Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (127)

Search Parameters:
Keywords = hygrothermal analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 40775 KB  
Article
Dynamic Hygrothermal Analysis for Retrofitting Opaque Envelopes in Humid Climates: From Simulations to Guidelines
by Antonio Cristaudo, Francesco Nicoletti, Cristina Carpino and Roberto Bruno
Buildings 2026, 16(2), 419; https://doi.org/10.3390/buildings16020419 - 19 Jan 2026
Viewed by 161
Abstract
This paper introduces the dynamic hygrothermal performances of existing walls in humid climates using the EN ISO 15026 procedure. Water content, mould formation and freezing risk were investigated considering rock wool (RW) and expanded polystyrene (EPS) allocated at different points of two typologies [...] Read more.
This paper introduces the dynamic hygrothermal performances of existing walls in humid climates using the EN ISO 15026 procedure. Water content, mould formation and freezing risk were investigated considering rock wool (RW) and expanded polystyrene (EPS) allocated at different points of two typologies of existing walls requiring renovation. Results show that RW is recommended for insulation on the external side, whereas EPS is more suitable for the internal side. A freezing risk occurs in massive walls insulated internally with RW in severe winter climates. Mould formation appears in the initial phases on the renovated side, driven by the built-in humidity of the new layers. Wall thermal transmittance shows large fluctuations, especially in lightweight structures renovated with EPS, reaching an increase of over 22% at the beginning of the heating period, driven by EPS water content peaks of 1.9 kg/m2 in cold climates when installed on the external side, achieved in a stabilized regime and independently from the wall’s technical solution. Outcomes confirm transient hygrothermal analysis as the recommended approach to evaluate the component behaviour over a long-term projection, facilitating sizing in the design phase and ensuring compliance with regulations for retrofitted elements. Full article
Show Figures

Figure 1

25 pages, 3934 KB  
Article
Urban Heat Islands: Their Influence on Building Heating and Cooling Energy Demand Throughout Local Climate Zones
by Marta Lucas Bonilla, Cristina Nuevo-Gallardo, Jose Manuel Lorenzo Gallardo and Beatriz Montalbán Pozas
Urban Sci. 2026, 10(1), 43; https://doi.org/10.3390/urbansci10010043 - 11 Jan 2026
Viewed by 259
Abstract
The thermal influence of Urban Heat Islands (UHIs) is not limited to periods of high temperature but persists throughout the year. The present study utilizes hourly data collected over a period of one year from a network of hygrothermal monitoring stations with a [...] Read more.
The thermal influence of Urban Heat Islands (UHIs) is not limited to periods of high temperature but persists throughout the year. The present study utilizes hourly data collected over a period of one year from a network of hygrothermal monitoring stations with a high density, which were deployed across the city of Cáceres (Spain). The network was designed in accordance with the World Meteorological Organization’s guidelines for urban measurements (employing radiation footprints and surface roughness) and ensures representation of each Local Climate Zone (LCZ), characterized by those factors (such as building typology and density, urban fabric, vegetation, and anthropogenic activity, among others) that influence potential solar radiation absorption. The magnitude of the heat island effect in this city has been determined to be approximately 7 °C in summer and winter at the first hours of the morning. In order to assess the energy impact of UHIs, Cooling and Heating Degree Days (CDD and HDD) were calculated for both summer and winter periods across the different LCZs. Following the implementation of rigorous quality control procedures and the utilization of gap-filling techniques, the analysis yielded discrepancies in energy demand of up to 10% between LCZs within the city. The significance of incorporating UHIs into the design of building envelopes and climate control systems is underscored by these findings, with the potential to enhance both energy efficiency and occupant thermal comfort. This methodology is particularly relevant for extrapolation to larger and denser urban environments, where the intensification of UHI effects exerts a direct impact on energy consumption and costs. The following essay will provide a comprehensive overview of the relevant literature on the subject. Full article
(This article belongs to the Special Issue Urban Building Energy Analysis)
Show Figures

