sensing
by Madhav Biyani, Mizuki Matsumoto and Yasuo Yoshimi
Nanomaterials 2025, 15(13), 977; https://doi.org/10.3390/nano15130977 - 24 Jun 2025
Viewed by 416
Abstract
Neurotransmitters such as serotonin regulate key physiological and cognitive functions, yet real-time detection remains challenging due to the limitations of conventional techniques like amperometry and microdialysis. Fluorescent molecularly imprinted polymer nanoparticles (fMIP-NPs) offer a promising alternative and are typically synthesized via solid-phase synthesis, [...] Read more.
Neurotransmitters such as serotonin regulate key physiological and cognitive functions, yet real-time detection remains challenging due to the limitations of conventional techniques like amperometry and microdialysis. Fluorescent molecularly imprinted polymer nanoparticles (fMIP-NPs) offer a promising alternative and are typically synthesized via solid-phase synthesis, in which template molecules are covalently immobilized on a solid support to enable site-specific imprinting. However, strong template–template interactions during this process can compromise selectivity. To overcome this, we incorporated a poly(methacrolein-co-methacrylamide)-based template anchoring strategy to minimize undesired template interactions and enhance imprinting efficiency. We optimized the synthesis of poly(methacrolein-co-methacrylamide) under three different conditions by varying the monomer compositions and reaction parameters. The poly(methacrolein-co-methacrylamide) synthesized under Condition 3 (5:1 methacrolein-to-methacrylamide molar ratio, 1:150 initiator-to-total monomer ratio, and 4.59 M total monomer concentration) yielded the most selective fMIP-NPs, whose fluorescence intensity increased with an increase in serotonin concentration, rising by up to 37% upon serotonin binding. This improvement is attributed to higher aldehyde functionality in the poly(methacrolein-co-methacrylamide) which enhances template immobilization and generates a rigid imprinted cavity to interact with serotonin. These findings suggest that the developed fMIP-NPs hold significant potential as imaging probes for neurotransmitter detection, contributing to advanced studies in neural network analysis. Full article
(This article belongs to the Special Issue Recent Advances in the Development of Nano-Biomaterials)
Show Figures

Graphical abstract

32 pages, 5511 KiB  
Article
Development of Carbohydrate Polyelectrolyte Nanoparticles for Use in Drug Delivery Systems that Cross the Blood–Brain Barrier to Treat Brain Tumors
by Vladimir E. Silant’ev, Mikhail E. Shmelev, Andrei S. Belousov, Fedor O. Trukhin, Nadezhda E. Struppul, Aleksandra A. Patlay, Anna K. Kravchenko, Sergey P. Shchava and Vadim V. Kumeiko
Polymers 2025, 17(12), 1690; https://doi.org/10.3390/polym17121690 - 18 Jun 2025
Viewed by 492
Abstract
The low effectiveness of various brain cancer treatment methods is due to a number of significant challenges. Most of them are unable to penetrate the blood–brain barrier (BBB) when drugs are administered systemically through the bloodstream. Nanoscale particles play a special role among [...] Read more.
The low effectiveness of various brain cancer treatment methods is due to a number of significant challenges. Most of them are unable to penetrate the blood–brain barrier (BBB) when drugs are administered systemically through the bloodstream. Nanoscale particles play a special role among materials capable of binding drug molecules and successfully crossing the BBB. Biopolymeric nanoparticles (NPs) demonstrate excellent biocompatibility and have the remarkable ability to modify the environment surrounding tumor cells, thereby potentially improving cellular uptake of delivery agents. In our research, nanoscale polyelectrolyte complexes (PECs) ranging in size from 56 to 209 nm were synthesized by ionic interaction of the oppositely charged polysaccharides pectin and chitosan. The structural characteristics of these complexes were carefully characterized by infrared (FTIR) and Raman spectroscopy. The immobilization efficiency of antitumor drugs was comprehensively evaluated using UV spectrophotometry. The cytotoxicity of the NPs was evaluated in the U87-MG cell line. The preliminary data indicate a significant decrease in the metabolic activity of these tumor cells. Important details on the interaction of the NPs with an endothelial layer structurally similar to the BBB were obtained by simulating the BBB using a model based on human blood vessels. Our studies allowed us to establish a significant correlation between the kinetic parameters of drug immobilization and the ratio of biopolymer concentrations in the initial compositions, which provides valuable information for future optimization of drug delivery system design. Full article
(This article belongs to the Special Issue Advanced Polymeric Biomaterials for Drug Delivery Applications)
Show Figures

