A Rapid Review of Hygrothermal Performance Metrics for Innovative Materials in Building Envelope Retrofits
Abstract
1. Introduction
1.1. Innovative Materials
1.2. Building Envelope Retrofits
1.3. Hygrothermal Assessment
1.4. Aim
- What hygrothermal performance metrics were used most frequently to assess the innovative materials used in wall retrofits?
- What is the scale of the retrofit, scope of hygrothermal monitoring, and application of retrofit?
- What innovative materials were used most frequently when discussing hygrothermal performance in retrofits?
2. Review Method
2.1. Literature Search
- Is this publication focused on a building retrofit?
- Is there a hygrothermal performance assessment or discussion of moisture or condensation?
- Is there a novel material, innovative construction method, or innovative assembly for the retrofit?
2.2. Exclusion Criteria
2.3. Selected Publications
3. Results and Analysis
3.1. Retrofit Materials
3.1.1. Bio-Based/Organic Natural Fibers
3.1.2. Super Insulators
3.1.3. Inorganic Materials
3.1.4. Historic Materials
3.1.5. Façades and Modular Cladding Systems
3.2. Scale and Application of Retrofit
3.3. Simulation Tools
3.4. Hygrothermal Performance Metrics Included
3.4.1. Relative Humidity
3.4.2. Moisture Content
3.4.3. Mould Risk Analysis
3.4.4. Condensation Risk
3.4.5. Freeze–Thaw Risks
3.4.6. U-Value and Thermal Performance Metrics
3.4.7. RHT and RHTT
3.4.8. Occupant Comfort and Object Metrics
3.4.9. Other Types of Metrics in the Envelope
4. Discussion
4.1. Discussion of Hygrothermal Performance Metrics
4.2. Retrofit Types
4.3. Use of Hygrothermal Simulation
4.4. Gaps in Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| ASHRAE | American Society of Heating, Refrigerating and Air Conditioning Engineers |
| BIPV | Building Integrated Photovoltaic |
| CaSi | Calcium Silicate |
| ELM | Equivalent Lifetime Multiplier |
| PEER | Panelized Exterior Energy Retrofit |
| PRISMA | Preferred Reporting Items for Systematic reviews and Meta-Analyses |
| RHT | Relative Humidity and Temperature |
| RHTT | Relative Humidity and Temperature Time |
| TOW | Time Of Wetness |
| VIP | Vacuum Insulated Panel |
| VTT | Valtion teknillinen tutkimuskeskus (Technical Research Centre of Finland) |
| WTA | Wissenshaftlich Technische Arbeitsgemeinschaft für Bauwerkserhaltung und Denkmalpflege (Technical Scientific Working group for building preservation and monument conservation) |
| WUFI | Wärme und Feuchte Instationär (Heat and Moisture transient transport) |
References
- Fořt, J.; Černý, R. Limited interdisciplinary knowledge transfer as a missing link for sustainable building retrofits in the residential sector. J. Clean. Prod. 2022, 343, 131079. [Google Scholar] [CrossRef]
- Marincioni, V.; Gori, V.; de Place Hansen, E.J.; Herrera-Avellanosa, D.; Mauri, S.; Giancola, E.; Egusquiza, A.; Buda, A.; Leonardi, E.; Rieser, A. How Can Scientific Literature Support Decision-Making in the Renovation of Historic Buildings? An Evidence-Based Approach for Improving the Performance of Walls. Sustainability 2021, 13, 2266. [Google Scholar] [CrossRef]
- European Parliament, Council of Europe Directive (EU) 2024/1275 of the European Parliament and of the Council of 24 April 2024 on the Energy Performance of Buildings (Recast) (Text with EEA Relevance). Document 32024L1275. 2024, 68. Available online: https://eur-lex.europa.eu/eli/dir/2024/1275/oj/eng (accessed on 12 March 2025).
