Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (700)

Search Parameters:
Keywords = hydrogen peroxide detection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3314 KB  
Article
Exploration of Bamboo-Derived Nanocellulose Paper for Versatile Colorimetric Detection of Bio Compounds
by Fitri Rahmah, Farah Nita Adila, Ruri Agung Wahyuono and Agus Muhamad Hatta
Polysaccharides 2026, 7(1), 14; https://doi.org/10.3390/polysaccharides7010014 (registering DOI) - 31 Jan 2026
Abstract
Paper-based analytical devices (PADs) were developed as low-cost tools for detecting chemical and biological compounds, commonly fabricated from cellulose derived from plant biomass. Bamboo, a fast-growing and abundant plant with high cellulose content (40–50%), was investigated as a substrate source. In this study, [...] Read more.
Paper-based analytical devices (PADs) were developed as low-cost tools for detecting chemical and biological compounds, commonly fabricated from cellulose derived from plant biomass. Bamboo, a fast-growing and abundant plant with high cellulose content (40–50%), was investigated as a substrate source. In this study, the selection of bamboo was based on its rapid growth cycle and the abundance of parenchyma cells that facilitated nanofibrillation compared to cellulose fibers from softwood or hardwood. Cellulose fibers were extracted from black bamboo (30 and 60 mesh) using mechanical and acid hydrolysis methods. The mechanical method employed ultrasonication to obtain nanocellulose, while the acid hydrolysis method used strong acids, i.e., H2SO4. The resulting nanocellulose papers exhibited variations in contact angle, porosity, and transmittance that directly affected their permeability and fluid flow behavior. The results indicated that the mechanical method, which extracted nanocellulose from parenchyma cells, yielded more consistent thermophysical and mechanical properties suitable for paper-based biosensors. The fabricated nanocellulose papers were tested as PADs for colorimetric detection of dopamine and hydrogen peroxide. Based on the literature comparison, their sensing performance, including sensitivity, linearity, limit of detection (LOD), and limit of quantification (LOQ), was comparable to other nanocellulose-based papers, indicating the potential of bamboo-derived nanocellulose as a sustainable substrate for PADs. Full article
Show Figures

Figure 1

30 pages, 2212 KB  
Article
Effects of High Lithium Concentrations on the Growth, Biomass, Mineral Accumulation, Oxidative Stress, Antioxidant and Gene Expression Response, and DNA Methylation in Sunflower Plants
by Francisco Espinosa, Francisco Luis Espinosa-Vellarino, Ilda Casimiro, Carmen Gloria Relinque, Alfonso Ortega and Inmaculada Garrido
Plants 2026, 15(3), 421; https://doi.org/10.3390/plants15030421 - 30 Jan 2026
Viewed by 67
Abstract
This study demonstrates that sunflower plants display integrated, multilevel responses to excessive lithium (Li) exposure. Li concentrations above 5 mM markedly impair germination, growth, and biomass accumulation. Li is preferentially accumulated in the shoots, showing high translocation and bioaccumulation factors, and disrupts mineral [...] Read more.
This study demonstrates that sunflower plants display integrated, multilevel responses to excessive lithium (Li) exposure. Li concentrations above 5 mM markedly impair germination, growth, and biomass accumulation. Li is preferentially accumulated in the shoots, showing high translocation and bioaccumulation factors, and disrupts mineral nutrient homeostasis, particularly potassium (K) and sodium (Na) uptake, while inducing oxidative stress. Although photosynthetic pigment contents decline, photosynthetic efficiency is largely maintained, except at 10 mM Li. Li treatment enhances superoxide anion (O2.−) and hydrogen peroxide (H2O2) production exclusively in leaves. Consequently, activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDHAR), and glutathione reductase (GR) increase in leaves, whereas only APX and GR are stimulated in the roots. Nitric oxide (NO) accumulation is detected only in leaves, while hydrogen sulfide (H2S) and glutathione (GSH) contents decline. Leaf ascorbate (AsA) levels decrease concomitantly with dehydroascorbate (DHA) accumulation. Expression analyses of catalase, DHAR, DHAR-like, and glutathione S-transferase (GST) genes confirm their involvement in Li stress responses. Moreover, global DNA methylation analyses reveal hypomethylation in leaves and hypermethylation in the roots. Overall, Li exposure induces dose- and organ-specific physiological, molecular, and epigenetic adjustments in sunflower plants under environmentally relevant concentrations and controlled experimental conditions in this study. Full article
(This article belongs to the Special Issue Plant Responses to Emerging Contaminants and Remediation Strategies)
Show Figures

