Recent Advances in the Development of Nano-Biomaterials

A special issue of Nanomaterials (ISSN 2079-4991). This special issue belongs to the section "Biology and Medicines".

Deadline for manuscript submissions: 26 September 2025 | Viewed by 5113

Special Issue Editors


E-Mail Website
Guest Editor
Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Grecee
Interests: nanobiocatalysts; bionanoassemblies; bionanodevices; “green” biocatalytic processes; enzymatic and microbial biotransformations
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece
Interests: nanobiocatalysis; nanobiotechnology; nanostructures; carbon nanomaterials

Special Issue Information

Dear Colleagues,

Nano-biomaterials are identified as biomaterials (including carbon-based nanomaterials, polymers, metals, ceramic, and composites) with constituent or surface feature sizes less than 100 nm and are being researched as potential alternatives to conventional nanomaterials for biological applications. These nanoscale biomaterials can be produced by living organisms, mainly microbes, or derived from natural sources, such as plant extracts and agricultural wastes. Moreover, functionalized conventional nanomaterials through the encapsulation or immobilization of biological macromolecules, such as enzymes and other proteins, can also be labeled as nano-biomaterials, considering the impacts of biomolecules on a nanomaterial’s parental characteristics and properties. The unique properties of nanoscale biomaterials, along with their enhanced biocompatibility, bioavailability, bioreactivity, and low or negligible toxicity, overcome scientific and medical challenges, thus making them an attractive research direction in a vast variety of biomedical and biotechnological applications. This Special Issue of Nanomaterials aims to review the current state of the art for nano-biomaterials research, welcoming review articles and original papers that deal with the synthesis, characterization, and properties of nanoscale biomaterials. This Special Issue will also emphasize prospective applications of nano-biomaterials in biomedical and biotechnological fields, covering drug or gene delivery, tissue engineering, implant design, disease treatment, bioimaging, biosensing, and biocatalysis.

Prof. Dr. Haralambos Stamatis
Dr. Michaela Patila
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nano-biomaterials
  • nano-biomaterials synthesis and properties
  • design and fabrication of nano-biomaterials
  • drug or gene delivery
  • biosensing
  • bioimaging
  • biocatalysis

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 5616 KiB  
Communication
A Poly(methacrolein-co-methacrylamide)-Based Template Anchoring Strategy for the Synthesis of Fluorescent Molecularly Imprinted Polymer Nanoparticles for Highly Selective Serotonin Sensing
by Madhav Biyani, Mizuki Matsumoto and Yasuo Yoshimi
Nanomaterials 2025, 15(13), 977; https://doi.org/10.3390/nano15130977 - 24 Jun 2025
Viewed by 397
Abstract
Neurotransmitters such as serotonin regulate key physiological and cognitive functions, yet real-time detection remains challenging due to the limitations of conventional techniques like amperometry and microdialysis. Fluorescent molecularly imprinted polymer nanoparticles (fMIP-NPs) offer a promising alternative and are typically synthesized via solid-phase synthesis, [...] Read more.
Neurotransmitters such as serotonin regulate key physiological and cognitive functions, yet real-time detection remains challenging due to the limitations of conventional techniques like amperometry and microdialysis. Fluorescent molecularly imprinted polymer nanoparticles (fMIP-NPs) offer a promising alternative and are typically synthesized via solid-phase synthesis, in which template molecules are covalently immobilized on a solid support to enable site-specific imprinting. However, strong template–template interactions during this process can compromise selectivity. To overcome this, we incorporated a poly(methacrolein-co-methacrylamide)-based template anchoring strategy to minimize undesired template interactions and enhance imprinting efficiency. We optimized the synthesis of poly(methacrolein-co-methacrylamide) under three different conditions by varying the monomer compositions and reaction parameters. The poly(methacrolein-co-methacrylamide) synthesized under Condition 3 (5:1 methacrolein-to-methacrylamide molar ratio, 1:150 initiator-to-total monomer ratio, and 4.59 M total monomer concentration) yielded the most selective fMIP-NPs, whose fluorescence intensity increased with an increase in serotonin concentration, rising by up to 37% upon serotonin binding. This improvement is attributed to higher aldehyde functionality in the poly(methacrolein-co-methacrylamide) which enhances template immobilization and generates a rigid imprinted cavity to interact with serotonin. These findings suggest that the developed fMIP-NPs hold significant potential as imaging probes for neurotransmitter detection, contributing to advanced studies in neural network analysis. Full article
(This article belongs to the Special Issue Recent Advances in the Development of Nano-Biomaterials)
Show Figures