- Natural Resources Canada. Prefabricated Exterior Energy Retrofit (PEER) Project Guide, Version 1.0; Natural Resources Canada = Ressources Naturelles Canada: Ottawa, ON, Canada, 2023. [Google Scholar]
- Weerasinghe, L.N.K.; Darko, A.; Chan, A.P.C.; Blay, K.B.; Edwards, D.J. Measures, benefits, and challenges to retrofitting existing buildings to net zero carbon: A comprehensive review. J. Build. Eng. 2024, 94, 109998. [Google Scholar] [CrossRef]
- de Place Hansen, E.J.; Møller, E.B.; Ørsager, M. Guidelines for internal Insulation of historic Buildings. E3S Web Conf. 2020, 172, 01004. [Google Scholar] [CrossRef]
- Ang, Y.Q.; Chew, L.W.; Samuelson, H. Healthy building design strategies: A cross-topic systematic review. J. Build. Eng. 2025, 105, 112421. [Google Scholar] [CrossRef]
- Svensson Tengberg, C.; Hagentoft, C.-E. Risk Assessment Framework to Avoid Serial Failure for New Technical Solutions Applied to the Construction of a CLT Structure Resilient to Climate. Buildings 2021, 11, 247. [Google Scholar] [CrossRef]
- Blavier, C.L.S.; Huerto-Cardenas, H.E.; Aste, N.; Del Pero, C.; Leonforte, F.; Della Torre, S. Adaptive measures for preserving heritage buildings in the face of climate change: A review. Build. Environ. 2023, 245, 110832. [Google Scholar] [CrossRef]
- Posani, M.; Veiga, M.D.R.; de Freitas, V.P. Towards Resilience and Sustainability for Historic Buildings: A Review of Envelope Retrofit Possibilities and a Discussion on Hygric Compatibility of Thermal Insulations. Int. J. Archit. Herit. 2021, 15, 807–823. [Google Scholar] [CrossRef]
- Stahl, T.; Ghazi Wakili, K.; Hartmeier, S.; Franov, E.; Niederberger, W.; Zimmermann, M. Temperature and moisture evolution beneath an aerogel based rendering applied to a historic building. J. Build. Eng. 2017, 12, 140–146. [Google Scholar] [CrossRef]
- Cyphers, R.A.; Wagner, C.M.; Knorowski, J.M. Development of Standards to Evaluate, Analyze, and Retrofit Mass Wall Assemblies and Steep Sloped Roof Assemblies of Existing Buildings for Compliance with Energy Codes; ASTM International: West Conshohocken, PA, USA, 2017; pp. 50–68. [Google Scholar]
- Havinga, L.; Schellen, H. The impact of convective vapour transport on the hygrothermal risk of the internal insulation of post-war lightweight prefab housing. Energy Build. 2019, 204, 109418. [Google Scholar] [CrossRef]
- Recart, C.; Sturts Dossick, C. Hygrothermal behavior of post-retrofit housing: A review of the impacts of the energy efficiency upgrade strategies. Energy Build. 2022, 262, 112001. [Google Scholar] [CrossRef]
- Garritty, C.; Gartlehner, G.; Nussbaumer-Streit, B.; King, V.J.; Hamel, C.; Kamel, C.; Affengruber, L.; Stevens, A. Cochrane Rapid Reviews Methods Group offers evidence-informed guidance to conduct rapid reviews. J. Clin. Epidemiol. 2021, 130, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Covidence Systematic Review Software, Version 2025-03-30; Veritas Health Innovation: Melbourne, Australia. Available online: www.covidence.org (accessed on 20 June 2025).
- Andenæs, E.; Kvande, T.; Muthanna, T.M.; Lohne, J. Performance of Blue-Green Roofs in Cold Climates: A Scoping Review. Buildings 2018, 8, 55. [Google Scholar] [CrossRef]
- Shafique, M.; Kim, R.; Rafiq, M. Green roof benefits, opportunities and challenges—A review. Renew. Sustain. Energy Rev. 2018, 90, 757–773. [Google Scholar] [CrossRef]
- Liu, C.; Sharples, S.; Mohammadpourkarbasi, H. A Review of Building Energy Retrofit Measures, Passive Design Strategies and Building Regulation for the Low Carbon Development of Existing Dwellings in the Hot Summer–Cold Winter Region of China. Energies 2023, 16, 4115. [Google Scholar] [CrossRef]
- Litmaps. Litmaps (Version 2025-01-16). 2024. Available online: https://www.litmaps.com/ (accessed on 1 May 2025).