Figure 1

33 pages, 1283 KB  
Review
Functional Nanomaterial-Based Electrochemical Biosensors Enable Sensitive Detection of Disease-Related Small-Molecule Biomarkers for Diagnostics
by Tongtong Xun, Jie Zhang, Xiaojuan Zhang, Min Wu, Yueyan Huang, Huanmi Jiang, Xiaoqin Zhang and Baoyue Ding
Pharmaceuticals 2026, 19(2), 223; https://doi.org/10.3390/ph19020223 - 27 Jan 2026
Viewed by 98
Abstract
Biomolecules play pivotal roles in cellular signaling, metabolic regulation and the maintenance of physiological homeostasis in the human body, and their dysregulation is closely associated with the onset and progression of various human diseases. Consequently, the development of highly sensitive, selective, and stable [...] Read more.
Biomolecules play pivotal roles in cellular signaling, metabolic regulation and the maintenance of physiological homeostasis in the human body, and their dysregulation is closely associated with the onset and progression of various human diseases. Consequently, the development of highly sensitive, selective, and stable detection platforms for these molecules is of significant value for drug discovery, pharmaceutical quality control, pharmacodynamic studies, and personalized medicine. In recent years, electrochemical biosensors, particularly those integrated with functional nanomaterials and biorecognition elements, have emerged as powerful analytical platforms in pharmaceutics and biomedical analysis, owing to their high sensitivity, exquisite selectivity, rapid response, simple operation, low cost and suitability for real-time or in situ monitoring in complex biological systems. This review summarizes recent progress in the electrochemical detection of representative biomolecules, including dopamine, glucose, uric acid, hydrogen peroxide, lactate, glutathione and cholesterol. By systematically summarizing and analyzing existing sensing strategies and nanomaterial-based sensor designs, this review aims to provide new insights for the interdisciplinary integration of pharmaceutics, nanomedicine, and electrochemical biosensing, and to promote the translational application of these sensing technologies in drug analysis, quality assessment, and clinical diagnostics. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Graphical abstract

18 pages, 3671 KB  
Article
Physiological Changes and Transposition of Insertion Sequences in the dps-Double-Knockout Mutant of Deinococcus geothermalis
by Yujin Park, Hyun Hee Lee, Eunjung Shin, Soyoung Jeong and Sung-Jae Lee
Int. J. Mol. Sci. 2026, 27(3), 1238; https://doi.org/10.3390/ijms27031238 - 26 Jan 2026
Viewed by 143
Abstract
DNA-protecting proteins (Dps) are crucial for safeguarding chromosomal DNA in starved cells during the stationary phase under stressful conditions. In previous research, the two Dps proteins in Deinococcus geothermalis, Dgeo_0257 (Dps3) and Dgeo_0281 (Dps1), were found to complement each other in protecting [...] Read more.
DNA-protecting proteins (Dps) are crucial for safeguarding chromosomal DNA in starved cells during the stationary phase under stressful conditions. In previous research, the two Dps proteins in Deinococcus geothermalis, Dgeo_0257 (Dps3) and Dgeo_0281 (Dps1), were found to complement each other in protecting DNA from oxidative damage. This study investigates the physiological changes and transposition of insertion sequences (ISs) in a double-knockout (DK) mutant lacking both dps genes. Comparisons between the wild-type and mutant strains revealed significant phenotypic differences in viability under oxidative stress conditions induced by hydrogen peroxide and ferrous ions, particularly during the stationary phase. Notably, oxidative stress triggered the transposition of the IS families IS701 and IS5, with IS66 being transposed exclusively in the DK mutant into a gene encoding phytoene desaturase. Transcriptomic analysis using RNA-seq revealed substantial fold changes in gene expression across the genome. For example, the dgeo_1459–1460 gene cluster, which encodes a DUF421 domain-containing protein and a hypothetical protein, was highly upregulated under both oxidative and non-oxidative conditions. Interestingly, catalase, encoded by a single gene in D. geothermalis, was upregulated in the DK mutant during the stationary phase, with expression levels exceeding those observed in the single dps gene-deficient mutants. Conversely, a prominent downregulation of the Fur family regulator was detected. These findings highlight the growth phase-dependent physiological adaptation of the dps-DK mutant and reveal a novel IS transposition event of the ISBst12 group involving the IS66 family. Therefore, this study provides new observations into the influence of DNA-protective protein deficiency on oxidative stress responses and IS transposition in D. geothermalis, as well as the regulatory mechanisms of the catalase induction pathway, raising the need for further investigation into the role of OxyR. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