Figure 1

13 pages, 1100 KiB  
Article
Easy ROMP of Quinine Derivatives Toward Novel Chiral Polymers That Discriminate Mandelic Acid Enantiomers
by Mariusz Majchrzak, Karol Kacprzak, Marta Piętka, Jerzy Garbarek and Katarzyna Taras-Goślińska
Polymers 2025, 17(12), 1661; https://doi.org/10.3390/polym17121661 - 15 Jun 2025
Viewed by 534
Abstract
A novel and general approach to the practical ROMP polymerization of cinchona alkaloid derivatives providing novel hybrid materials having quinine attached on a poly(norbornene-5,6-dicarboxyimide) matrix is presented. The concept involves an easy modification of quinine (in general, any cinchona alkaloid) toward clickable 9-azide [...] Read more.
A novel and general approach to the practical ROMP polymerization of cinchona alkaloid derivatives providing novel hybrid materials having quinine attached on a poly(norbornene-5,6-dicarboxyimide) matrix is presented. The concept involves an easy modification of quinine (in general, any cinchona alkaloid) toward clickable 9-azide that reacts with N-propargyl-cis-5-norbornene-exo-2,3-dicarboxylic imide in Cu(I)-catalyzed Huisgen cycloaddition (click chemistry). The resulting monomers undergo a controllable ROMP reaction that leads to novel polymers of a desired length and solubility. This sequence allows for the facile preparation of a regularly decorated polymeric material having one quinine moiety per single mer of the polymer chain inaccessible using typical immobilization methods. A poly(norbornene-5,6-dicarboxyimide) type of polymeric matrix was selected due to the high reactivity of the exo-norbornene motif in Ru(II)-catalyzed ROMP and its chemical and thermal stability as well as convenient, scalable access from inexpensive cis-5-norbornene-exo-2,3-dicarboxylic anhydride (‘one-pot’ Diels–Alder reaction of dicyclopentadiene and maleic anhydride). An appropriate combination of a Grubbs catalyst, Ru(II) (G1, G2), and ROMP conditions allowed for the efficient synthesis of well-defined soluble polymers with mass parameters in the range Mn = 2.24 × 104 – 2.26 × 104 g/mol and Mw = 2.90 × 104–3.05 × 104 g/mol with good polydispersity, ĐM = 1.32–1.35, and excellent thermal stability (up to 309°C Td10). Spectroscopic studies (NMR and electronic circular dichroism (ECD)) of these products revealed a linear structure with the slight advantage of a trans-configuration of an olefinic double bond. The resulting short-chain polymer discriminates mandelic acid enantiomers with a preference for the (R)-stereoisomer in spectrofluorimetric assays. This concept seems to be rather general with respect to other molecules dedicated to incorporation into the poly(norbornene-5,6-dicarboxyimide) chain. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Graphical abstract