Figure 1

34 pages, 11265 KB  
Article
Tribological Response of Basalt/Carbon Hybrid Laminated Composites After Water-Immersion Aging: Influence of Stacking Sequence Under Reciprocating Wear
by Sinan Fidan, Satılmış Ürgün, Mehmet İskender Özsoy, Mustafa Özgür Bora, Togayhan Kutluk and Erman Güleç
Polymers 2026, 18(1), 57; https://doi.org/10.3390/polym18010057 - 25 Dec 2025
Viewed by 445
Abstract
This study investigates the tribological response of basalt, carbon, and basalt–carbon hybrid laminates subjected to pressurized water-immersion aging and reciprocating sliding, with emphasis on the role of stacking sequence. Composite plates with B8, C8, B2C4B [...] Read more.
This study investigates the tribological response of basalt, carbon, and basalt–carbon hybrid laminates subjected to pressurized water-immersion aging and reciprocating sliding, with emphasis on the role of stacking sequence. Composite plates with B8, C8, B2C4B2, and C2B4C2 architectures were aged in deionized water at 10 bar for up to 30 days, then tested against a 100Cr6 steel ball at 30 N, 50 m track and 1 or 2 Hz. Water uptake ranged from approximately 4.3% for B8 to 1.2–2.7% for carbon-rich and hybrid laminates, and induced a depression and broadening of the epoxy glass-transition region that was most severe in basalt-skinned systems. At 1 Hz and 30-day aging, B8 exhibited the most severe damage, with wear-scar widths and depths approaching 3.0 mm and 0.50 mm, whereas C8 retained narrow shallow scars below 0.8 mm and 0.02 mm and COF values below 0.20. Increasing frequency to 2 Hz mitigated wear, reducing B8 depth to approximately 0.30 mm under similar conditions. Factorial analysis attributed more than 70% of the variance in wear width to laminate architecture. The combined pressurized immersion, multi-frequency reciprocating wear and DSC, profilometry, and SEM methodology provides an original framework to link hygrothermal plasticization to architecture-dependent tribological durability in hybrid basalt–carbon laminates. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

31 pages, 15354 KB  
Article
Forecasting the Hygrothermal Condition of Partitions in a Thermally Modernized Historical Wooden Building—A Case Study
by Bożena Orlik-Kożdoń, Agnieszka Szymanowska-Gwiżdż and Elżbieta Rdzawska-Augustin
Energies 2025, 18(21), 5621; https://doi.org/10.3390/en18215621 - 26 Oct 2025
Viewed by 633
Abstract
The paper presents select in situ and numerical investigations related to improving the energy efficiency of historic buildings. Using the case study of a historic timber building as an example, the procedure of the in situ investigation of its existing condition is presented. [...] Read more.
The paper presents select in situ and numerical investigations related to improving the energy efficiency of historic buildings. Using the case study of a historic timber building as an example, the procedure of the in situ investigation of its existing condition is presented. This procedure included measuring the moisture of the timber elements, determining the presence of fungi, mold, and wood-destroying insects, infrared camera inspection, and measuring the microclimate of the rooms. According to the conclusions of the building survey report, conservation guidelines were proposed. On the basis of those proposed guidelines, thermal upgrades were suggested, including insulation on the inside of the envelope components. Detailed numerical calculations were provided for the proposed thermal insulation systems. Those included a hygrothermal performance evaluation in the context of the change in the moisture content of timber elements in the insulated envelope components. The risk of mold development on the surface of selected junctions was also estimated. The key outcome of this study is a proprietary procedure for improving the thermal protection quality of envelope components of historic timber buildings. Full article
Show Figures

