polymers-logo

Journal Browser

Journal Browser

Advanced Polymeric Biomaterials for Drug Delivery Applications

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Applications".

Deadline for manuscript submissions: 30 September 2025 | Viewed by 637

Special Issue Editor


E-Mail Website
Guest Editor
Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce, Italy
Interests: biomaterials; collagen; tissue engineering; regenerative medicine; scaffolds; drug delivery system; electrospinning; materials engineering
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The traditional forms of drug administration are often associated with low efficacy and side effects. Due to this, controlled drug delivery systems (DDSs) began to be designed and customized according to the specific therapeutic compound. DDSs include micro- and nano-sized delivery systems, as well as 2D or 3D hydrogels. Developed DDSs have been revealed to be able to preserve bioactive agents’ safety, increase their efficacy, control their release kinetics, and keep the concentration of the drug within the desired therapeutic range. Moreover, tissue-specific drug delivery, dosing frequency reduction, and drug bioavailability increase were other advantages that allowed us to reduce follow-up care and increase patients’ comfort and compliance. Several polymers have been developed and employed for the development of DDSs. However, at present, challenges still remain and research is moving toward the development of new advanced materials for use in the development of even more effective and tunable DDSs. The present Special Issue welcomes contributions in the form of original research articles, preclinical investigations, or review articles on the broad topic of Advanced Polymeric Biomaterials for DDSs, with a focus on any aspect regarding micro- and nano-sized DDS synthesis methods, including the development of advanced biomaterials, polymeric structure modification and customization, effective production processes, and innovative strategy modifications.

Dr. Nunzia Gallo
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • drug delivery system
  • polymers
  • microparticles
  • nanoparticles
  • biomaterials

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

32 pages, 5511 KiB  
Article
Development of Carbohydrate Polyelectrolyte Nanoparticles for Use in Drug Delivery Systems that Cross the Blood–Brain Barrier to Treat Brain Tumors
by Vladimir E. Silant’ev, Mikhail E. Shmelev, Andrei S. Belousov, Fedor O. Trukhin, Nadezhda E. Struppul, Aleksandra A. Patlay, Anna K. Kravchenko, Sergey P. Shchava and Vadim V. Kumeiko
Polymers 2025, 17(12), 1690; https://doi.org/10.3390/polym17121690 - 18 Jun 2025
Viewed by 460
Abstract
The low effectiveness of various brain cancer treatment methods is due to a number of significant challenges. Most of them are unable to penetrate the blood–brain barrier (BBB) when drugs are administered systemically through the bloodstream. Nanoscale particles play a special role among [...] Read more.
The low effectiveness of various brain cancer treatment methods is due to a number of significant challenges. Most of them are unable to penetrate the blood–brain barrier (BBB) when drugs are administered systemically through the bloodstream. Nanoscale particles play a special role among materials capable of binding drug molecules and successfully crossing the BBB. Biopolymeric nanoparticles (NPs) demonstrate excellent biocompatibility and have the remarkable ability to modify the environment surrounding tumor cells, thereby potentially improving cellular uptake of delivery agents. In our research, nanoscale polyelectrolyte complexes (PECs) ranging in size from 56 to 209 nm were synthesized by ionic interaction of the oppositely charged polysaccharides pectin and chitosan. The structural characteristics of these complexes were carefully characterized by infrared (FTIR) and Raman spectroscopy. The immobilization efficiency of antitumor drugs was comprehensively evaluated using UV spectrophotometry. The cytotoxicity of the NPs was evaluated in the U87-MG cell line. The preliminary data indicate a significant decrease in the metabolic activity of these tumor cells. Important details on the interaction of the NPs with an endothelial layer structurally similar to the BBB were obtained by simulating the BBB using a model based on human blood vessels. Our studies allowed us to establish a significant correlation between the kinetic parameters of drug immobilization and the ratio of biopolymer concentrations in the initial compositions, which provides valuable information for future optimization of drug delivery system design. Full article
(This article belongs to the Special Issue Advanced Polymeric Biomaterials for Drug Delivery Applications)
Show Figures

Figure 1

Back to TopTop