Understanding the Interfacial Behavior of Cycloaliphatic-like Epoxy Resin with Optical Fibers: Insights from Experiments and Molecular Simulations
Abstract
1. Introduction
2. Experimental Methods and Molecular Modeling
2.1. Sample Preparation
2.2. Experimental Characterization
2.2.1. Static Contact Angle Measurement
2.2.2. Dye Penetration Measurement
2.2.3. Interfacial Insulation Properties Measurement
2.2.4. Water Diffusion Leakage Current Measurement
2.2.5. Tensile Property Measurement
2.3. Molecular Simulation Details
3. Experimental Results and Discussion
3.1. Static Contact Angle
3.2. Dye Penetration
3.3. Interfacial Insulation Properties
3.3.1. Interfacial Electrical Tree Growth Characteristics
3.3.2. Interfacial Breakdown Characteristics
3.4. Water Diffusion Leakage Current
3.5. Tensile Property
4. Mechanisms of Interfacial Performance Discrepancies
4.1. Interface Bonding Energy
4.2. Mean Square Displacement
4.3. Electrostatic Potential
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, C.; Liu, C. Application of All Fiber Optic Current Sensor in SmartGrid. Electron. Technol. 2025, 54, 34–35. [Google Scholar]
- Jia, C.; Zhuo, Y.; Di, Z.; Chen, J.; Chen, Z. Research status and development trend of optical current transformer. Laser J. 2024, 45, 16–22. [Google Scholar]
- Song, Y.; Tao, A.; Chen, W.; Zhang, W.; Wang, C.; Zhu, X.; Liu, B.; Tian, H.; Liu, H. A novel fiber-optic implantable basin insulator and its detection of current-excited GIS vibration signals. Measurement 2025, 256, 118100. [Google Scholar] [CrossRef]
- Mandl, J.; Trampitsch, P.; Schachinger, P.; Albert, D.; Klambauer, R.; Bergmann, A. Development of a Fiber Optic Current Sensor for Low DC Measurements in the Power Grid. IEEE Trans. Instrum. Meas. 2024, 73, 1–8. [Google Scholar] [CrossRef]
- Li, Z.; Cui, J.; Lu, H.; Zhou, F.; Diao, Y.; Li, Z. Review of Wideband and Wide-dynamic-range Current Measurement Techniques in Power Systems. High Volt. Eng. 2024, 50, 3421–3439. [Google Scholar]
- Li, L.; Xu, K.; Liu, Y.; Tan, S.; Wu, W.; Zhang, Z.; Yang, L.; Tang, L. Research on the Performance of Fiber Optic Composite Insulator Core Based on Epoxy Based Syntactic Foam Materials. Proc. CSEE 2025, 1–13. [Google Scholar] [CrossRef]
- Liu, Z.; Niu, X.; Chen, S.; Zhao, L.; Zhao, Y.; Xia, L. Research on the Degradation Faults of Fiber Optical Current Transformer Light Sourcein DC Converter Stations. J. Glob. Energy Interconnect. 2025, 8, 48–56. [Google Scholar]
- Kamarudin, N.; Razak, J.; Mohamad, N.; Norddin, N.; Aman, A.; Ismail, M.M.; Junid, R.; Chew, T. Mechanical and electrical properties of silicone rubber based composite for high voltage insulator application. Int. J. Eng. Technol. 2018, 7, 452–457. [Google Scholar]
- Xie, C.; Gou, B.; Li, Y.; Xu, H.; Li, L. Research on Aging and Cracking of High Temperature Vulcanized Silicone Rubber Accelerated by Interfacial Defects in Acid-heat Environment. High Volt. Eng. 2023, 49, 1907–1916. [Google Scholar]
- Zeng, X.; Cai, D.; Yin, F.; Wang, L. Study on Interface Performance of Fiber Optic Hard Composite Insulator. In Proceedings of the 2023 IEEE 7th Conference on Energy Internet and Energy System Integration (EI2), Hangzhou, China, 15–18 December 2023. [Google Scholar]
- Hao, Y.; Wei, J.; Huang, L.; Pan, R.; Yang, L.; Xu, W.; Hong, W. Implantation Method of Optical Fiber over the Interface of Composite Insulator and Interface Performance Experiment. Guangdong Electr. Power 2022, 35, 71–79. [Google Scholar]