- Arregi, B.; Little, J. Hygrothermal risk evaluation for the retrofit of a typical solid-walled dwelling. SDAR J. Sustain. Des. Appl. Res. 2016, 4, 3. [Google Scholar] [CrossRef]
- Finken, G.R.; Bjarløv, S.P.; Peuhkuri, R.H. Effect of façade impregnation on feasibility of capillary active thermal internal insulation for a historic dormitory—A hygrothermal simulation study. Constr. Build. Mater. 2016, 113, 202–214. [Google Scholar] [CrossRef]
- Guizzardi, M.; Carmeliet, J.; Derome, D. Risk analysis of biodeterioration of wooden beams embedded in internally insulated masonry walls. Constr. Build. Mater. 2015, 99, 159–168. [Google Scholar] [CrossRef]
- Little, J.; Ferraro, C.; Arregi, B. Assessing Risks in Insulation Retrofits Using Hygrothermal Software Tools; Technical Paper 15; Technological University Dublin: Dublin, Ireland, 2015. [Google Scholar] [CrossRef]
- Vereecken, E.; Van Gelder, L.; Janssen, H.; Roels, S. Interior insulation for wall retrofitting–A probabilistic analysis of energy savings and hygrothermal risks. Energy Build. 2015, 89, 231–244. [Google Scholar] [CrossRef]
- Zhao, J.; Grunewald, J.; Ruisinger, U.; Feng, S. Evaluation of capillary-active mineral insulation systems for interior retrofit solution. Build. Environ. 2017, 115, 215–227. [Google Scholar] [CrossRef]
- Zhou, X.; Carmeliet, J.; Derome, D. Influence of envelope properties on interior insulation solutions for masonry walls. Build. Environ. 2018, 135, 246–256. [Google Scholar] [CrossRef]
- Bottino-Leone, D.; Larcher, M.; Herrera-Avellanosa, D.; Haas, F.; Troi, A. Evaluation of natural-based internal insulation systems in historic buildings through a holistic approach. Energy 2019, 181, 521–531. [Google Scholar] [CrossRef]
- Coelho, G.B.A.; Henriques, F.M.A. Performance of passive retrofit measures for historic buildings that house artefacts viable for future conditions. Sustain. Cities Soc. 2021, 71, 102982. [Google Scholar] [CrossRef]
- Coelho, G.B.A.; Entradas Silva, H.; Henriques, F.M.A. Impact of climate change in cultural heritage: From energy consumption to artefacts’ conservation and building rehabilitation. Energy Build. 2020, 224, 110250. [Google Scholar] [CrossRef]
- Pedersen, M.; Margaretha Hognestad, H.; Helle, R.; Petter Jelle, B. The challenge of rehabilitating relocated listed heritage Buildings: Requirements and opportunities. Energy Build. 2024, 303, 113577. [Google Scholar] [CrossRef]
- Biseniece, E.; Žogla, G.; Kamenders, A.; Purviņš, R.; Kašs, K.; Vanaga, R.; Blumberga, A. Thermal performance of internally insulated historic brick building in cold climate: A long term case study. Energy Build. 2017, 152, 577–586. [Google Scholar] [CrossRef]
- Cascione, V.; Marra, E.; Zirkelbach, D.; Liuzzi, S.; Stefanizzi, P. Hygrothermal analysis of technical solutions for insulating the opaque building envelope. Energy Procedia 2017, 126, 203–210. [Google Scholar] [CrossRef]
- Ibrahim, M.; Sayegh, H.; Bianco, L.; Wurtz, E. Hygrothermal performance of novel internal and external super-insulating systems: In-situ experimental study and 1D/2D numerical modeling. Appl. Therm. Eng. 2019, 150, 1306–1327. [Google Scholar] [CrossRef]
- Wakili, K.G.; Dworatzyk, C.; Sanner, M.; Sengespeick, A.; Paronen, M.; Stahl, T. Energy efficient retrofit of a prefabricated concrete panel building (Plattenbau) in Berlin by applying an aerogel based rendering to its facades. Energy Build. 2018, 165, 293–300. [Google Scholar] [CrossRef]
- Iffa, E.; Salonvaara, M.; Tang, M.; Zhang, R.; Desjarlais, A. Evaluating the Hygrothermal Efficacy of Wood Fiber Insulation in Diverse Climates. In Multiphysics and Multiscale Building Physics; Springer: Berlin/Heidelberg, Germany, 2025; pp. 547–553. [Google Scholar] [CrossRef]
- Dalkowski, T.; Baldwin, C.; Cruickshank, C.A. In-Situ Testing of Commercial Steel Building Retrofits. In Multiphysics and Multiscale Building Physics, Proceedings of the 9th International Building Physics Conference (IBPC 2024), Toronto, ON, Canada, 25–27 July 2024; Springer: Berlin/Heidelberg, Germany, 2025; Volume 552, pp. 540–546. [Google Scholar] [CrossRef]
- Vereecken, E.; Roels, S. Capillary Active Interior Insulation Systems for Wall Retrofitting: A More Nuanced Story. Int. J. Archit. Herit. 2016, 10, 558–569. [Google Scholar] [CrossRef]
- Magrini, A.; Lazzari, S.; Marenco, L. Energy retrofitting of buildings and hygrothermal performance of building components: Application of the assessment methodology to a case study of social housing. Int. J. Heat Technol. 2017, 35, S205–S213. [Google Scholar] [CrossRef]