Graphical abstract

24 pages, 4251 KiB  
Article
Membrane Filtration of Nanoscale Biomaterials: Model System and Membrane Performance Evaluation for AAV2 Viral Vector Clarification and Recovery
by Mara Leach, Kearstin Edmonds, Emily Ingram, Rebecca Dutch, Ranil Wickramasinghe, Malgorzata Chwatko and Dibakar Bhattacharyya
Nanomaterials 2025, 15(4), 310; https://doi.org/10.3390/nano15040310 - 18 Feb 2025
Viewed by 1799
Abstract
The growing demand for viral vectors as nanoscale therapeutic agents in gene therapy necessitates efficient and scalable purification methods. This study examined the role of nanoscale biomaterials in optimizing viral vector clarification through a model system mimicking real AAV2 crude harvest material. Using [...] Read more.
The growing demand for viral vectors as nanoscale therapeutic agents in gene therapy necessitates efficient and scalable purification methods. This study examined the role of nanoscale biomaterials in optimizing viral vector clarification through a model system mimicking real AAV2 crude harvest material. Using lysed HEK293 cells and silica nanoparticles (20 nm) as surrogates for AAV2 crude harvest, we evaluated primary (depth filters) and secondary (membrane-based) filtration processes under different process parameters and solution conditions. These filtration systems were then assessed for their ability to recover nanoscale viral vectors while reducing DNA (without the need for endonuclease treatment), protein, and turbidity. Primary clarification demonstrated that high flux rates (600 LMH) reduced the depth filter’s ability to leverage adsorptive and electrostatic interactions, resulting in a lower DNA removal. Conversely, lower flux rates (150 LMH) enabled >90% DNA reduction by maintaining these interactions. Solution conductivity significantly influenced performance, with high conductivity screening electrostatic interactions, and the model system closely matching real system outcomes under these conditions. Secondary clarification highlighted material-dependent trade-offs. The PES membranes achieved exceptional AAV2 recovery rates exceeding 90%, while RC membranes excelled in DNA reduction (>80%) due to their respective surface charge and hydrophilic properties. The integration of the primary clarification step dramatically improved PES membrane performance, increasing the final flux from ~60 LMH to ~600 LMH. Fouling analysis revealed that real AAV2 systems experienced more severe and complex fouling compared to the model system, transitioning from intermediate blocking to irreversible cake layer formation, which was exacerbated by nanoscale impurities (~10–600 nm). This work bridges nanomaterial science and biomanufacturing, advancing scalable viral vector purification for gene therapy. Full article
(This article belongs to the Special Issue Recent Advances in the Development of Nano-Biomaterials)
Show Figures

Graphical abstract

16 pages, 4155 KiB  
Article
New 3D Vortex Microfluidic System Tested for Magnetic Core-Shell Fe3O4-SA Nanoparticle Synthesis
by Adelina-Gabriela Niculescu, Oana Maria Munteanu (Mihaiescu), Alexandra Cătălina Bîrcă, Alina Moroșan, Bogdan Purcăreanu, Bogdan Ștefan Vasile, Daniela Istrati, Dan Eduard Mihaiescu, Tony Hadibarata and Alexandru Mihai Grumezescu
Nanomaterials 2024, 14(11), 902; https://doi.org/10.3390/nano14110902 - 21 May 2024
Cited by 9 | Viewed by 2091
Abstract
This study’s main objective was to fabricate an innovative three-dimensional microfluidic platform suitable for well-controlled chemical syntheses required for producing fine-tuned nanostructured materials. This work proposes using vortex mixing principles confined within a 3D multilayered microreactor to synthesize magnetic core-shell nanoparticles with tailored [...] Read more.
This study’s main objective was to fabricate an innovative three-dimensional microfluidic platform suitable for well-controlled chemical syntheses required for producing fine-tuned nanostructured materials. This work proposes using vortex mixing principles confined within a 3D multilayered microreactor to synthesize magnetic core-shell nanoparticles with tailored dimensions and polydispersity. The newly designed microfluidic platform allowed the simultaneous obtainment of Fe3O4 cores and their functionalization with a salicylic acid shell in a short reaction time and under a high flow rate. Synthesis optimization was also performed, employing the variation in the reagents ratio to highlight the concentration domains in which magnetite is mainly produced, the formation of nanoparticles with different diameters and low polydispersity, and the stability of colloidal dispersions in water. The obtained materials were further characterized by X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy, dynamic light scattering (DLS), and transmission electron microscopy (TEM), with the experimental results confirming the production of salicylic acid-functionalized iron oxide (Fe3O4-SA) nanoparticles adapted for different further applications. Full article
(This article belongs to the Special Issue Recent Advances in the Development of Nano-Biomaterials)
Show Figures

Figure 1

Back to TopTop