- Li, S.; Zhao, S.; Liu, D.; Liu, L.; Cui, L.; Wang, Q. Research on the Enhancement of Reliability for Fiber Optic Insulators. In Proceedings of the 2024 International Conference on HVDC (HVDC), Urumqi, China, 8–9 August 2024. [Google Scholar]
- Huang, Y.; Wang, B.; Niu, W.; Hu, W.; Li, L. Electrical Field Simulation and Optimization Design for ±1 100 kV DC Optical Fiber Composite Insulator. Electrotech. Electr. 2014, 2, 21–25. [Google Scholar]
- Dana, H.R.; Casari, P.; El Abdi, R.; Freour, S.; Jacquemin, F. Characterisation of the hygro-thermo-mechanical behaviour of organic matrix composites instrumented with optical fibres: A study of interfacial bonding. Int. J. Adhes. Adhes. 2017, 77, 63–71. [Google Scholar] [CrossRef]
- Chean, V.; El Abdi, R.; Sanglebœuf, J.-C. Water effect on interfacial adhesion of an optical fiber embedded in a composite material. J. Compos. Mater. 2014, 48, 2273–2280. [Google Scholar] [CrossRef]
- Li, S.; Jiao, S.; Zhang, J.; Zhao, C.; Tang, W. Study on Internal Discharge Mechanism of Optical Fiber Insulator in DC Optical Current Transformer. Electr. Eng. 2023, 3, 216–220. [Google Scholar]
- Ma, H.; Zeng, Z.; Wu, X.; Shen, X.; Fan, Y. Study on Fault Analysis and Remedial Measures of DC Pure Optical CT. Electrotech. Electr. 2021, 12, 31–35. [Google Scholar]
- Wang, L.; Nie, Z.; Zhao, C.; Zhou, J.; Ge, W. Water Permeation Characteristic in Cycloaliphatic Epoxy Resin Composite Insulator Sheath. High Volt. Eng. 2019, 45, 173–180. [Google Scholar]
- Wang, Z.; Liu, J.; Zhang, H.; Ai, Y.; Li, W.; Liu, D. Breakdown Analysis of Composite Insulators for All-Optic Fiber Current Sensors. Insul. Surge Arresters 2020, 5, 242–247. [Google Scholar]
- Lin, Y.; Yin, F.; Liu, Y.; Wang, L.; Zhao, Y.; Farzaneh, M. Effect of ultraviolet-A radiation on surface structure, thermal, and mechanical and electrical properties of liquid silicone rubber. J. Appl. Polym. Sci. 2019, 136, 47652. [Google Scholar] [CrossRef]
- Douar, M.A.; Beroual, A.; Souche, X. Degradation of various polymeric materials in clean and salt fog conditions: Measurements of AC flashover voltage and assessment of surface damages. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 391–399. [Google Scholar] [CrossRef]
- Liu, Y.; Lin, Y.; Wu, K.; Fan, H.; Wang, L. Analysis and Optimization on Non-uniformity of Temperature Distribution in Hydrophobic Cycloaliphatic Epoxy Resin Insulators during the Curing Process. IEEE Trans. Dielectr. Electr. Insul. 2021, 28, 1810–1818. [Google Scholar] [CrossRef]
- Beisele, C.; Kultzow, B. Experiences with new hydrophobic cycloaliphatic epoxy outdoor insulation systems. IEEE Electr. Insul. Mag. 2001, 17, 33–39. [Google Scholar] [CrossRef]
- Liu, Y.; Lin, Y.; Wang, Y.; Wu, K.; Cao, B.; Wang, L. Simultaneously improving toughness and hydrophobic properties of cycloaliphatic epoxy resin through silicone prepolymer. J. Appl. Polym. Sci. 2022, 139, e52478. [Google Scholar] [CrossRef]
- Liu, Y.; Lin, Y.; Zhang, Y.; Cao, B.; Wu, K.; Wang, L. Understanding Water Diffusion Behaviors in Epoxy Resin through Molecular Simulations and Experiments. Langmuir 2024, 40, 4871–4880. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Lin, Y.; Cao, B.; Wu, K.; Wang, L. Enhancement of polysiloxane/epoxy resin compatibility through an electrostatic and van der Waals potential design strategy. Polym. Test. 2023, 117, 107820. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Mei, H.; Xie, M.; Wang, L. Research of cycloaliphatic epoxy resin and silicone rubber composite insulator interface based on four-electrode system and temperature rise model. High Volt. 2023, 8, 560–569. [Google Scholar] [CrossRef]