- Jimenez-Bescos, C.; Prewett, R. Monitoring IAQ and thermal comfort in a conservation area low energy retrofit. Energy Procedia 2018, 147, 195–201. [Google Scholar] [CrossRef]
- Costanzo, V.; Evola, G.; Marletta, L.; Roccella, G. Preliminary investigation on the transient hygrothermal analysis of a CLT-based retrofit solution for exterior walls. J. Phys. Conf. Proceeding 2021, 2042, 012142. [Google Scholar] [CrossRef]
- Whitman, C.J.; Prizeman, O.; Gwilliam, J.; Shea, A.; Walker, P. Energy retrofit infill panels for historic timber-framed buildings in the UK: Physical test panel monitoring versus hygrothermal simulation. Archit. Sci. Rev. 2021, 64, 5–16. [Google Scholar] [CrossRef]
- Callegaro, N.; Albatici, R. Energy retrofit with prefabricated timber-based façade modules: Pre- and post-comparison between two identical buildings. J. Facade Des. Eng. 2023, 11, 1–18. [Google Scholar] [CrossRef]
- Kaczorek, D. Numerical Evaluation of the Hygrothermal Performance of a Capillary Active Internal Wall Insulation System under Different Internal Conditions. Materials 2022, 15, 1862. [Google Scholar] [CrossRef]
- Besen, P.; Boarin, P. Integrating energy retrofit with seismic upgrades to future-proof built heritage: Case studies of unreinforced masonry buildings in Aotearoa New Zealand. Build. Environ. 2023, 241, 110512. [Google Scholar] [CrossRef]
- De Masi, R.F.; Ruggiero, S.; Vanoli, G.P. Hygro-thermal performance of an opaque ventilated façade with recycled materials during wintertime. Energy Build. 2021, 245, 110994. [Google Scholar] [CrossRef]
- Evola, G.; Costanzo, V.; Marletta, L. Hygrothermal and acoustic performance of two innovative envelope renovation solutions developed in the e-SAFE project. Energies 2021, 14, 4006. [Google Scholar] [CrossRef]
- Lu, J.; Marincioni, V.; Orr, S.A.; Altamirano-Medina, H. Climate resilience of internally-insulated historic masonry assemblies: Comparison of moisture risk under current and future climate scenarios. Minerals 2021, 11, 271. [Google Scholar] [CrossRef]
- Amorim, M.; de Freitas, V.P.; Torres, I. Influence of moisture on the energy performance of retrofitted walls-experimental assessment and validation of an hygrothermal model. Int. J. Archit. Herit. 2023, 18, 477–491. [Google Scholar] [CrossRef]
- Andreotti, M.; Calzolari, M.; Davoli, P.; Dias Pereira, L. Hygrothermal performance of an internally insulated masonry wall: Experimentations without a vapour barrier in a historic Italian Palazzo. Energy Build. 2022, 260, 111896. [Google Scholar] [CrossRef]
- Jensen, N.F.; Odgaard, T.R.; Bjarløv, S.P.; Andersen, B.; Rode, C.; Møller, E.B. Hygrothermal assessment of diffusion open insulation systems for interior retrofitting of solid masonry walls. Build. Environ. 2020, 182, 107011. [Google Scholar] [CrossRef]
- Jensen, N.F.; Bjarløv, S.P.; Rode, C.; Andersen, B.; Møller, E.B. Hygrothermal performance of six insulation systems for internal retrofitting solid masonry walls. J. Build. Phys. 2021, 44, 539–573. [Google Scholar] [CrossRef]
- Yasser, F.; Klalib, H.A.; Elnokaly, A.; Ianakiev, A. Sustainable Development of Grade 2 Listed Dwellings: A Wall Replication Method with Slim Wheat Straw Panels for Heritage Retrofitting. Sustainability 2025, 17, 2735. [Google Scholar] [CrossRef]
- Agliata, R.; Marino, A.; Mollo, L.; Pariso, P. Historic building energy audit and retrofit simulation with hemp-lime plaster-A case study. Sustainability 2020, 12, 4620. [Google Scholar] [CrossRef]
- Claude, S.; Ginestet, S.; Bonhomme, M.; Escadeillas, G.; Taylor, J.; Marincioni, V.; Korolija, I.; Altamirano, H. Evaluating retrofit options in a historical city center: Relevance of bio-based insulation and the need to consider complex urban form in decision-making. Energy Build. 2019, 182, 196–204. [Google Scholar] [CrossRef]
- Jensen, N.F.; Møller, E.B.; Hansen, K.K.; Rode, C. Hygrothermal assessment of three bio-based insulation systems for internal retrofitting solid masonry walls. J. Build. Phys. 2024, 48, 244–280. [Google Scholar] [CrossRef]
- Conley, B.; Carver, M.; Brideau, S. Hygrothermal monitoring of two pilot prefabricated exterior energy retrofit panel designs. J. Phys. Conf. Ser. 2021, 2069, 012028. [Google Scholar] [CrossRef]