26 pages, 7456 KB  
Article
Multicellular Model Reveals the Mechanism of AEE Alleviating Vascular Endothelial Cell Injury via Anti-Inflammatory and Antioxidant Effects
by Ji Feng, Qi Tao, Meng-Zhen Li, Zhi-Jie Zhang, Qin-Fang Yu and Jian-Yong Li
Int. J. Mol. Sci. 2026, 27(2), 877; https://doi.org/10.3390/ijms27020877 - 15 Jan 2026
Viewed by 300
Abstract
Vascular endothelial injury is a key pathological characteristic of multiple diseases, such as atherosclerosis, stroke, and mastitis. Aspirin eugenol ester (AEE) has been confirmed to exert a significant protective effect on vascular endothelial injury. However, the universal action patterns and underlying mechanisms of [...] Read more.
Vascular endothelial injury is a key pathological characteristic of multiple diseases, such as atherosclerosis, stroke, and mastitis. Aspirin eugenol ester (AEE) has been confirmed to exert a significant protective effect on vascular endothelial injury. However, the universal action patterns and underlying mechanisms of AEE across different pathological scenarios have not been systematically elucidated. This study aimed to investigate the effect and mechanism of AEE in alleviating multiple vascular endothelial injury models. Nine vascular endothelial injury models were established by treating bovine aortic endothelial cells (BAECs), mouse aortic endothelial cells (MAECs), and human umbilical vein endothelial cells (Huvecs) with ethanol (EtOH), hydrogen peroxide (H2O2), and copper sulfate (CuSO4), respectively. The protective effects of AEE were systematically evaluated via morphological observation, detection of inflammatory responses, and oxidative stress markers. Furthermore, metabolomics was employed to identify and analyze differentially expressed metabolites between the nine model groups and AEE groups. AEE exerted protective effects on all nine vascular endothelial injury models, inhibiting inflammation and oxidative stress induced by all inducers. Metabolomic analysis revealed that the differentially expressed metabolites modulated by AEE in most models were primarily enriched in lipid metabolism, amino acid metabolism, coenzyme biosynthesis, and other related pathways. AEE could improve vascular endothelial injury by upregulating antioxidant substance which included eicosapentaenoic acid (EPA), choline, coenzyme A (CoA), glutathione (GSH), catalase (CAT) and superoxide dismutase (SOD), as well as downregulating substances that cause endothelial oxidative damage, including phytosphingosine (PS), palmitic acid (PA), and arachidonic acid (AA). Full article
Show Figures

Figure 1

22 pages, 9753 KB  
Article
A Luminol-Based, Peroxide-Free Fenton Chemiluminescence System Driven by Cu(I)-Polyethylenimine-Lipoic Acid Nanoflowers for Ultrasensitive SARS-CoV-2 Immunoassay
by Mahmoud El-Maghrabey, Ali Abdel-Hakim, Yuta Matsumoto, Rania El-Shaheny, Heba M. Hashem, Naotaka Kuroda and Naoya Kishikawa
Biosensors 2026, 16(1), 61; https://doi.org/10.3390/bios16010061 - 14 Jan 2026
Viewed by 275
Abstract
The reliance on unstable hydrogen peroxide (H2O2) adversely affects the robustness and simplicity of chemiluminescence (CL)-based immunoassays. We report a novel external H2O2-free Fenton CL system integrated into a highly sensitive non-enzymatic immunoassay for the [...] Read more.
The reliance on unstable hydrogen peroxide (H2O2) adversely affects the robustness and simplicity of chemiluminescence (CL)-based immunoassays. We report a novel external H2O2-free Fenton CL system integrated into a highly sensitive non-enzymatic immunoassay for the detection of SARS-CoV-2 nucleoprotein, utilizing cuprous–polyethylenimine–lipoic acid nanoflowers (Cu(I)-PEI-LA-Ab NF) as a non-enzymatic tag. The signaling polymer (PEI-LA) was synthesized via EDC/NHS coupling, which conjugated approximately 550 LA units to the PEI backbone. This polymer formed antibody-conjugated NF with various metal ions, and the Cu(I)-based variant was selected for its intense and sustained CL with luminol. The mechanism relies on an in situ Fenton reaction, in which dissolved oxygen is reduced by Cu(I) to H2O2, which reacts with oxidized Cu(II), producing hydroxyl radicals that oxidize luminol. Direct calibration of the SARS-CoV-2 nucleoprotein fixed on microplate wells demonstrated excellent linearity in the range of 0.01–3.13 ng/mL (LOD = 3 pg/mL). In a final competitive immunoassay format for samples spiked with the antigen, a decreasing CL signal that correlated with increasing antigen concentration was obtained in the range of 0.1–20.0 ng/mL, achieving excellent recoveries that were favorable compared with those of the sandwich ELISA kit, establishing this H2O2-independent platform as a powerful and robust tool for clinical diagnostics. Full article
(This article belongs to the Special Issue Signal Amplification in Biosensing)
Show Figures

