Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (89)

Search Parameters:
Keywords = hydrocarbon fraction test

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3020 KB  
Article
Mechanical Properties of Petroleum Hydrocarbon Contaminated Soil Treated by Percarbonate Coupled with Nanoscale Zero-Valent Iron Activated Persulfate
by Meng Zou, Yongzhan Chen, Qinxi Dong, Keyu Chen, Mengqi Liu, Yuhao Chen, Weicheng Zhang and Haopu Guo
Appl. Sci. 2026, 16(1), 244; https://doi.org/10.3390/app16010244 - 25 Dec 2025
Viewed by 274
Abstract
Advanced oxidation processes (AOPs) are increasingly used for the remediation of soils contaminated with petroleum hydrocarbons, as they rapidly mineralize recalcitrant fractions to CO2 and H2O. However, the effects of AOPs on the geotechnical properties of such soils remain not [...] Read more.
Advanced oxidation processes (AOPs) are increasingly used for the remediation of soils contaminated with petroleum hydrocarbons, as they rapidly mineralize recalcitrant fractions to CO2 and H2O. However, the effects of AOPs on the geotechnical properties of such soils remain not well understood. In this study, the influences of a combined oxidation system of sodium percarbonate (SPC), nanoscale zero-valent iron (nZVI), and sodium persulfate (PS) on the geotechnical behavior of petroleum hydrocarbon-contaminated soil were investigated. A series of tests, including basic geotechnical index, pH, Atterberg limits, particle size distribution, and consolidated undrained triaxial compression test, were conducted to explore the geotechnical responses and underlying mechanisms associated with the dual AOPs treatment. The results indicate that the diesel-contaminated soil exhibited slightly higher LL and PI compared with the natural soil. For the treated soils, LL and PI remained essentially unchanged with increasing SPC dosage. The particle-size distribution first migrated to finer fractions and then reverted to a coarser mode. The strongest fining was observed at 2% SPC, whereas higher SPC dosages induced aggregation and the formation of larger agglomerates. Consolidated undrained triaxial tests indicate that diesel contamination reduced undrained stiffness and strength. The nZVI–PS treatment without SPC produced a partial recovery in stiffness and a slight increase in the friction angle. With increasing SPC dosage, the soils exhibited a nonmonotonic response in stiffness and shear strength, where low SPC enhanced apparent cohesion and higher SPC weakened bonds while partially restoring frictional resistance. These findings suggest that advanced oxidation of petroleum hydrocarbon–contaminated soils requires a trade-off. This trade-off is between contaminant degradation efficiency and the preservation of geotechnical performance to ensure the reuse of the remediated soil. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

18 pages, 9029 KB  
Article
Fuel Dilution in Hybrid Engine Oils: Correlation Between Viscosity Loss and FTIR Spectral Shifts in Modern Combustion Systems
by Artur Wolak and Grzegorz Zając
Energies 2026, 19(1), 50; https://doi.org/10.3390/en19010050 - 22 Dec 2025
Viewed by 604
Abstract
This study investigates fuel-induced oil dilution in hybrid powertrains using a combined assessment of kinematic viscosity and FTIR differential spectroscopy. Ten oil samples collected from hybrid vehicles operating under diverse real-world driving patterns were examined to determine how hybrid-specific operating conditions—such as frequent [...] Read more.
This study investigates fuel-induced oil dilution in hybrid powertrains using a combined assessment of kinematic viscosity and FTIR differential spectroscopy. Ten oil samples collected from hybrid vehicles operating under diverse real-world driving patterns were examined to determine how hybrid-specific operating conditions—such as frequent cold starts, extended start–stop phases and short, thermally unstable trips—influence lubricant ageing and, consequently, the energy efficiency of the combustion subsystem. In eight of the ten cases, a clear reduction in kinematic viscosity was observed, indicating the presence of volatile fuel fractions and confirming that fuel dilution is a dominant mechanism shaping the early stages of oil degradation in hybrid engines. FTIR analysis consistently revealed spectral shifts related to oxidation, nitration, sulfonation and additive depletion, together with hydrocarbon enrichment characteristic of fuel contamination. The co-occurrence of viscosity loss and FTIR band evolution demonstrates a strong and reproducible relationship between mechanical thinning of the lubricant and chemically driven transformation pathways, both of which can negatively affect frictional losses and energetic performance. Paper-based blot testing was used only as a supplementary qualitative tool and provided visual confirmation for samples exhibiting the strongest fuel-related FTIR signatures and viscosity changes. Although not mechanistically specific, the method reinforced the laboratory findings in cases of pronounced degradation. Overall, the results highlight the diagnostic value of combining viscosity data with FTIR spectral analysis to characterise fuel dilution and associated ageing mechanisms in hybrid combustion systems. This study contributes to a more comprehensive understanding of lubricant deterioration under real hybrid driving conditions and supports the development of practical monitoring strategies aimed at safeguarding both engine durability and the energy efficiency of hybrid powertrains. Full article
(This article belongs to the Special Issue Combustion Systems for Advanced Engines)
Show Figures