- Pihelo, P.; Kalamees, T. Performance evaluation and development of prefabricated insulation elements for renovation of apartment buildings with autoclaved aerated concrete external walls. Energy Build. 2025, 332, 115439. [Google Scholar] [CrossRef]
- Pedroso, M.; Gomes, M.D.; Silvestre, J.D.; Hawreen, A.; Flores-Colen, I. Thermophysical Parameters and Hygrothermal Simulation of Aerogel-Based Fibre-Enhanced Thermal Insulating Renders Applied on Exterior Walls. Energies 2023, 16, 3048. [Google Scholar] [CrossRef]
- Koh, C.H.; Schollbach, K.; Gauvin, F.; Brouwers, H.J.H. Aerogel composite for cavity wall rehabilitation in the Netherlands: Material characterization and thermal comfort assessment. Build. Environ. 2022, 224, 109535. [Google Scholar] [CrossRef]
- Karim, A.N.; Sasic Kalagasidis, A.; Johansson, P. Drying of an aerogel-based coating system in Swedish climates: Field tests and simulations. J. Build. Eng. 2024, 84, 108532. [Google Scholar] [CrossRef]
- Hall, M.R.; Casey, S.P.; Loveday, D.L.; Gillott, M. Analysis of UK domestic building retrofit scenarios based on the E. ON Retrofit Research House using energetic hygrothermics simulation–Energy efficiency, indoor air quality, occupant comfort, and mould growth potential. Build. Environ. 2013, 70, 48–59. [Google Scholar] [CrossRef]
- Biswas, K.; Desjarlais, A.; Jiang, T.; Patel, T.; Nelson, A.; Smith, D. Demonstration of the Hygrothermal Performance of a Next-Generation Insulation Material in a Cold Climate; ASTM International: West Conshohocken, PA, USA, 2017; pp. 152–165. [Google Scholar]
- Johansson, P.; Geving, S.; Hagentoft, C.-E.; Jelle, B.P.; Rognvik, E.; Kalagasidis, A.S.; Time, B. Interior insulation retrofit of a historical brick wall using vacuum insulation panels: Hygrothermal numerical simulations and laboratory investigations. Build. Environ. 2014, 79, 31–45. [Google Scholar] [CrossRef]
- Johansson, P.; Hagentoft, C.E.; Sasic Kalagasidis, A. Retrofitting of a listed brick and wood building using vacuum insulation panels on the exterior of the facade: Measurements and simulations. Energy Build. 2014, 73, 92–104. [Google Scholar] [CrossRef]
- Conley, B.; Cruickshank, C.A.; Baldwin, C. Heat and moisture modelling of vacuum insulated retrofits with experimental validation. J. Phys. Conf. Ser. 2021, 2069, 012035. [Google Scholar] [CrossRef]
- Fenoglio, E.; Fantucci, S.; Serra, V.; Carbonaro, C.; Pollo, R. Hygrothermal and environmental performance of a perlite-based insulating plaster for the energy retrofit of buildings. Energy Build. 2018, 179, 26–38. [Google Scholar] [CrossRef]
- Galliano, R.; Wakili, K.G.; Stahl, T.; Binder, B.; Daniotti, B. Performance evaluation of aerogel-based and perlite-based prototyped insulations for internal thermal retrofitting: HMT model validation by monitoring at demo scale. Energy Build. 2016, 126, 275–286. [Google Scholar] [CrossRef]
- Campbell, N.; McGrath, T.; Nanukuttan, S.; Brown, S. Monitoring the hygrothermal and ventilation performance of retrofitted clay brick solid wall houses with internal insulation: Two UK case studies. Case Stud. Constr. Mater. 2017, 7, 163–179. [Google Scholar] [CrossRef]
- Yuk, H.; Yong Choi, J.; Duk Suh, W.; Jin, D.; Kim, S. Sustainable energy synergy for historic building: Conservation retrofit solution of hygrothermal control. Energy Build. 2024, 317, 114392. [Google Scholar] [CrossRef]
- Knarud, J.I.; Geving, S. Comparative study of hygrothermal simulations of a masonry wall FILLIN. Energy Procedia 2017, 132, 771–776. [Google Scholar] [CrossRef]
- Liu, P.; Iba, C. Energy-saving Renovation of Kyo-machiya Considering the Moisture Buffering Effect of Soil Walls. E3S Web Conf. 2023, 396, 03019. [Google Scholar] [CrossRef]
- Conley, B.; Carver, M. Hygrothermal Performance of a Masonry Overcladding Prefabricated Exterior Energy Retrofit in Ottawa. In Multiphysics and Multiscale Building Physics, Proceedings of the 9th International Building Physics Conference (IBPC 2024), Toronto, ON, Canada, 25–27 July 2024; Springer: Berlin/Heidelberg, Germany, 2025; Volume 554, pp. 358–364. [Google Scholar] [CrossRef]
- Bendouma, M.; Colinart, T.; Glouannec, P.; Noël, H. Laboratory study on hygrothermal behavior of three external thermal insulation systems. Energy Build. 2020, 210, 109742. [Google Scholar] [CrossRef]
- Urso, A.; Costanzo, V.; Nocera, F.; Evola, G. Moisture-Related Risks in Wood-Based Retrofit Solutions in a Mediterranean Climate: Design Recommendations. Sustainability 2022, 14, 14706. [Google Scholar] [CrossRef]