Figure 1

17 pages, 1712 KB  
Article
Effects of Exogenous Phosphorus and Hydrogen Peroxide on Wheat Root Architecture
by Lei Chen, Lei Zhou, Yuwei Zhang and Hong Wang
Plants 2026, 15(2), 253; https://doi.org/10.3390/plants15020253 - 13 Jan 2026
Viewed by 338
Abstract
Plant root growth and architectural modifications are well-documented responses to phosphorous (P) starvation. The spatiotemporal dynamics of hydrogen peroxide (H2O2) in mediating root development under P deficiency, especially in cereal crops like wheat, remain insufficiently understood. A nutrient solution [...] Read more.
Plant root growth and architectural modifications are well-documented responses to phosphorous (P) starvation. The spatiotemporal dynamics of hydrogen peroxide (H2O2) in mediating root development under P deficiency, especially in cereal crops like wheat, remain insufficiently understood. A nutrient solution experiment was conducted to grow two varieties of wheat, including SM15 and HG35, with the treatments of 0.005 and 0.25 mmol/L P supply. Exogenous H2O2 and its scavenger ascorbic acid (AsA), and a NADPH oxidase inhibitor diphenylene iodonium (DPI) were added. The distribution of reactive oxygen species (ROS) in roots were detected by chemical staining and fluorescent probe technology. Low P supply did not change the root dry weight and total root length, while it decreased the lateral root density. The increase in the primary root and lateral root growth in P-starved wheat coincided with more ROS in the cell wall of the elongation zone. ROS production and oxidative enzyme activity of P-starved roots increased significantly. Low H2O2 induced the formation of lateral roots and significantly increased lateral root density under low P conditions. High H2O2 significantly reduced lateral root density but stimulated the nodal root formation. Exogenous AsA or DPI addition reversed the promotion of root growth imposed under the low P treatment or H2O2 addition. Furthermore, exogenous H2O2 treatment reduced the inhibitory effect of the DPI treatment on nodal root formation. It is suggested that the involvement of ROS in the regulation of wheat root system architecture under low P supply. Full article
Show Figures

Figure 1

46 pages, 1508 KB  
Review
Mapping Global Research Trends on Aflatoxin M1 in Dairy Products: An Integrative Review of Prevalence, Toxicology, and Control Approaches
by Marybel Abi Rizk, Lea Nehme, Selma P. Snini, Hussein F. Hassan, Florence Mathieu and Youssef El Rayess
Foods 2026, 15(1), 166; https://doi.org/10.3390/foods15010166 - 3 Jan 2026
Viewed by 569
Abstract
Aflatoxin M1 (AFM1), a hydroxylated metabolite of aflatoxin B1 (AFB1), is a potent hepatotoxic and carcinogenic compound frequently detected in milk and dairy products. Its thermal stability and resistance to processing make it a persistent public health [...] Read more.
Aflatoxin M1 (AFM1), a hydroxylated metabolite of aflatoxin B1 (AFB1), is a potent hepatotoxic and carcinogenic compound frequently detected in milk and dairy products. Its thermal stability and resistance to processing make it a persistent public health concern, especially in regions prone to fungal contamination of animal feed. This review integrates bibliometric mapping (2015–2025) with toxicological and mitigation perspectives to provide a comprehensive understanding of AFM1. The bibliometric analysis reveals a sharp global rise in research output over the last decade, with Iran, China, and Brazil emerging as leading contributors and Food Control identified as the most prolific journal. Five research clusters were distinguished: feed contamination pathways, analytical detection, toxicological risk, regulatory frameworks, and mitigation strategies. Toxicological evidence highlights AFM1’s mutagenic and hepatocarcinogenic effects, intensified by co-exposure to other mycotoxins or hepatitis B infection. Although regulatory limits range from 0.025 µg/kg in infant formula (EU) to 0.5 µg/kg in milk (FDA), non-compliance remains prevalent in developing regions. Current mitigation approaches—adsorbents (bentonite, zeolite), oxidation (ozone, hydrogen peroxide), and biological detoxification via lactic acid bacteria and yeasts—show promise but require optimization for industrial application. Persistent challenges include climatic variability, inadequate feed monitoring, and heterogeneous regulations. This review emphasizes the need for harmonized surveillance, improved analytical capacity, and sustainable intervention strategies to ensure dairy safety and protect consumer health. Full article
(This article belongs to the Section Food Toxicology)
Show Figures