Figure 1

13 pages, 1948 KB  
Article
The Hygric Behaviour of Historic and Newly Fabricated Lime-Based Mortars, Renders and Plasters
by Rosanne Walker, Anna Hofheinz, Caroline Engel Purcell and Oliver Kinnane
Architecture 2025, 5(4), 99; https://doi.org/10.3390/architecture5040099 - 22 Oct 2025
Viewed by 604
Abstract
Lime-based repair mortars, plasters, and renders are widely utilized in the conservation of traditional buildings. Historically, considerable emphasis has been placed on ensuring that new repair mortars are aesthetically compatible with existing historic materials. However, comparatively less focus has been placed on ensuring [...] Read more.
Lime-based repair mortars, plasters, and renders are widely utilized in the conservation of traditional buildings. Historically, considerable emphasis has been placed on ensuring that new repair mortars are aesthetically compatible with existing historic materials. However, comparatively less focus has been placed on ensuring hygric compatibility, which is critical to maintaining the moisture equilibrium of traditional masonry walls and preventing moisture accumulation caused by repair interventions. The FabTrads project examined the hygrothermal properties of newly fabricated quicklime mortars, prepared with binder-to-aggregate ratios of 1:2 and 1:4, alongside a range of historic lime-based mortars, plasters, and renders, sourced from buildings across Ireland. This paper presents a comparative analysis of their hygric behaviour. Experimental results indicate that the capillary absorption of the fabricated mortars correlates well with their historic counterparts. Both fabricated mortars exhibited vapour diffusion resistance factors within the range of the historic samples, albeit towards the higher end. Hygrothermal simulations of vapour and liquid water transport revealed that the moisture behaviour of the fabricated mortars is largely within the range of performance of their historic counterparts. Relative humidity was slightly elevated for the fabricated mortars in the models concerning vapour transfer. Notwithstanding this, the findings provide a reassuring indication that the hygric performance of fabricated quicklime mortars is comparable with that of traditional lime-based materials, supporting their appropriate use in conservation practices without adversely affecting the moisture dynamics of the building fabric. Full article
(This article belongs to the Special Issue Strategies for Architectural Conservation and Adaptive Reuse)
Show Figures

Figure 1

18 pages, 5858 KB  
Article
Research on Deformation Behavior and Mechanisms of Concrete Under Hygrothermal Coupling Effects
by Mingyu Li, Chunxiao Zhang, Aiguo Dang, Xiang He, Jingbiao Liu and Xiaonan Liu
Buildings 2025, 15(19), 3514; https://doi.org/10.3390/buildings15193514 - 29 Sep 2025
Viewed by 560
Abstract
This study elucidated the evolution and catastrophic failure mechanisms of concrete’s mechanical properties under high-temperature and moisture-coupled environments. Specimens underwent hygrothermal shock simulation via constant-temperature drying (100 °C/200 °C, 4 h) followed by water quenching (20 °C, 30 min). Uniaxial compression tests were [...] Read more.
This study elucidated the evolution and catastrophic failure mechanisms of concrete’s mechanical properties under high-temperature and moisture-coupled environments. Specimens underwent hygrothermal shock simulation via constant-temperature drying (100 °C/200 °C, 4 h) followed by water quenching (20 °C, 30 min). Uniaxial compression tests were performed using a uniaxial compression test machine with synchronized multi-scale damage monitoring that integrated digital image correlation (DIC), acoustic emission (AE), and infrared thermography. The results demonstrated that hygrothermal coupling reduced concrete ductility significantly, in which the peak strain decreased from 0.36% (ambient) to 0.25% for both the 100 °C and 200 °C groups, while compressive strength declined to 42.8 MPa (−2.9%) and 40.3 MPa (−8.6%), respectively, with elevated elastic modulus. DIC analysis revealed the temperature-dependent failure mode reconstruction: progressive end cracking (max strain 0.48%) at ambient temperature transitioned to coordinated dual-end cracking with jump-type damage (abrupt principal strain to 0.1%) at 100 °C and degenerated to brittle fracture oriented along a singular path (principal strain band 0.015%) at 200 °C. AE monitoring indicated drastically reduced micro-damage energy barriers at 200 °C, where cumulative energy (4000 mV·ms) plummeted to merely 2% of the ambient group (200,000 mV·ms). Infrared thermography showed that energy aggregation shifted from “centralized” (ambient) to “edge-to-center migration” (200 °C), with intensified thermal shock effects in fracture zones (ΔT ≈ −7.2 °C). The study established that hygrothermal coupling weakens the aggregate-paste interfacial transition zone (ITZ) by concentrating the strain energy along singular weak paths and inducing brittle failure mode degeneration, which thereby provides theoretical foundations for fire-resistant design and catastrophic failure warning systems in concrete structures exposed to coupled environmental stressors. Full article
Show Figures