- Nie, Z.; Wang, L.; Yang, C. Aging Characteristics of Interface Between Core and Sheath of Composite Insulators Under Water and High Temperature. Proc. CSEE 2018, 38, 4601–4611+4661. [Google Scholar]
- Lima, R.D.A.A.; Rocca, D.; Da Costa, H.R.M.; de Sousa, J.P.B.; Bettini, P.; Sala, G.; Banea, M.D. Interfacial adhesion between embedded fibre optic sensors and epoxy matrix in composites. J. Adhes. Sci. Technol. 2019, 33, 253–372. [Google Scholar] [CrossRef]
- Oosterlaken, B.M.; van den Bruinhorst, A.; de With, G. On the Use of Probe Liquids for Surface Energy Measurements. Langmuir 2023, 39, 16701–16711. [Google Scholar] [CrossRef]
- Carpenter, J.; Kim, H.; Suarez, J.; van der Zande, A.; Miljkovic, N. The Surface Energy of Hydrogenated and Fluorinated Graphene. ACS Appl. Mater. Interfaces 2023, 15, 2429–2436. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Han, B.; Xiao, K.; Yu, J.; Zheng, J.; Liang, S.; Wang, X.; Xu, G.; Huang, X. Revisiting the Surface Energy Parameters of Standard Test Liquids with a Corrected Contact Angle Method over Rough Surfaces. Langmuir 2022, 38, 10760–10767. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, R.N.; Demarquette, N.R. Evaluation of surface energy of solid polymers using different models. J. Appl. Polym. Sci. 2000, 76, 1831–1845. [Google Scholar] [CrossRef]
- Rath, S.K.; Chavan, J.G.; Sasane, S.; Srivastava, A.; Patri, M.; Samui, A.B.; Chakraborty, B.C.; Sawant, S.N. Coatings of PDMS-modified epoxy via urethane linkage: Segmental correlation length, phase morphology, thermomechanical and surface behavior. Prog. Org. Coat. 2009, 65, 366–374. [Google Scholar] [CrossRef]
- Wang, L.; Zheng, S. Morphology and thermomechanical properties of main-chain polybenzoxazine-block-polydimethylsiloxane multiblock copolymers. Polymer 2010, 51, 1124–1132. [Google Scholar] [CrossRef]
- Tadmor, R.; Das, R.; Gulec, S.; Liu, J.; N’guessan, H.E.; Shah, M.; Wasnik, P.S.; Yadav, S.B. Solid-Liquid Work of Adhesion. Langmuir 2017, 33, 3594–3600. [Google Scholar] [CrossRef] [PubMed]
- IEC 61109:2008; Insulators for Overhead Lines—Composite Suspension and Tension Insulators for a.c. Systems with a Nominal Voltage Greater than 1000 V—Definitions, Test Methods and Acceptance Criteria. IEC: Geneva, Switzerland, 2008.
- GB/T 19519-2014; Insulators for Overhead Lines–Composite Suspension and Tension Insulators for a.c. Systems with a Nominal Voltage Greater than 1000 V–Definitions, Test Methods and Acceptance Criteria. National Standards of People’s Republic of China: Beijing, China, 2014.
- IEC 62217:2012; Polymeric HV Insulators for Indoor and Outdoor Use—General Definitions, Test Methods and Acceptance Criteria. IEC: Geneva, Switzerland, 2012.
- GB/T 22079-2019; HV Polymeric Insulators for Indoor and Outdoor Use—General Definitions, Test Methods and Acceptance Criteria. National Standards of People’s Republic of China: Beijing, China, 2019.
- ISO 527-1:2019; Plastics-Determination of Tensile Properties Part 1: General Principles. International Organization for Standardization: Geneva, Switzerland, 2019.
- GB/T 2567-2021; Test Methods for Properties of Resin Casting Body, Five Tensile Samples Were Prepared for Each Group. National Standards of People’s Republic of China: Beijing, China, 2021.