- Coelho, G.B.A.; de Freitas, V.P.; Henriques, F.M.A.; Silva, H.E. Retrofitting Historic Buildings for Future Climatic Conditions and Consequences in Terms of Artifacts Conservation Using Hygrothermal Building Simulation. Appl. Sci. 2023, 13, 2382. [Google Scholar] [CrossRef]
- McNally, J.; Baldwin, C.; Cruickshank, C.A.; Conley, B.; Carver, M. Monitoring and Modelling of Panelized Overcladding Retrofits in Canadian Climate. In Multiphysics and Multiscale Building Physics, Proceedings of the 9th International Building Physics Conference (IBPC 2024), Toronto, ON, Canada, 25–27 July 2024; Springer: Berlin/Heidelberg, Germany, 2025; Volume 554, pp. 489–495. [Google Scholar]
- Piasecki, M.; Radziszewska-Zielina, E.; Czerski, P.; Fedorczak-Cisak, M.; Zielina, M.; Krzysciak, P.; Kwasniewska-Sip, P.; Grzeskowiak, W. Implementation of the Indoor Environmental Quality (IEQ) Model for the Assessment of a Retrofitted Historical Masonry Building. Energies 2020, 13, 6051. [Google Scholar] [CrossRef]
- Whitman, C.J.; Prizeman, O.; Gwilliam, J.; Walker, P.; Shea, A. Energy Retrofit of Historic Timber-Frame Buildings—Hygrothermal Monitoring of Building Fabric; CRC Press: Boca Raton, FL, USA, 2020; pp. 129–135. [Google Scholar]
- Perianes-Rodriguez, A.; Waltman, L.; van Eck, N.J. Constructing bibliometric networks: A comparison between full and fractional counting. J. Informetr. 2016, 10, 1178–1195. [Google Scholar] [CrossRef]
- Pagoni, P.; Møller, E.B.; Peuhkuri, R.H.; Jensen, N.F. Evaluation of the performance of different internal insulation systems in real-life conditions—A case study. Build. Environ. 2025, 267, 112319. [Google Scholar] [CrossRef]
- Le, D.L.; Salomone, R.; Nguyen, Q.T. Circular bio-based building materials: A literature review of case studies and sustainability assessment methods. Build. Environ. 2023, 244, 110774. [Google Scholar] [CrossRef]
- Bakkour, A.; Ouldboukhitine, S.-E.; Biwole, P.; Amziane, S. A review of multi-scale hygrothermal characteristics of plant-based building materials. Constr. Build. Mater. 2024, 412, 134850. [Google Scholar] [CrossRef]
- Urso, A.; Evola, G.; Costanzo, V.; Nocera, F. A critical analysis on the use of different weather datasets to assess moisture-related risks in building components for a Mediterranean location. J. Build. Eng. 2023, 76, 107177. [Google Scholar] [CrossRef]
- Citadini de Oliveira, C.; Catão Martins Vaz, I.; Ghisi, E. Retrofit strategies to improve energy efficiency in buildings: An integrative review. Energy Build. 2024, 321, 114624. [Google Scholar] [CrossRef]
- Farham, B.; Baltazar, L. A Review of Smart Materials in 4D Printing for Hygrothermal Rehabilitation: Innovative Insights for Sustainable Building Stock Management. Sustainability 2024, 16, 4067. [Google Scholar] [CrossRef]
- Tahmasbi, F.; Khdair, A.I.; Aburumman, G.A.; Tahmasebi, M.; Thi, N.H.; Afrand, M. Energy-efficient building façades: A comprehensive review of innovative technologies and sustainable strategies. J. Build. Eng. 2025, 99, 111643. [Google Scholar] [CrossRef]
- Energiesprong. Available online: https://www.energiesprong.org/what-is-energiesprong (accessed on 13 June 2025).
- Peterková, J.; Zach, J.; Sedlmajer, M. Development of advanced plasters for insulation and renovation of building constructions with regard to their hygrothermal behaviour. Cem. Concr. Compos. 2018, 92, 47–55. [Google Scholar] [CrossRef]
- Huerto-Cardenas, H.E.; Leonforte, F.; Aste, N.; Del Pero, C.; Evola, G.; Costanzo, V.; Lucchi, E. Validation of dynamic hygrothermal simulation models for historical buildings: State of the art, research challenges and recommendations. Build. Environ. 2020, 180, 107081. [Google Scholar] [CrossRef]
- Mjörnell, K.; Arfvidsson, J.; Sikander, E. A Method for Including Moisture Safety in the Building Process. Indoor Built Environ. 2011, 21, 583–594. [Google Scholar] [CrossRef]
- Stahl, T.; Wakili, K.G.; Heiduk, E. Stability Relevant Properties of an SiO2 Aerogel-Based Rendering and Its Application on Buildings. Sustainability 2021, 13, 10035. [Google Scholar] [CrossRef]
- Liu, J.; El-Assaly, M.; Garcia Mendez, W.; Pulatsu, B.; Chung, D.; Tidwell, P.; Malomo, D. A low-cost timber cladding system for the sustainable retrofit of masonry buildings: Mechanical characterization under diagonal compression. Eng. Struct. 2025, 322, 119099. [Google Scholar] [CrossRef]
- Delgado, J.; Ramos, N.; Barreira, E.; Freitas, V. A critical review of hygrothermal models used in porous building materials. J. Porous Media 2010, 13, 221–234. [Google Scholar] [CrossRef]