Figure 1

28 pages, 1799 KB  
Review
A Rapid Review of Hygrothermal Performance Metrics for Innovative Materials in Building Envelope Retrofits
by Robin Hilbrecht, Cynthia A. Cruickshank, Christopher Baldwin and Nicholas Scharf
Energies 2025, 18(18), 5016; https://doi.org/10.3390/en18185016 - 21 Sep 2025
Viewed by 1128
Abstract
With government, industry, and public pressure to decarbonize the building sector through reducing embodied and operational emissions, there have been a wide range of innovative materials used in building envelope retrofits. Although these innovative materials, such as super insulating materials, bio-based insulation, and [...] Read more.
With government, industry, and public pressure to decarbonize the building sector through reducing embodied and operational emissions, there have been a wide range of innovative materials used in building envelope retrofits. Although these innovative materials, such as super insulating materials, bio-based insulation, and many others, are assessed on thermal performance and code requirements before use in retrofits, there is no unified standard assessment metric for hygrothermal performance of innovative materials in building envelope retrofits. This paper performs a rapid review of the available literature from January 2013 to March 2025 on hygrothermal performance assessment metrics used in retrofits. Using rapid review methods to search for records in Scopus, Web of Science, and Google Scholar, fifty-nine publications were selected for bibliometric and qualitative analysis. Most selected publications include discussions and analysis of relative humidity in the wall assembly post retrofit, moisture content, and mould index within the envelope. There is a research gap in publications considering hygrothermal damage functions such as freeze–thaw index, relative humidity and temperature (RHT) index, or condensation prediction. There is also a research gap in country and climate studies and analyses of in situ retrofits with innovative materials, and occupant comfort post retrofit. Full article
Show Figures

Figure 1

16 pages, 2115 KB  
Article
Hygrothermal Aging and Thermomechanical Characterization of As-Manufactured Tidal Turbine Blade Composites
by Paul Murdy, Robynne E. Murray, David Barnes, Ariel F. Lusty, Erik G. Rognerud, Peter J. Creveling and Daniel Samborsky
J. Mar. Sci. Eng. 2025, 13(9), 1790; https://doi.org/10.3390/jmse13091790 - 16 Sep 2025
Cited by 2 | Viewed by 758
Abstract
This study investigates the hygrothermal aging behavior and thermomechanical properties of as-manufactured glass fiber-reinforced epoxy and thermoplastic composite tidal turbine blades. The blades were previously deployed in a marine environment and subsequently analyzed through a comprehensive suite of material characterization techniques, including hygrothermal [...] Read more.
This study investigates the hygrothermal aging behavior and thermomechanical properties of as-manufactured glass fiber-reinforced epoxy and thermoplastic composite tidal turbine blades. The blades were previously deployed in a marine environment and subsequently analyzed through a comprehensive suite of material characterization techniques, including hygrothermal aging, dynamic mechanical analysis (DMA), tensile testing and X-ray computed tomography (XCT). Hygrothermal aging experiments revealed that while thermoplastic composites exhibited lower overall water absorption (0.78% vs. 0.47%), they had significantly higher diffusion coefficients than epoxy (2.1 vs. 12.1 × 10−13 m2s−1), suggesting faster saturation in operational environments. DMA results demonstrated that water ingress caused plasticization in epoxy matrices, reducing the glass transition temperature and increasing damping (112 °C to 104 °C), while thermoplastic composites showed more stable thermal behavior (87 °C glass transition temperature). Tensile testing revealed substantial reductions in ultimate strength (>40%) for both materials after prolonged water exposure, with minimal change in elastic modulus, highlighting the role of matrix degradation over fiber reinforcement. XCT image analysis showed that both composites were manufactured with high quality: no large voids or cracks were present, and the degree of misalignment was low. These findings inform future marine renewable energy composite designs by emphasizing the critical influence of moisture on long-term structural integrity and the need for optimized material systems in harsh marine environments. This work provides a rare real-world comparison of epoxy and recyclable thermoplastic tidal turbine blades, showing how laboratory aging tests and advanced imaging reveal the influence of material and manufacturing choices on long-term marine durability. Full article
Show Figures