- Mao, H.I.; Chen, C.W.; Rwei, S.-P. Synthesis and Nonisothermal Crystallization Kinetics of Poly (Butylene Terephthalate-co-Tetramethylene Ether Glycol) Copolyesters. Polymers 2020, 12, 1897. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Feng, Z.; Feng, Q.; Cui, F. Preparation and properties of poly (butylene terephthalate-co-cyclohexanedimethylene terephthalate)-b-poly (ethylene glycol) segmented random copolymers. Polym. Degrad. Stab. 2004, 85, 559–570. [Google Scholar] [CrossRef]
- Hua, B.; Shao, L.; Zhang, Z.; Liu, J.; Huang, F. Cooperative Silver Ion-Pair Recognition by Peralkylated Pillar[5]arenes. J. Am. Chem. Soc. 2019, 141, 15008–15012. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Wang, M.; Kong, C.; Liang, Q.; Zhao, J.; Wen, M.; Xu, Z.; Ruan, X. Numerical simulations of wall contact angle effects on droplet size during step emulsification. RSC Adv. 2018, 8, 33042–33047. [Google Scholar] [CrossRef]
- Cauich-Cupul, J.I.; Herrera-Franco, P.J.; García-Hernández, E.; Moreno-Chulim, V.; Valadez-González, A. Factorial design approach to assess the effect of fiber–matrix adhesion on the IFSS and work of adhesion of carbon fiber/polysulfone-modified epoxy composites. Carbon Lett. 2019, 29, 345–358. [Google Scholar] [CrossRef]
- Gao, Z.; Reali, M.; Yelon, A.; Santato, C. Dependence of charge carrier transport on molecular relaxations in glassy poly (3-hexylthiophene-2,5-diyl) (P3HT). Mater. Adv. 2022, 3, 7815–7823. [Google Scholar] [CrossRef]
- Torricelli, F.; Colalongo, L. Unified Mobility Model for Disordered Organic Semiconductors. IEEE Electron Device Lett. 2009, 30, 1048–1050. [Google Scholar] [CrossRef]
- Min, D.; Yan, C.; Mi, R.; Ma, C.; Huang, Y.; Li, S.; Wu, Q.; Xing, Z. Carrier Transport and Molecular Displacement Modulated dc Electrical Breakdown of Polypropylene Nanocomposites. Polymers 2018, 10, 1207. [Google Scholar] [CrossRef]
- Otmi, M.A.; Willmore, F.; Sampath, J. Structure, Dynamics, and Hydrogen Transport in Amorphous Polymers: An Analysis of the Interplay between Free Volume Element Distribution and Local Segmental Dynamics from Molecular Dynamics Simulations. Macromolecules 2023, 56, 9042–9053. [Google Scholar] [CrossRef]
- Du, B.; Su, J.; Tian, M.; Han, T.; Li, J. Understanding Trap Effects on Electrical Treeing Phenomena in EPDM/POSS Composites. Sci. Rep. 2018, 8, 8481. [Google Scholar] [CrossRef]
- Politzer, P.; Murray, J.S. The fundamental nature and role of the electrostatic potential in atoms and molecules. Theor. Chem. Acc. 2002, 108, 134–142. [Google Scholar] [CrossRef]
- Son, D.; Jeon, D.; Kim, D.; Kang, J.; Sung, S.; Lee, J.; Lee, T.; Enkhbayar, E.; Kim, J.; Yang, K. Identifying the relationships between subsurface absorber defects and the characteristics of kesterite solar cells. Carbon Energy 2023, 5, e336. [Google Scholar] [CrossRef]
Sample | (mN/m) | (mN/m) | (mN/m) | Deionized Water Wa (mJ/m2) | Diiodomethane Wa (mJ/m2) |
---|---|---|---|---|---|
TPEE | 48.89 | 41.40 | 7.49 | 99.17 | 91.68 |
EA | 39.68 | 37.90 | 1.78 | 76.55 | 87.71 |
ETFE | 29.59 | 29.19 | 0.40 | 59.46 | 76.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, J.; Lin, Z.; Luo, J.; Zheng, Y.; Liu, Y.; Cao, B.; Yin, F.; Wang, L. Understanding the Interfacial Behavior of Cycloaliphatic-like Epoxy Resin with Optical Fibers: Insights from Experiments and Molecular Simulations. Materials 2025, 18, 3830. https://doi.org/10.3390/ma18163830
Fu J, Lin Z, Luo J, Zheng Y, Liu Y, Cao B, Yin F, Wang L. Understanding the Interfacial Behavior of Cycloaliphatic-like Epoxy Resin with Optical Fibers: Insights from Experiments and Molecular Simulations. Materials. 2025; 18(16):3830. https://doi.org/10.3390/ma18163830
Chicago/Turabian StyleFu, Jianbing, Zhifan Lin, Junhao Luo, Yufan Zheng, Yuhao Liu, Bin Cao, Fanghui Yin, and Liming Wang. 2025. "Understanding the Interfacial Behavior of Cycloaliphatic-like Epoxy Resin with Optical Fibers: Insights from Experiments and Molecular Simulations" Materials 18, no. 16: 3830. https://doi.org/10.3390/ma18163830
APA StyleFu, J., Lin, Z., Luo, J., Zheng, Y., Liu, Y., Cao, B., Yin, F., & Wang, L. (2025). Understanding the Interfacial Behavior of Cycloaliphatic-like Epoxy Resin with Optical Fibers: Insights from Experiments and Molecular Simulations. Materials, 18(16), 3830. https://doi.org/10.3390/ma18163830