14 pages, 5458 KiB  
Article
Efficient Room-Temperature Luminescence of Indole-5-Carboxamide in Poly(vinyl alcohol) Films
by Bong Lee, Agnieszka Jablonska, Rajveer Sagoo, Danh Pham, Trang Thien Pham, Sergei V. Dzyuba, Zygmunt Gryczynski and Ignacy Gryczynski
Photochem 2025, 5(2), 14; https://doi.org/10.3390/photochem5020014 - 4 Jun 2025
Viewed by 962
Abstract
N-phenyl-1H-Indole-5-carboxamide (Ind-CA) exhibits previously unknown room-temperature phosphorescence (RTP) when immobilized in poly (vinyl alcohol) film (PVA film). High-fluorescence anisotropy of Ind-CA in PVA suggests that the fluorophores are strongly immobilized in a polymer matrix, while a relatively low (ca. 0.1) quantum yield [...] Read more.
N-phenyl-1H-Indole-5-carboxamide (Ind-CA) exhibits previously unknown room-temperature phosphorescence (RTP) when immobilized in poly (vinyl alcohol) film (PVA film). High-fluorescence anisotropy of Ind-CA in PVA suggests that the fluorophores are strongly immobilized in a polymer matrix, while a relatively low (ca. 0.1) quantum yield indicates a strong non-radiative singlet excited state deactivation. With an increased triplet-state population, Ind-CA can be used for various phosphorescence studies. The room-temperature phosphorescence (RTP) capability of Ind-CA indicates that there is an intricate balance between RTP and the structure of the indole-containing luminophore, as an isomeric N-1H-indole-5-ylbenzamide (Ind-BA) does not show any appreciable levels of RTP. Moreover, the phosphorescence lifetime of Ind-CA is about two orders of magnitude longer than many other 5-substituted indoles. These results further highlight the prospects for the potential rational designs of small molecules with desired triplet-state configuration and RTP characteristics. Full article
Show Figures

Figure 1

18 pages, 2225 KiB  
Article
Promoting Effects of Different Organic Acids on the Formation of Transglutaminase-Induced Cross-Linked Soybean Protein Isolate Hydrogels
by Xiangquan Zeng, Linlin Peng, Sirong Liu, Haoluan Wang, He Li, Yu Xi and Jian Li
Foods 2025, 14(11), 1965; https://doi.org/10.3390/foods14111965 - 31 May 2025
Viewed by 531
Abstract
Microbial transglutaminase (mTG) is most frequently utilized in order to increase the gelling properties of soybean protein isolate (SPI), but there are still some limitations of mTG-based hydrogel fabrication technology. Therefore, we aimed to develop a dual modification technique based on enzyme plus [...] Read more.
Microbial transglutaminase (mTG) is most frequently utilized in order to increase the gelling properties of soybean protein isolate (SPI), but there are still some limitations of mTG-based hydrogel fabrication technology. Therefore, we aimed to develop a dual modification technique based on enzyme plus organic acid treatment to fabricate SPI hydrogels with high gel strength and stability. Our results showed that mTG plus glucose-δ-lactone (GDL), lactobionic acid (LBA) or maltobionic acid (MBA) treatment could significantly improve the gel strength, textural properties, and water-holding capacity of SPI hydrogels. Also, the addition of these organic acids remarkably reduced the surface hydrophobicity (H0) and intrinsic fluorescence as well as increased the storage modulus (G′), loss modulus (G″) values, average particle size, and the absolute value of zeta potential of samples. GDL, LBA, or MBA greatly increased the β-sheet level and decreased the α-helix level in hydrogels, as well as dissociated 11S subunits of SPI into 7S subunits. Notably, covalent interactions, hydrogen bonding, and hydrophobic interactions of three organic acids with SPI, as well as the effects of organic acids on the interactions among the intramolecular and intermolecular forces of SPI molecules, contributed to their promoting effects on the formation of hydrogels. The LF-NMR and SEM analyses confirmed the effects of GDL, LBA, and MBA on converting the free water into immobilized and bound water as well as forming a dense stacked aggregate structure. Therefore, GDL, LBA, and MBA are promising agents to be combined with mTG in the fabrication of SPI hydrogels with high gel strength and stability. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