Figure 1

23 pages, 7098 KB  
Article
Adaptive Thermal Comfort Assessment in Residential Buildings Under Current and Future Mediterranean Climate Scenarios
by Asmaa Tellache, Youcef Lazri, Abdelkader Laafer and Shady Attia
Buildings 2025, 15(17), 3171; https://doi.org/10.3390/buildings15173171 - 3 Sep 2025
Cited by 1 | Viewed by 2242
Abstract
This article presents a comparative evaluation of three established thermal comfort models (ISSO 74, ASHRAE 55, and EN 16798-1) in the context of residential buildings in Algiers, under current and projected Mediterranean climate conditions. By combining field measurements, occupant interviews, and dynamic simulations [...] Read more.
This article presents a comparative evaluation of three established thermal comfort models (ISSO 74, ASHRAE 55, and EN 16798-1) in the context of residential buildings in Algiers, under current and projected Mediterranean climate conditions. By combining field measurements, occupant interviews, and dynamic simulations in DesignBuilder, this research analyzes thermal comfort responses using the RCP 8.5 climate scenario. The analysis demonstrates that ISSO 74 is more suitable for temperature adaptation, while EN 16798-1 offers better humidity tolerance in high-moisture environments. Results reveal that indoor thermal discomfort currently affects more than one-third of the annual hours, with summer discomfort projected to dominate by 2100. Bedrooms are identified as the most thermally vulnerable spaces during peak summer weeks. The article identifies a critical mismatch between existing comfort standards and local climatic realities, calling for the development of an adaptive thermal comfort model tailored to the socio-economic and hygrothermal characteristics of North African cities. Passive strategies and mixed-mode ventilation are recommended as essential for enhancing climate resilience and reducing energy demand. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

20 pages, 5076 KB  
Article
Understanding the Interfacial Behavior of Cycloaliphatic-like Epoxy Resin with Optical Fibers: Insights from Experiments and Molecular Simulations
by Jianbing Fu, Zhifan Lin, Junhao Luo, Yufan Zheng, Yuhao Liu, Bin Cao, Fanghui Yin and Liming Wang
Materials 2025, 18(16), 3830; https://doi.org/10.3390/ma18163830 - 15 Aug 2025
Viewed by 844
Abstract
Optical fiber composite insulators are essential for photoelectric current measurement, yet insulation failure at embedded optical fiber interfaces remains a major challenge to long-term stability. This study proposes a strategy to replace conventional silicone rubber with cycloaliphatic-like epoxy resin (CEP) as the shed-sheathing [...] Read more.
Optical fiber composite insulators are essential for photoelectric current measurement, yet insulation failure at embedded optical fiber interfaces remains a major challenge to long-term stability. This study proposes a strategy to replace conventional silicone rubber with cycloaliphatic-like epoxy resin (CEP) as the shed-sheathing material. Three optical fibers with distinct outer coatings, ethylene-tetrafluoroethylene copolymer (ETFE), thermoplastic polyester elastomer (TPEE), and epoxy acrylate resin (EA), were evaluated for their interfacial compatibility with CEP. ETFE, with low surface energy and weak polarity, exhibited poor wettability with CEP, resulting in an interfacial tensile strength of 0 MPa, pronounced dye penetration, and rapid electrical tree propagation. Its average interfacial breakdown voltage was only 8 kV, and the interfacial leakage current reached 35 μA after hygrothermal aging. In contrast, TPEE exhibited high surface energy and strong polarity, enabling strong bonding with CEP, yielding an average interfacial tensile strength of approximately 46 MPa. Such a strong interface effectively suppressed electrical tree growth, increased the average interfacial breakdown voltage to 27 kV, and maintained the interfacial leakage current below 5 μA even after hygrothermal aging. EA exhibited moderate interfacial performance. Mechanism analysis revealed that polar ester and ether groups in TPEE enhanced interfacial electrostatic interactions, restricted the mobility of CEP molecular chain segments, and increased charge traps. These synergistic effects suppressed interfacial charge transport and improved insulation strength. This work offers valuable insight into structure–property relationships at fiber–resin interfaces and provides a useful reference for the design of composite insulation materials. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