Figure 1

16 pages, 543 KB  
Article
Use of Liquid Industrial By-Products as Biostimulants in the Remediation of Hydrocarbon-Contaminated Soils
by Emilio Ritoré, Carmen Arnaiz, José Morillo, Agata Egea-Corbacho and José Usero
Clean Technol. 2025, 7(4), 114; https://doi.org/10.3390/cleantechnol7040114 - 11 Dec 2025
Viewed by 403
Abstract
Soil contamination by petroleum hydrocarbons represents a significant environmental challenge, especially in industrial and urban areas. This study evaluates the use of three industrial liquid by-products—sludge dewatering sidestream (SD), leftover yeast (LY), and secondary clarifier effluent (SC)—as biostimulant agents for the bioremediation of [...] Read more.
Soil contamination by petroleum hydrocarbons represents a significant environmental challenge, especially in industrial and urban areas. This study evaluates the use of three industrial liquid by-products—sludge dewatering sidestream (SD), leftover yeast (LY), and secondary clarifier effluent (SC)—as biostimulant agents for the bioremediation of soils contaminated with gasoline and diesel mixtures. The novelty lies in applying these waste streams within a circular economy framework, with the added advantage that they can be injected directly into the subsurface. Microcosm tests were conducted over 20 weeks, analyzing the degradation of total petroleum hydrocarbons (TPHs) and their aliphatic and aromatic fractions using gas chromatography. The results show that all by-products improved biodegradation compared to natural attenuation. LY was the most effective, achieving 73.2% TPH removal, followed by SD (70.6%) and SC (65.4%). The greatest degradation was observed in short-chain hydrocarbons (C6–C16), while compounds with higher molecular weight (C21–C35) were more recalcitrant. In addition, aliphatic hydrocarbons showed greater degradability than aromatics in heavy fractions. Kinetic analysis revealed that the second-order model best fitted the experimental data, with higher correlation coefficients (R2) and more representative half-lives. Catalase enzyme activity also increased in soils treated with LY and SD, indicating higher microbial activity. Full article
Show Figures

Figure 1

31 pages, 4075 KB  
Article
Oxidative Dissolution Effects on Shale Pore Structure, Mechanical Properties, and Gel-Breaking Performance
by Jingyang Chen, Liangbin Dou, Tao Li, Yanjun Zhang, Kelong Deng, Xuebin Cheng, Zhifa Kang, Ruxu Wang and Yang Shi
Gels 2025, 11(12), 982; https://doi.org/10.3390/gels11120982 - 7 Dec 2025
Viewed by 276
Abstract
Shale reservoirs contain abundant organic matter, pyrite, and clay minerals, making them highly susceptible to fluid-sensitivity damage; consequently, conventional hydraulic fracturing often yields poor stimulation performance, with low fracturing fluid flowback and rapid post-treatment production decline. Oxidative dissolution, however, can significantly alter the [...] Read more.
Shale reservoirs contain abundant organic matter, pyrite, and clay minerals, making them highly susceptible to fluid-sensitivity damage; consequently, conventional hydraulic fracturing often yields poor stimulation performance, with low fracturing fluid flowback and rapid post-treatment production decline. Oxidative dissolution, however, can significantly alter the physical properties of shale reservoirs and improve stimulation effectiveness. In this study, nuclear magnetic resonance (NMR), contact-angle measurements, and triaxial compression tests are combined to systematically evaluate the effects of oxidative dissolution on the pore structure, wettability, and mechanical properties of Wufeng Formation shale from the Sichuan Basin. Core-flooding experiments with NaClO solutions show that, as the oxidant dosage (pore volume) increases, shale permeability rises by 66.67–266.67% and porosity by 1.79–9.58%, while the hydrophilic surface fraction increases from 5.45% to 61.73%. These changes are accompanied by a steady reduction in rock strength: the compressive strength decreases by up to 57.8%, and the elastic modulus exhibits a non-monotonic response to oxidation. Oxidative dissolution preferentially enlarges micropores, improves pore connectivity, and strengthens water wetness by consuming oil-wet organic matter and pyrite, which also enhances gel-breaking efficiency. Based on the experimental results, a series of characterization models are developed for oxidized shale reservoirs, including quantitative relationships linking porosity to compressive strength, elastic modulus, and contact angle, as well as a model relating oxidant dosage to microscopic pore structure evolution and imbibition enhancement. Overall, the coupled modifications of pore structure, wettability, and mechanical behavior produced by oxidative dissolution synergistically broaden the effective action range of fracturing fluids, promote shale gas desorption, and improve hydrocarbon seepage, providing a theoretical basis and practical guidance for oxidation-assisted stimulation in shale reservoirs. Full article
(This article belongs to the Section Gel Applications)
Show Figures