Figure 1

14 pages, 2279 KB  
Article
Engineering a CRISPR-Mediated Dual Signal Amplification-Based Biosensor for miRNA Determination
by Zhixian Liang, Jie Zhang and Shaohui Zhang
Biosensors 2026, 16(1), 17; https://doi.org/10.3390/bios16010017 - 24 Dec 2025
Viewed by 468
Abstract
MicroRNAs, pivotal regulators of gene expression and physiology, serve as reliable biomarkers for early cancer diagnosis and therapy. As one of the earliest discovered miRNAs in the human genome, miRNA-21 provides critical information for early cancer diagnosis, drug therapy, and prognosis. In this [...] Read more.
MicroRNAs, pivotal regulators of gene expression and physiology, serve as reliable biomarkers for early cancer diagnosis and therapy. As one of the earliest discovered miRNAs in the human genome, miRNA-21 provides critical information for early cancer diagnosis, drug therapy, and prognosis. In this work, we harness CRISPR as a bridge to integrate target-induced self-priming hairpin isothermal amplification (SIAM) with terminal transferase (TdT) polymerization labeling, constructing a facile, straightforward electrochemical biosensor for sensitive miRNA-21 detection. Unlike conventional single-strand template-based exponential amplification (EXPAR), the SIAM hairpin undergoes target triggered intramolecular conformational change, initiating extension and strand displacement reactions that suppress nonspecific dimer formation and lower background current. Notably, the assay requires only a single probe, enabling unidirectional signal amplification while nonspecific reactions caused by system complexity. The generated SIAM products activate the Cas12a/crRNA complex to trans-cleave PO43− modified single-stranded DNAs (ssDNAs); the resulting 3′ hydroxyl ssDNAs are subsequently labeled by TdT, with the assistance of SA-HRP catalyzing hydrogen peroxide, achieving robust signal amplification. Under optimized conditions, the cathodic current exhibits a logarithmic relationship with miRNA concentrations from 20 fM to 5.0 × 108 fM, with a detection limit of 9.2 fM. The biosensor successfully quantified miRNA-21 in commercial serum samples and biological lysates, demonstrating its potential for cancer diagnostics and therapy. Full article
(This article belongs to the Special Issue CRISPR/Cas System-Based Biosensors)
Show Figures

Graphical abstract

21 pages, 4907 KB  
Article
Atrial TRPM2 Channel-Mediated Ca2+ Influx Regulates ANP Secretion and Protects Against Isoproterenol-Induced Cardiac Hypertrophy and Fibrosis
by Tomohiro Numata, Hideaki Tagashira, Kaori Sato-Numata, Meredith C Hermosura, Fumiha Abe, Ayako Sakai, Shinichiro Yamamoto and Hiroyuki Watanabe
Cells 2026, 15(1), 24; https://doi.org/10.3390/cells15010024 - 22 Dec 2025
Viewed by 712
Abstract
Transient receptor potential melastatin 2 (TRPM2) channel is a Ca2+-permeable, redox-activated cardiac ion channel protective in ischemia–reperfusion, but whether it regulates atrial endocrine output under stress is unclear. Here, we investigated whether TRPM2 contributes to the atrial natriuretic peptide (ANP) response [...] Read more.
Transient receptor potential melastatin 2 (TRPM2) channel is a Ca2+-permeable, redox-activated cardiac ion channel protective in ischemia–reperfusion, but whether it regulates atrial endocrine output under stress is unclear. Here, we investigated whether TRPM2 contributes to the atrial natriuretic peptide (ANP) response during β-adrenergic stimulation. We compared how male C57BL/6J wild-type (WT) and TRPM2 knockout (TRPM2−/−) mice (8–12 weeks old) respond to β-adrenergic stress induced by isoproterenol (ISO) using echocardiography, histology, RT-PCR, electrophysiology, Ca2+ imaging, ELISA, and atrial RNA-seq. We detected abundant Trpm2 transcripts in WT atria and measured ADP-ribose (ADPr)-evoked currents and hydrogen peroxide (H2O2)-induced Ca2+ influx characteristic of TRPM2; these were absent in TRPM2−/− cells. Under the ISO-induced hypertrophic model, TRPM2−/− mice developed greater cardiac hypertrophy, fibrosis, and systolic dysfunction compared with WT mice. Atrial bulk RNA-seq showed significant induction of Nppa (ANP precursor gene) in WT + ISO, accompanied by higher circulating ANP; TRPM2−/− + ISO showed blunted Nppa and ANP responses. ISO-treated TRPM2−/− mice exhibited more blunt responses, in both Nppa transcripts and circulating ANP levels. Exogenous ANP attenuated ISO-induced dysfunction, hypertrophy, and fibrosis in TRPM2−/− mice, suggesting that TRPM2 is needed for the cardioprotective endocrine response via ANP to control stress-induced β-adrenergic remodeling. Full article
(This article belongs to the Special Issue Insight into Cardiomyopathy)
Show Figures