19 pages, 5847 KB  
Article
Parametric Analysis of Rammed Earth Walls in the Context of the Thermal Protection of Environmentally Friendly Buildings
by Piotr Kosiński, Wojciech Jabłoński and Krystian Patyna
Sustainability 2025, 17(15), 6886; https://doi.org/10.3390/su17156886 - 29 Jul 2025
Viewed by 2059
Abstract
Rammed earth (RE), a traditional material aligned with circular economy (CE) principles, has been gaining renewed interest in contemporary construction due to its low environmental impact and compatibility with sustainable building strategies. Though not a modern invention, it is being reintroduced in response [...] Read more.
Rammed earth (RE), a traditional material aligned with circular economy (CE) principles, has been gaining renewed interest in contemporary construction due to its low environmental impact and compatibility with sustainable building strategies. Though not a modern invention, it is being reintroduced in response to the increasingly strict European Union (EU) regulations on carbon footprint, life cycle performance, and thermal efficiency. RE walls offer multiple benefits, including humidity regulation, thermal mass, plasticity, and structural strength. This study also draws attention to their often-overlooked ability to mitigate indoor overheating. To preserve these advantages while enhancing thermal performance, this study explores insulation strategies that maintain the vapor-permeable nature of RE walls. A parametric analysis using Delphin 6.1 software was conducted to simulate heat and moisture transfer in two main configurations: (a) a ventilated system insulated with mineral wool (MW), wood wool (WW), hemp shives (HS), and cellulose fiber (CF), protected by a jute mat wind barrier and finished with wooden cladding; (b) a closed system using MW and WW panels finished with lime plaster. In both cases, clay plaster was applied on the interior side. The results reveal distinct hygrothermal behavior among the insulation types and confirm the potential of natural, low-processed materials to support thermal comfort, moisture buffering, and the alignment with CE objectives in energy-efficient construction. Full article
Show Figures

Figure 1

21 pages, 5628 KB  
Article
Hygrothermal Stress Analysis of Epoxy Molding Compound in Fan-Out Panel-Level Package Based on Experimental Characterization and Structural Sensitivity
by Yu-Chi Sung, Chih-Ping Hu, Sheng-Jye Hwang, Ming-Hsien Shih, Wen-Hsiang Liao, Yong-Jie Zeng and Cheng-Tse Tsai
Polymers 2025, 17(15), 2034; https://doi.org/10.3390/polym17152034 - 25 Jul 2025
Viewed by 1162
Abstract
As semiconductor devices demand higher input–output density and faster signal transmission, fan-out panel-level packaging has emerged as a promising solution for next-generation electronic systems. However, the hygroscopic nature of epoxy molding compounds raises critical reliability concerns under high-temperature and high-humidity conditions. This study [...] Read more.
As semiconductor devices demand higher input–output density and faster signal transmission, fan-out panel-level packaging has emerged as a promising solution for next-generation electronic systems. However, the hygroscopic nature of epoxy molding compounds raises critical reliability concerns under high-temperature and high-humidity conditions. This study investigates the hygrothermal stress of a single fan-out panel-level package unit through experimental characterization and numerical simulation. Thermal–mechanical analysis was conducted at 100 °C and 260 °C to evaluate the strain behavior of two commercial epoxy molding compounds in granule form after moisture saturation. The coefficient of moisture expansion was calculated by correlating strain variation with moisture uptake obtained under 85 °C and 85% relative humidity, corresponding to moisture sensitivity level 1 conditions. These values were directly considered into a moisture -thermal coupled finite element analysis. The simulation results under reflow conditions demonstrate accurate principal stress and failure location predictions, with stress concentrations primarily observed at the die corners. The results confirm that thermal effects influence stress development more than moisture effects. Finally, a structural sensitivity analysis of the single-package configuration showed that optimizing the thickness of the dies and epoxy molding compound can reduce maximum principal stress by up to 12.4%, providing design insights for improving package-level reliability. Full article
(This article belongs to the Special Issue Epoxy Resins and Epoxy-Based Composites: Research and Development)
Show Figures