- Dang, X.; Guimarães, A.S.; Sarkany, A.; Laukkarinen, A.; Xu, B.; Vanderschelden, B.; Rode, C.; Xia, C.; Feng, C.; Whitman, C.; et al. A state-of-the-art empirical round robin validation of heat, air and moisture (HAM) models. Build. Environ. 2025, 276, 112867. [Google Scholar] [CrossRef]
- Gradeci, K.; Labonnote, N.; Time, B.; Köhler, J. Mould growth criteria and design avoidance approaches in wood-based materials—A systematic review. Constr. Build. Mater. 2017, 150, 77–88. [Google Scholar] [CrossRef]
- Hukka, A.; Viitanen, H.A. A mathematical model of mould growth on wooden material. Wood Sci. Technol. 1999, 33, 475–485. [Google Scholar] [CrossRef]
- Johansson, P.; Ekstrand-Tobin, A.; Svensson, T.; Bok, G. Laboratory study to determine the critical moisture level for mould growth on building materials. Int. Biodeterior. Biodegrad. 2012, 73, 23–32. [Google Scholar] [CrossRef]
- Hens, H.L.S.C. Fungal Defacement in Buildings: A Performance Related Approach. HVACR Res. 1999, 5, 265–280. [Google Scholar] [CrossRef]
- ISO 13788:2012; Hygrothermal Performance of Building Components and Building Elements—Internal Surface Temperature to Avoid Critical Surface Humidity and Interstitial Condensation—Calculation Methods. International Organization for Standardization: Geneva, Switzerland, 2012; Volume 13788, p. 40.
- Pagoni, P.; Møller, E.B.; Peuhkuri, R.H.; Jensen, N.F. Robustness of internal insulation systems in practice—Role of installation, physical impact, paint types, and surface covering. J. Build. Eng. 2024, 98, 111177. [Google Scholar] [CrossRef]
- Zheng, R.; Janssens, A.; Carmeliet, J.; Bogaerts, W.; Hens, H. An evaluation of highly insulated cold zinc roofs in a moderate humid region—Part I: Hygrothermal performance. Constr. Build. Mater. 2004, 18, 49–59. [Google Scholar] [CrossRef]
- Mukhopadhyaya, P.; Kumaran, M.K.; Nofal, M.; Tariku, F.; van Reenen, D. Assessment of building retrofit options using hygrothermal analysis tool. In Proceedings of the 7th Symposium on Building Physics in the Nordic Countries, Reykjavik, Iceland, 13–15 June 2005; pp. 1139–1146. [Google Scholar]
- Kumaran, M.K.; Mukhopadhyaya, P.; Cornick, S.M.; Lacasse, M.A.; Rousseau, M.Z.; Maref, W.; Nofal, M.; Quirt, J.D.; Dalgliesh, W.A. An Integrated methodology to develop moisture management strategies for exterior wall systems. In Proceedings of the Building Science Insight 2003 Proceeding of the Seminar, Ottawa, ON, Canada, 7 October 2003; pp. 1–10. [Google Scholar]
- Mukhopadhyaya, P.; Djebbar, R.; Kumaran, M.K.; van Reenen, D. Moisture management strategy in wood-frame stucco wall—Observations from hygrothermal simulation. In Proceedings of the XXX IAHS 31, World Congress on Housing, Housing Process & Product, Montreal, QC, Canada, 23–27 June 2003; pp. 1–8. [Google Scholar]
- Kalamees, T.; Väli, A.; Kurik, L.; Napp, M.; Arümagi, E.; Kallavus, U. The Influence of Indoor Climate Control on Risk for Damages in Naturally Ventilated Historic Churches in Cold Climate. Int. J. Archit. Herit. 2016, 10, 486–498. [Google Scholar] [CrossRef]
- ASHRAE. ANSI/ASHRAE Standard 55 Thermal Environmental Conditions for Human Occupancy; ASHRAE: Atlanta, GA, USA, 2023; 72p. [Google Scholar]
- Camuffo, D.; Della Valle, A.; Becherini, F. The European Standard EN 15757 Concerning Specifications for Relative Humidity: Suggested Improvements for Its Revision. Atmosphere 2022, 13, 1344. [Google Scholar] [CrossRef]
- Broström, T.; Buda, A.; Herrera, D.; Haas, F.; Troi, A.; Exner, D.; Mauri, S.; Jan de Place Hansen, E.; Marincioni, V.; Vernimme, N. Planning Energy Retrofits of Historic Buildings; EN 16883:2017 in Practice; Leijonhufvud, G., Ed.; International Energy Agency, IEA: Paris, France, 2021; 54p. [Google Scholar]
- de Place Hansen, E.J.; Nielsen, J.; Møller, E.B.; Peuhkuri, R.H. How to Determine when a New Building Product is Suitable—Certifications and Experience. In Proceedings of the 15th International Conference on Durability of Building Materials and Components, Barcelona, Spain, 20–23 October 2020; pp. 1433–1440. [Google Scholar]
- Directorate-General for Environment. European Council Adopts Revised Rules Mandating Global Warming Potential Reporting for Buildings. Available online: https://green-forum.ec.europa.eu/news/european-council-adopts-revised-rules-mandating-global-warming-potential-reporting-buildings-2024-04-13_en (accessed on 21 July 2025).