Graphical abstract

15 pages, 2482 KB  
Article
Enhancement of the Peroxidase Activity of Metal–Organic Framework with Different Clay Minerals for Detecting Aspartic Acid
by Chen Tian, Lang Zhang, Yali Yu, Ting Liu, Jianwu Chen, Jie Peng, Chu Dai and Jinhua Gan
Catalysts 2025, 15(12), 1172; https://doi.org/10.3390/catal15121172 - 17 Dec 2025
Viewed by 558
Abstract
The strategic engineering of metal–organic frameworks (MOFs) through integration with clay minerals offers a promising route to tailor their functional properties and expand their application scope. In this study, a series of clay-MOF composites was constructed by introducing MOFs onto the surfaces of [...] Read more.
The strategic engineering of metal–organic frameworks (MOFs) through integration with clay minerals offers a promising route to tailor their functional properties and expand their application scope. In this study, a series of clay-MOF composites was constructed by introducing MOFs onto the surfaces of different clay minerals. By varying the type of clay mineral, the nature and strength of surface-active sites could be effectively modulated. Notably, the Kaolinite-based MOFs (Ka-MOF) composite exhibited superior sensitivity for the detection of aspartic acid (AA), outperforming other composite nanozymes using o-phenylenediamine (OPD) and hydrogen peroxide (H2O2) as substrates, with a linear detection range of 0–37.56 μM and a low detection limit of 55.7 nM. The enhanced peroxidase-like activity is attributed to the substitution of silicon in the kaolinite structure by MOF components, which increases the density of Lewis acid–base sites. These sites facilitate H2O2 adsorption and promote its decomposition to generate singlet oxygen (1O2), thereby enhancing the catalytic oxidation process. Furthermore, the probe yielded satisfactory recoveries of aspartic acid (94.2% to 98.5%) in different real water samples through spiking recovery experiments. This work not only elucidates the influence of crystal surface engineering on the optical and catalytic properties of nanozymes but also provides a robust platform for tracing amino acids and studying their environmental chemical behaviors. Full article
Show Figures

Figure 1

20 pages, 827 KB  
Article
Exploring the Antibacterial, Anti-Inflammatory, and Antioxidant Properties of the Natural Food Supplement “Protegol” as a Supportive Strategy in Respiratory Tract Infections
by Alexia Barbarossa, Maria Pia Argentieri, Maria Valeria Diella, Eleonora Spinozzi, Filippo Maggi, Antonio Carrieri, Filomena Corbo, Antonio Rosato and Alessia Carocci
Antibiotics 2025, 14(12), 1260; https://doi.org/10.3390/antibiotics14121260 - 13 Dec 2025
Viewed by 1080
Abstract
Background/Objectives: Respiratory tract infections (RTIs) remain a leading cause of morbidity worldwide and are frequently associated with the emergence of multidrug-resistant pathogens. In this context, natural compounds represent a valuable source of novel antimicrobial and immunomodulatory agents. The present study aimed to [...] Read more.
Background/Objectives: Respiratory tract infections (RTIs) remain a leading cause of morbidity worldwide and are frequently associated with the emergence of multidrug-resistant pathogens. In this context, natural compounds represent a valuable source of novel antimicrobial and immunomodulatory agents. The present study aimed to evaluate the antibacterial, anti-inflammatory, and antioxidant activities of Protegol, a natural food supplement enriched in bioactive phytochemicals including hydroalcoholic extracts of propolis and hedge mustard (Sisymbrium officinale (L.) Scop.) aerial parts, together with honey, against clinically relevant bacterial strains and in cellular models of inflammation and oxidative stress. Furthermore, the ability of the multi-herbal formulation to alter the permeability of the bacterial cell wall was assessed. Methods: The antibacterial properties of Protegol were evaluated by determining its minimum inhibitory (MIC) and minimum bactericidal concentrations (MBC) against a panel of Gram-positive and Gram-negative bacteria, using the broth microdilution method. Cell wall permeability was investigated through the propidium iodide (PI) uptake assay. The anti-inflammatory potential was investigated in LPS-stimulated RAW 264.7 macrophages by measuring nitric oxide (NO) production with the Griess assay. The antioxidant activity was evaluated in BALB/3T3 fibroblasts exposed to hydrogen peroxide, using the DCFH-DA assay. Results: Protegol exhibited a broad-spectrum antibacterial effect, with MIC values ranging from 1.5 to 6.2 mg/mL and MBC values between 3.1 and 12.4 mg/mL. The strongest activity was observed against Staphylococcus aureus and Streptococcus pyogenes, including clinical isolates, while moderate efficacy was detected against resistant Klebsiella pneumoniae strains. PI uptake assays confirmed a dose-dependent disruption of bacterial membrane integrity, supporting a direct effect of Protegol on cell wall permeability. In macrophages, Protegol significantly and dose-dependently reduced NO release, lowering production to 44% at the highest concentration tested. In BALB/3T3 cells, Protegol markedly decreased ROS accumulation to 24% at the same concentration. Conclusions: Overall, the findings support the potential of Protegol as a natural adjuvant to the conventional therapies for respiratory tract health by counteracting bacterial pathogens, reducing inflammation, and mitigating oxidative stress, thereby supporting host defense mechanisms in the context of respiratory tract infections. Full article
Show Figures