Figure 1

18 pages, 2921 KB  
Article
Comprehensive Evaluation and Analysis of Aging Performance of Polymer-Rich Anchoring Adhesives
by Bing Zeng, Shuo Wu and Shufang Yao
Materials 2025, 18(15), 3484; https://doi.org/10.3390/ma18153484 - 25 Jul 2025
Viewed by 768
Abstract
In civil engineering, with the increasing demand for structural reinforcement and renovation projects, polymer-rich anchoring adhesives have attracted much attention due to their performance advantage of having high strength and have become a key factor in ensuring the safety and durability of buildings. [...] Read more.
In civil engineering, with the increasing demand for structural reinforcement and renovation projects, polymer-rich anchoring adhesives have attracted much attention due to their performance advantage of having high strength and have become a key factor in ensuring the safety and durability of buildings. In this study, polymer-rich anchoring adhesives underwent three artificial aging treatments (alkali medium, hygrothermal, and water bath) to evaluate their aging performance. Alkali treatment reduced bending strength by up to 70% (sample 5#) within 500 h before stabilizing, while hygrothermal and water-curing treatments caused reductions of 16–51% and 15–77%, respectively, depending on adhesive composition. Dynamic thermomechanical analysis revealed significant loss factor decreases (e.g., epoxy adhesives dropped from >1.0 to stable lower values after 500 h aging), indicating increased rigidity. Infrared spectroscopy confirmed chemical degradation, including ester group breakage in vinyl ester resins (peak shifts at 1700 cm−1 and 1100 cm−1) and molecular chain scission in unsaturated polyesters. The three test methods consistently demonstrated that 500 h of aging sufficiently captured performance trends, with alkali exposure causing the most severe degradation in sensitive formulations (e.g., samples 5# and 6#). These results can be used to establish quantitative benchmarks for adhesive durability assessment in structural applications. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

19 pages, 2000 KB  
Article
Window Frame Design Optimization Analysis Based on Hygrothermal Performance and the Level(s) Framework
by Konstantin Verichev, Carmen Díaz-López, Andrés García-Ruíz and Francisca Valdenegro
Buildings 2025, 15(12), 2126; https://doi.org/10.3390/buildings15122126 - 19 Jun 2025
Viewed by 1295
Abstract
This study investigates the hygrothermal performance of window frames to assess their capacity to prevent surface condensation—a critical factor for indoor air quality and building durability, particularly in humid climates. Driven by the practical need to replace existing aluminum frames with more sustainable [...] Read more.
This study investigates the hygrothermal performance of window frames to assess their capacity to prevent surface condensation—a critical factor for indoor air quality and building durability, particularly in humid climates. Driven by the practical need to replace existing aluminum frames with more sustainable alternatives, the research evaluates standard aluminum frames against modified timber frames designed to replicate the aluminum geometry. Using daily temperature and humidity data from Valdivia, Chile (2023)—a city with a temperate oceanic and humid climate—interior surface temperatures were simulated with HTflux software and compared against dew point values over a relative humidity (RH) range from 40% to 80%. A novel methodology is proposed for verifying the hygrothermal behavior of window frames based on annual performance analysis and highlighting the need to optimize window design according to specific local climate conditions. The results indicate that modified timber frames exhibited consistently lower average interior surface temperatures (by 1.2 °C) and a significantly higher risk of surface condensation compared to aluminum frames, particularly at typical comfort-level indoor humidity conditions (e.g., 167 vs. 100 condensation days at 50% RH). While both materials presented a high risk of condensation under extreme humidity conditions (80% RH), timber frames showed potentially greater severity of condensation. These findings underscore that the proposed timber frame modification is not hygrothermally adequate without strict control of indoor humidity. Anchored in the Level(s) framework, the study emphasizes the critical influence of geometric design on material performance and advocates for holistic, sustainable construction practices that balance energy efficiency, environmental impact, and occupant comfort. It highlights the need for integrated design solutions and effective moisture management to ensure building resilience in humid environments. Full article
(This article belongs to the Special Issue Trends and Prospects in Indoor Environment of Buildings)
Show Figures