Figure 1

15 pages, 2412 KB  
Article
Isolation of Bioactive Metabolites from Fusarium fujikuroi: GC-MS Profiling and Bioactivity Assessment
by Zainab Farooq, Sobia Nisa, Eman Y. Santali, Ruwida M. K. Omar and Ashraf Ali
Processes 2025, 13(11), 3729; https://doi.org/10.3390/pr13113729 - 19 Nov 2025
Viewed by 2121
Abstract
In the present study, the endophytic fungus Fusarium fujikuroi was isolated from the medicinal plant Debregeasia salicifolia and cultivated for the extraction of bioactive metabolites. The crude extract was fractionated via gravity column chromatography using solvents of increasing polarity (n-hexane, n-hexane/chloroform 1:1 v [...] Read more.
In the present study, the endophytic fungus Fusarium fujikuroi was isolated from the medicinal plant Debregeasia salicifolia and cultivated for the extraction of bioactive metabolites. The crude extract was fractionated via gravity column chromatography using solvents of increasing polarity (n-hexane, n-hexane/chloroform 1:1 v/v, chloroform, ethyl acetate, and methanol) to isolate bioactive compounds. The antimicrobial activity of these fractions was evaluated against pathogenic bacteria (Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli). Most extracts exhibited significant antimicrobial activity, with the n-hexane/chloroform fraction (HCF) showing the highest efficacy (18 mm inhibition zone), followed by the n-hexane fraction while Ciprofloxacin was used as a positive control. Fractions were tested in triplicate; antibacterial activities (p < 0.05) were highest in the HCF. Bioactive compounds from the most potent fractions were further purified and analyzed using gas chromatography-mass spectrometry (GC-MS). The GC-MS profiling revealed the presence of diverse bioactive metabolites, including polycyclic aromatic hydrocarbons (PAHs), phenols, and fatty acids. Notably, several of these compounds have not been previously reported in Fusarium fujikuroi, highlighting the potential for novel antimicrobial agents from this endophytic strain. In silico toxicity prediction using the ProTox-II tool indicated that the major compounds possess low to moderate toxicity profiles, supporting their potential safety for further biological evaluation. Full article
Show Figures