23 pages, 5336 KiB  
Review
Advancements in the Research on the Preparation of Isoamyl Acetate Catalyzed by Immobilized Lipase
by Guoqiang Guan, Yuyang Zhang, Jingya Qian, Feng Wang, Liang Qu and Bin Zou
Materials 2025, 18(11), 2476; https://doi.org/10.3390/ma18112476 - 25 May 2025
Viewed by 837
Abstract
This study aims to delve into the application potential of immobilized lipases in the catalytic synthesis of isoamyl acetate. Through a comparative analysis of various immobilization methods, including physical adsorption, encapsulation, covalent binding, and crosslinking, along with the utilization of nanomaterials, such as [...] Read more.
This study aims to delve into the application potential of immobilized lipases in the catalytic synthesis of isoamyl acetate. Through a comparative analysis of various immobilization methods, including physical adsorption, encapsulation, covalent binding, and crosslinking, along with the utilization of nanomaterials, such as magnetic nanoparticles, mesoporous silica SBA-15, and covalent organic frameworks (COFs) as carriers, the study systematically evaluates their enhancing effects on lipase catalytic performance. Additionally, solvent engineering strategies, encompassing the introduction of organic solvents, supercritical fluids, ionic liquids, and deep eutectic solvents, are employed to intensify the enzymatic catalytic process. These approaches effectively improve mass transfer efficiency, activate enzyme molecules, and safeguard enzyme structural stability, thereby significantly elevating the synthesis efficiency and yield of isoamyl acetate. Consequently, this research provides solid scientific rationale and technical support for the industrial production of flavor ester compounds. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Graphical abstract

16 pages, 4093 KiB  
Article
AFM-Based Monitoring of Enzymatic Activity of Individual Molecules of Cytochrome CYP102A1
by Yuri D. Ivanov, Natalia S. Bukharina, Ivan D. Shumov, Oleg N. Afonin, Vadim Y. Tatur, Anna V. Grudo and Alexander I. Archakov
Biosensors 2025, 15(5), 303; https://doi.org/10.3390/bios15050303 - 10 May 2025
Viewed by 515
Abstract
Herein, we report the use of a nanotechnology-based approach for the study of enzyme-functionalized mica surfaces. Atomic force microscopy (AFM) has been employed for the determination of the catalytic activity of single molecules of heme-containing cytochrome P450 CYP102A1 (CYP102A1) enzyme, which was immobilized [...] Read more.
Herein, we report the use of a nanotechnology-based approach for the study of enzyme-functionalized mica surfaces. Atomic force microscopy (AFM) has been employed for the determination of the catalytic activity of single molecules of heme-containing cytochrome P450 CYP102A1 (CYP102A1) enzyme, which was immobilized on the surface of a mica chip. Height fluctuations in individual molecules of the enzyme were measured under near-native conditions by AFM measurements in liquid using a cantilever with a 10 to 20 nm tip curvature radius. We have found that in the process of enzymatic catalysis, the mean amplitude of height fluctuations in individual enzyme molecules is 1.4-fold higher than that of enzyme molecules in an inactive state. The temperature dependence of the mean amplitude of height fluctuations in cytochrome CYP102A1 has been revealed, and the maximum of this dependence has been observed at 22 °C. The proposed nanotechnology-based approach can be employed in studies of a wide variety of enzymes, which are important for the development of novel diagnostic tests and systems for pharmaceutical analysis. The approach developed in our work will favor further miniaturization of enzyme-based biosensors and the transition from traditional sensors to nanobiosensors. Full article
Show Figures