Figure 1

26 pages, 4446 KB  
Article
Exploring the Dual Nature of Olive Husk: Fiber/Aggregate in Lightweight Bio-Concrete for Enhanced Hygrothermal, Mechanical, and Microstructural Properties
by Halima Belhadad, Nadir Bellel and Ana Bras
Buildings 2025, 15(11), 1950; https://doi.org/10.3390/buildings15111950 - 4 Jun 2025
Viewed by 1406
Abstract
This study investigates the potential of thermally treated olive husk (OH)—a heterogeneous agro-industrial by-product comprising olive stones, pulp, and fibrous residues—as a multifunctional component in lightweight bio-concrete. Uniquely, this work harnesses the intrinsic dual nature of OH as both a fibrous reinforcement and [...] Read more.
This study investigates the potential of thermally treated olive husk (OH)—a heterogeneous agro-industrial by-product comprising olive stones, pulp, and fibrous residues—as a multifunctional component in lightweight bio-concrete. Uniquely, this work harnesses the intrinsic dual nature of OH as both a fibrous reinforcement and a porous aggregate, without further fractionation, to evaluate its influence on the hygrothermal and mechanical behavior of cementitious composites. While prior studies have often focused selectively on thermal conductivity, this work provides a comprehensive assessment of all major thermal parameters; including diffusivity, effusivity, and specific heat capacity; offering deeper insights into the full thermal behavior of bio-based concretes. OH was incorporated at 0%, 10%, and 20% by weight, and the resulting concretes were subjected to a comprehensive characterization of their thermal, hygric, mechanical, and microstructural properties. Thermal performance metrics included conductivity, specific heat capacity, diffusivity, effusivity, time lag, and predicted energy savings. Hygric behavior was assessed through the moisture buffering value (MBV), while density, porosity, and mechanical strengths were also evaluated. At 20% OH content, thermal conductivity decreased to 0.405 W/m·K (a 72% reduction), thermal diffusivity dropped by 87%, and thermal effusivity reached 554 W·s0.5/m2·K, collectively enhancing thermal inertia and increasing the time lag by 77% (to 2.32 h). MBVs improved to 2.18 g/m2·%RH, rated as “Excellent” for indoor moisture regulation. Despite the higher porosity, the bio-concrete maintained adequate mechanical integrity, with compressive and flexural strengths of 11.68 MPa and 3.58 MPa, respectively, attributed to the crack-bridging action of the fibrous inclusions. Microstructural analysis (SEM/XRD) revealed improved paste continuity and denser C–S–H formation, attributed to enhanced matrix compatibility following oil removal via thermal pre-treatment. These findings demonstrate the viability of OH as a new bio-based, multifunctional additive for fabricating thermally efficient, hygroscopically active, and structurally sound concretes suitable for sustainable construction. Full article
(This article belongs to the Collection Advanced Concrete Materials in Construction)
Show Figures

Figure 1

Back to TopTop