- Dias Pereira, L.; Saraiva, N.B.; Soares, N. Hygrothermal Behavior of Cultural Heritage Buildings and Climate Change: Status and Main Challenges. Appl. Sci. 2023, 13, 3445. [Google Scholar] [CrossRef]
- Cruz, A.S.; Mendes, V.F.; Mendes, J.C.; Caldas, L.R.; Gonçalves Bastos, L.E. What lies ahead? The future performance of Global South residential buildings amid climate change: A systematic literature review. J. Build. Eng. 2024, 98, 111486. [Google Scholar] [CrossRef]





| Study Type | Quantity | Publications |
|---|---|---|
| Simulation | 50 | [11,21,22,23,24,25,26,27,28,29,30,31,32,33,34,36,37,38,39,41,42,43,44,45,47,48,49,50,53,54,55,57,58,59,60,61,62,63,64,65,67,68,70,71,72,74,75,76,77,79] |
| In situ partial retrofit | 9 | [24,32,37,50,58,65,67,68,78] |
| In situ whole building retrofit | 8 | [11,35,40,57,63,69,73,79] |
| Laboratory Testing | 9 | [36,37,42,49,53,64,66,74,79] |
| Material Testing | 7 | [21,42,43,53,59,60,67] |
| Test Hut | 7 | [34,43,46,51,52,56] |
| Simulation Program Used | Quantity | Publications |
|---|---|---|
| WUFI | 32 | [11,21,22,23,24,29,30,31,33,34,36,37,42,43,44,45,49,59,60,61,62,63,64,65,66,67,68,70,71,76,77,79] |
| Delphin | 9 | [26,28,32,41,48,50,55,58,75] |
| COMSOL | 3 | [27,71,74] |
| EnergyPlus and other building energy models | 4 | [24,54,70,79] |
| THERM | 3 | [24,31,45] |
| HAMFEM | 2 | [25,38] |
| Other platforms (internal software, hand calculations) | 5 | [39,47,53,68,72] |
| Assessment Metric | Quantity | Publications |
|---|---|---|
| Relative humidity | 45 | [11,21,22,23,24,25,26,27,28,30,31,32,33,34,36,38,40,41,43,44,46,49,50,51,52,53,56,57,58,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,78] |
| Moisture content | 34 | [11,21,22,23,24,25,28,32,33,35,36,38,41,42,43,44,45,48,49,53,56,58,59,60,61,63,64,66,67,70,72,74,77,79] |
| Mould risk analysis | 29 | [21,22,24,26,29,30,34,36,37,41,43,46,47,48,51,52,54,55,56,57,58,59,62,66,70,75,76,77,78] |
| U value, thermal and energy | 22 | [11,22,24,26,31,32,35,39,42,43,46,49,59,63,64,67,68,69,74,75,78,79] |
| Condensation risk | 14 | [24,25,26,33,38,39,41,47,48,50,54,58,59,74] |
| Freeze–thaw risk | 7 | [24,25,26,32,33,48,64] |
| Occupant comfort metrics | 6 | [29,30,45,60,76,78,79] |
| RHT and RHTT index | 2 | [27,44] |
| Oher hygrothermal metrics | 4 | [23,45,51,52] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hilbrecht, R.; Cruickshank, C.A.; Baldwin, C.; Scharf, N. A Rapid Review of Hygrothermal Performance Metrics for Innovative Materials in Building Envelope Retrofits. Energies 2025, 18, 5016. https://doi.org/10.3390/en18185016
Hilbrecht R, Cruickshank CA, Baldwin C, Scharf N. A Rapid Review of Hygrothermal Performance Metrics for Innovative Materials in Building Envelope Retrofits. Energies. 2025; 18(18):5016. https://doi.org/10.3390/en18185016
Chicago/Turabian StyleHilbrecht, Robin, Cynthia A. Cruickshank, Christopher Baldwin, and Nicholas Scharf. 2025. "A Rapid Review of Hygrothermal Performance Metrics for Innovative Materials in Building Envelope Retrofits" Energies 18, no. 18: 5016. https://doi.org/10.3390/en18185016
APA StyleHilbrecht, R., Cruickshank, C. A., Baldwin, C., & Scharf, N. (2025). A Rapid Review of Hygrothermal Performance Metrics for Innovative Materials in Building Envelope Retrofits. Energies, 18(18), 5016. https://doi.org/10.3390/en18185016