Figure 1

38 pages, 2877 KB  
Article
Toward Harmonized Black Sea Contaminant Monitoring: Bridging Methods and Assessment
by Andra Oros, Valentina Coatu, Yurii Oleinik, Hakan Atabay, Ertuğrul Aslan, Levent Bat, Nino Machitadze, Andra Bucse, Nuray Çağlar Balkıs, Nagihan Ersoy Korkmaz and Laura Boicenco
Water 2025, 17(21), 3107; https://doi.org/10.3390/w17213107 - 30 Oct 2025
Viewed by 871
Abstract
The Black Sea is a semi-enclosed basin subject to intense anthropogenic pressures and transboundary pollution, making reliable and comparable monitoring data essential for large-scale environmental assessments. However, national practices differ considerably, hindering data integration and coordinated reporting under international frameworks. This study, conducted [...] Read more.
The Black Sea is a semi-enclosed basin subject to intense anthropogenic pressures and transboundary pollution, making reliable and comparable monitoring data essential for large-scale environmental assessments. However, national practices differ considerably, hindering data integration and coordinated reporting under international frameworks. This study, conducted within the Horizon 2020 project “Advancing Black Sea Research and Innovation to Co-develop Blue Growth within Resilient Ecosystems” (BRIDGE-BS), evaluated pollutant surveillance methodologies with a focus on heavy metals and priority organic contaminants (polycyclic aromatic hydrocarbons, polychlorinated biphenyls, organochlorine pesticides). Standard Operating Procedures (SOPs) were collected from institutions across Black Sea countries and systematically compared for water, sediment, and biota matrices. The analysis revealed shared reliance on internationally recognized techniques but also heterogeneity in sediment fraction selection, digestion and extraction conditions, instrumental approaches, and quality assurance/quality control (QA/QC) documentation. To complement this assessment, an intercalibration (IC) exercise was organized through the QUASIMEME proficiency testing scheme, accompanied by a follow-up structured questionnaire sent to participant institutions. While individual results remain confidential, collective feedback highlighted common challenges in calibration, blank correction, certified reference materials (CRMs) availability, digestion variability, instrument maintenance, and the reporting of uncertainty and detection limits. Together, these findings confirm that harmonization in the Black Sea requires not only improved comparability of laboratory methods but also the future alignment of assessment methodologies, including indicators and thresholds, to support coherent, basin-wide environmental evaluations under regional conventions and EU directives. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

27 pages, 2846 KB  
Article
Multiscale Evaluation of Raw Coconut Fiber as Biosorbent for Marine Oil Spill Remediation: From Laboratory to Field Applications
by Célia Karina Maia Cardoso, Ícaro Thiago Andrade Moreira, Antônio Fernando de Souza Queiroz, Olívia Maria Cordeiro de Oliveira and Ana Katerine de Carvalho Lima Lobato
Resources 2025, 14(10), 159; https://doi.org/10.3390/resources14100159 - 9 Oct 2025
Cited by 1 | Viewed by 2544
Abstract
This study provides the first comprehensive multiscale evaluation of raw coconut fibers as biosorbents for crude oil removal, encompassing laboratory adsorption tests, mesoscale hydrodynamic simulations, and field trials in marine environments. Fibers were characterized by SEM, FTIR, XRD, XPS, and chemical composition analysis [...] Read more.
This study provides the first comprehensive multiscale evaluation of raw coconut fibers as biosorbents for crude oil removal, encompassing laboratory adsorption tests, mesoscale hydrodynamic simulations, and field trials in marine environments. Fibers were characterized by SEM, FTIR, XRD, XPS, and chemical composition analysis (NREL method), confirming their lignocellulosic nature, high lignin content, and functional groups favorable for hydrocarbon adsorption. At the microscale, a 25−1 fractional factorial design evaluated the influence of dosage, concentration, contact time, temperature, and pH, followed by kinetic and equilibrium model fitting and regeneration tests. Dosage, concentration, and contact time were the most significant factors, while low sensitivity to salinity highlighted the material’s robustness under marine conditions. Adsorption followed pseudo-second-order kinetics, with an equilibrium adsorption capacity of 4.18 ± 0.19 g/g, and it was best described by the Langmuir isotherm, indicating chemisorption and monolayer formation. Mechanical regeneration by centrifugation allowed for reuse for up to five cycles without chemical reagents, aligning with circular economy principles. In mesoscale and field applications, fibers maintained structural integrity, buoyancy, and adsorption efficiency. These results provide strong technical support for the practical use of raw coconut fibers in oil spill response, offering a renewable, accessible, and cost-effective solution for scalable applications in coastal and marine environments. Full article
Show Figures