Figure 1

15 pages, 1145 KB  
Article
ABCA1 Transporter Is Involved in the Secretion of CuZn Superoxide Dismutase (SOD)-1 by Activated Human T Lymphocytes
by Flavia Carriero, Giuliana La Rosa, Luca Pipicelli, Mariarosaria Cammarota, Anna Palmiero, Giovanna Vitolo, Simona Damiano, Mariarosaria Santillo, Francesca Boscia, Giuseppe Terrazzano, Giuseppina Ruggiero, Paolo Mondola and Valentina Rubino
Antioxidants 2025, 14(12), 1487; https://doi.org/10.3390/antiox14121487 - 11 Dec 2025
Viewed by 441
Abstract
The pivotal role of reactive oxygen species (ROS), especially peroxides, in multiple cell signalling pathways has been well-established. Superoxide dismutase 1 (SOD-1) represents a major intracellular source of hydrogen peroxide. Antigen-dependent activation of human T lymphocytes has been previously described by us to [...] Read more.
The pivotal role of reactive oxygen species (ROS), especially peroxides, in multiple cell signalling pathways has been well-established. Superoxide dismutase 1 (SOD-1) represents a major intracellular source of hydrogen peroxide. Antigen-dependent activation of human T lymphocytes has been previously described by us to induce both SOD-1 production and secretion by T cells. SOD-1 mediated pathways have also been described to deliver proinflammatory signals and to affect the differentiation of immune-suppressor subsets (Treg). The mechanisms underlying extracellular SOD-1 export by activated T cells remain largely undefined. Indeed, SOD-1, like the leaderless proteins, is unable to exploit the conventional trans-Golgi vesicular secretion pathway. Here, we propose that ABCA1 transporters play a role in the mechanisms underlying SOD-1 secretion by activated T cells. Indeed, ABC transporter inhibition by using glyburide significantly decreases SOD-1 secretion by antigen-triggered human T cells in vitro. The effect has been confirmed by using four different detection techniques, as represented by Western blotting, ELISA, flow cytometry and confocal microscopy. Collectively, our findings indicate that ABCA1 transporter-dependent secretion supports the vesicular secretory machinery and might contribute to the extracellular release of SOD-1 by activated T cells. This mechanism highlights ABCA1 as a promising molecular target for therapeutic modulation of deranged immune activation. Full article
Show Figures