Figure 1

22 pages, 11535 KiB  
Article
Transport Properties of Solutions in γ–FeOOH/CSH Pores of Steel Fiber-Reinforced Concrete (SFRC) Derived Using Molecular Dynamics
by Yalin Luan, Runan Wang, Changxin Huang, Andrey Jivkov and Lianzhen Zhang
Materials 2025, 18(10), 2176; https://doi.org/10.3390/ma18102176 - 8 May 2025
Viewed by 487
Abstract
Steel fiber-reinforced concrete structures designed for marine environments can become compromised by the ingress of water and ions. Water and ion transport through the pores between steel fibers and concrete gels significantly affects the durability of such structures, but the mechanisms of this [...] Read more.
Steel fiber-reinforced concrete structures designed for marine environments can become compromised by the ingress of water and ions. Water and ion transport through the pores between steel fibers and concrete gels significantly affects the durability of such structures, but the mechanisms of this transport are not sufficiently understood. Reported here is a molecular dynamics-based investigation of the transport of water, NaCl, Na2SO4, and mixed solutions of NaCl and Na2SO4 through γ–FeOOH/CSH pores. The effect of pore width on the capillary transport of NaCl + Na2SO4 solutions was also investigated and reported. It is shown that the depth of water penetration in NaCl solution increases parabolically with time. It is further shown that the CSH surface forms bonds with different ions to form Na–OCSH, Cl–CaCSH, and S–CaCSH compounds, which results in reduced rates of solution transport. The mixed NaCl + Na2SO4 solution was found to have the lowest transport rate. A reduction in pore width was found to reduce the transport rate of water molecules and diminish the transport of ions. In pores smaller than 2.5 nm in width, the immobilized ions aggregate into clusters, occupying pore inlets and blocking more ions from entering the channels. Compared with the matrix on both sides, solutions are transported significantly faster along the CSH side than along the γ–FeOOH side, indicating that the addition of steel fibers can effectively slow down the transport of water molecules and ions in concrete. These data on the difference in the transport of solutions along the two sides of the matrix may provide molecular-level insights to support studies on the durability of concrete materials. Full article
Show Figures

Figure 1

18 pages, 4678 KiB  
Article
Validation and Optimization of PURE Ribosome Display for Screening Synthetic Nanobody Libraries
by Bingying Liu and Daiwen Yang
Antibodies 2025, 14(2), 39; https://doi.org/10.3390/antib14020039 - 2 May 2025
Viewed by 1377
Abstract
Background/Objectives: PURE (Protein synthesis Using Recombinant Elements), an ideal system for ribosome display, has been successfully used for nanobody selection. However, its limitations in nanobody selection, especially for synthetic nanobody libraries, have not been clearly elucidated, thereby restricting its utilization. Methods: The PURE [...] Read more.
Background/Objectives: PURE (Protein synthesis Using Recombinant Elements), an ideal system for ribosome display, has been successfully used for nanobody selection. However, its limitations in nanobody selection, especially for synthetic nanobody libraries, have not been clearly elucidated, thereby restricting its utilization. Methods: The PURE ribosome display selection process was closely monitored using RNA agarose gel electrophoresis to assess the presence of mRNA molecules in each fraction, including the flow-through, washing, and elution fractions. Additionally, a real-time validation method for monitoring each biopanning round was implemented, ensuring the successful enrichment of target protein-specific binders. The selection process was further optimized by introducing a target protein elution step prior to the EDTA-mediated disassembly, as well as by altering the immobilization surfaces. Finally, the efficiency of PURE ribosome display was enhanced by replacing the spacer gene. Results: The efficiency of PURE ribosome display was merely 4% with an unfavourable spacer gene. Using this spacer gene, EGFP- and human fatty acid-binding protein 4-specific nanobodies from a synthetic nanobody library were we successfully identified through optimizing the selection process. Choosing a spacer gene less prone to secondary structure formation increased significantly its efficiency in displaying synthetic nanobody libraries. Conclusions: Implementing a target protein elution step prior to EDTA-mediated disassembly and modifying the immobilization surfaces effectively increase selection efficiency. For PURE ribosome display, efficiency was further improved using a suitable spacer gene, enabling the display of large libraries. Full article
Show Figures

Graphical abstract

Back to TopTop