Figure 1

23 pages, 13046 KB  
Article
Integrated Transcriptomic and Physiological Data Offer Novel Insights into Viability Changes in Paeonia lactiflora Seeds After Cryopreservation
by Ruifen Ren, Zhe Ji, Qinlu Zhu, Bairu Zhang and Xiuyun Yang
Horticulturae 2025, 11(12), 1494; https://doi.org/10.3390/horticulturae11121494 - 10 Dec 2025
Viewed by 365
Abstract
While water content is a critical factor affecting the outcome of cryopreservation, the mechanism by which it influences seed viability after cryopreservation remains unclear. In this study, Paeonia lactiflora seeds with different water content as experimental materials, analyzed the seed viability, oxidative stress [...] Read more.
While water content is a critical factor affecting the outcome of cryopreservation, the mechanism by which it influences seed viability after cryopreservation remains unclear. In this study, Paeonia lactiflora seeds with different water content as experimental materials, analyzed the seed viability, oxidative stress indicators, and transcriptomics before and after cryopreservation, to explore the mechanism of the seed viability changes. The results demonstrated that after cryopreservation, seeds with high water content displayed reduced viability, along with abnormal accumulation of reactive oxygen species (ROS) content, which subsequently triggered ROS-mediated oxidative damage. In contrast, seeds with low water exhibited enhanced following cryopreservation, their ROS levels remained relatively stable, while notable alterations were detected in multiple antioxidant system parameters. At the transcriptional level, 1224 differentially expressed genes (DEGs) up-regulated and 1839 DEGs were down-regulated in seeds with high water content after cryopreservation, but 2090 DEGs up-regulated and 1783 DEGs down-regulated in the seeds with low water content. Among them, 687 DEGs were common to both the high- and low-water content seed groups. Gene Ontology (GO) functional analysis indicated that these DEGs are primarily involved physiological metabolic processes including osmotic response, glucosidase activity, protein kinase binding, and response to hydrogen peroxide. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis confirmed that the Mitogen-Activated Protein Kinase (MAKP) plant signaling pathway and the starch and sucrose metabolism pathway are the key pathways governing the response of seeds with varying water contents to cryopreservation. Finally, through weighted gene co-expression network pinpointed DHN1 and LEA34 as the core genes regulating changes in seed viability after cryopreservation. These findings offer a broader perspective for in-depth exploration of the molecular regulatory mechanisms underlying the differences in seed viability changes after cryopreservation and are crucial for comprehensively clarifying the precise pathways via which these key genes regulate seed viability changes after cryopreservation. Full article
(This article belongs to the Section Propagation and Seeds)
Show Figures

Figure 1

33 pages, 1135 KB  
Review
Antioxidant, Antimicrobial, and Anticancer Activity of Basil (Ocimum basilicum)
by Efthymios Poulios, Sousana K. Papadopoulou, Evmorfia Psara and Constantinos Giaginis
Antioxidants 2025, 14(12), 1469; https://doi.org/10.3390/antiox14121469 - 7 Dec 2025
Cited by 1 | Viewed by 1710
Abstract
Background/Objectives: For many years, herbs and spices have been used, due to their aroma and flavor, in the food industry and cuisine. It is also well known that phytochemicals from these plant parts have many health benefits and are used for the prevention [...] Read more.
Background/Objectives: For many years, herbs and spices have been used, due to their aroma and flavor, in the food industry and cuisine. It is also well known that phytochemicals from these plant parts have many health benefits and are used for the prevention and treatment of many human diseases. Basil (with the most representative species Ocimum basilicum) is a perennial herb with a characteristic aroma, containing many bioactive components such as phenolic acids, flavonoids, tannins, saponins, alkaloids, polysaccharides, vitamins, proteins, amino acids, and essential oils, with beneficial effects on human health. The aim of this study is to review the antioxidant, antimicrobial, and anticancer activity of basil, according to recent literature. Methods: A thorough search in the international databases (Scopus, PubMed, Google Scholar, and Web of Sciences) was conducted from January 2015 to October 2025, using characteristic keywords in combinations. Results: Bioactive components of basil show a significant antioxidant activity, as detected by radical scavenging activity (measured by the 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), ferric reducing antioxidant power (FRAP), oxygen radical absorbance capacity (ORAC) assays), activation of antioxidant enzymes (glutathione peroxidase (GPX), superoxide dismutase (SOD), catalase (CAT)), enhancement of reduced glutathione (GSH) and reduction in malondialdehyde (MDA) and thiobarbituric acid-reactive substance (TBARS) levels, and protection of cells from hydrogen peroxide (H2O2)-toxicity. Additionally, inhibition of growth and cell death of many Gram-positive and Gram-negative bacteria strains, maintained by cell membrane damage, inhibition of efflux pumps, as well as inhibition of biofilm formation, anti-protozoan, antifungal, and antiviral activities, have been noticed for basil bioactive components. A synergism with antibiotics has also been reported. Finally, anticancer activity has been reported, according to apoptosis induction, cell cycle arrest, anxiety reduction, and health improvement of cancer patients. Conclusions: Basil bioactive components have been reported for their high antioxidant, antimicrobial, and anticancer properties. However, future studies, especially at the clinical level, are strongly proposed in order to unravel the significant role of basil in human health and the safety of its bioactive components in healthcare usage. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

Back to TopTop