Figure 1

26 pages, 1825 KB  
Article
Bioremediation of Diesel-Contaminated Soil: Hydrocarbon Degradation and Soil Toxicity Reduction by Constructed Bacterial Consortia
by Mutian Wang, David N. Dowling and Kieran J. Germaine
Appl. Sci. 2025, 15(18), 10143; https://doi.org/10.3390/app151810143 - 17 Sep 2025
Cited by 1 | Viewed by 2061
Abstract
Petroleum pollution can pose a serious threat to soil health and its ecological functions. This study investigated the efficacy of bacterial treatments for bioremediation of diesel-contaminated soil under outdoor conditions for a period of 4 months. Unlike most previous studies conducted under laboratory [...] Read more.
Petroleum pollution can pose a serious threat to soil health and its ecological functions. This study investigated the efficacy of bacterial treatments for bioremediation of diesel-contaminated soil under outdoor conditions for a period of 4 months. Unlike most previous studies conducted under laboratory conditions, this study applied single and multi-bacterial consortia directly into diesel-contaminated soil under outdoor conditions, evaluating both hydrocarbon degradation and soil toxicity changes. Three treatments using a single strain, a 4-strain consortium, and an 8-strain consortium were applied to 2% (v/w) diesel-contaminated soil, and their performance was compared to uncontaminated and untreated controls. Total petroleum hydrocarbon (TPH) degradation was quantified using GC-FID, and the soil toxicity was assessed using Eisenia fetida toxicity test and higher plant germination assays. As the experiment demonstrated, the multi-strain bacterial consortium (BT3) achieved the highest TPH degradation (78.3%) and demonstrated significant reduction in long-chain hydrocarbon fractions (C14-C28). Toxicity measurements showed that all three bioremediation treatments, especially BT3, significantly increased earthworm survival, body weight change and plant germination rate after the bioremediation. Microbial community analysis based on 16S rRNA sequencing revealed significant shifts in the dominant bacterial genera over time, accompanied by a noticeable reduction in alpha diversity. In particular, BT3 showed a significant decrease in Shannon diversity index values from 9.4 at S1 to 6.9 at S3 (p < 0.01), whereas BT1 and BT2 remained relatively stable (p > 0.05). Overall, the results demonstrated that all three bacterial treatments significantly enhanced diesel degradation and reduced soil toxicity under outdoor conditions, highlighting their potential for future large-scale applications in sustainable soil remediation. Importantly, this study combines constructed microbial consortia with multi-level toxicity assessments, providing a comprehensive framework to guide future bioremediation strategies. Full article
(This article belongs to the Special Issue Advanced Research and Analysis of Environmental Microbiomes)
Show Figures

Figure 1

37 pages, 8995 KB  
Article
Process Analysis of Waste Animal Fat Pyrolysis and Fractional Distillation in Semi-Batch Reactors: Influence of Temperature and Reaction Time
by Alex Lopes Valente, Marcelo Figueiredo Massulo Aguiar, Ana Claudia Fonseca Baia, Lauro Henrique Hamoy Guerreiro, Renan Marcelo Pereira Silva, Lucas Sabino do Vale Scaff, Dilson Nazareno Pereira Cardoso, Hugo Fernando Meiguins da Silva, Davi do Socorro Barros Brasil, Neyson Martins Mendonça, Sergio Duvoisin Junior, Douglas Alberto Rocha de Castro, Luiz Eduardo Pizarro Borges, Nélio Teixeira Machado and Lucas Pinto Bernar
Energies 2025, 18(17), 4517; https://doi.org/10.3390/en18174517 - 26 Aug 2025
Viewed by 1909
Abstract
Waste animal fat (WAF) can be converted to distillate fractions similar to petroleum solvents and used as solvents via pyrolysis and fractional distillation. Pyrolysis oil from triglyceride materials presents adequate viscosity and volatility, compared to petroleum fuels, but shows acid values between 60–140 [...] Read more.
Waste animal fat (WAF) can be converted to distillate fractions similar to petroleum solvents and used as solvents via pyrolysis and fractional distillation. Pyrolysis oil from triglyceride materials presents adequate viscosity and volatility, compared to petroleum fuels, but shows acid values between 60–140 mg KOH/g, impeding its direct use as biofuels without considerable purification of its distillates. Fractional distillation can be applied for the purification of bio-oil, but only a few studies accurately describe the process. The purpose of this study was to evaluate the effect of temperature in the conversion of waste animal fat into fuel-like fractions by pyrolysis and fractional distillation in a semi-batch stirred bed reactor (2 L) according to reaction time. Waste animal fat was extracted (rendering) from disposed meat cuts obtained from butcher shops and pyrolyzed in a stainless-steel stirred bed reactor operating in semi-batch mode at 400–500 °C. The obtained liquid fraction was separated according to reaction time. The pyrolysis bio-oil at 400 °C was separated into four distinct fractions (gasoline, kerosene, diesel, and heavy phase) by fractional distillation with reflux. The bio-oil and distillate fractions were analyzed by density, kinematic viscosity, acid value, and chemical composition by gas chromatography coupled to mass spectra (GC-MS). The results show that, for semi-batch reactors with no inert gas flow, higher temperature is associated with low residence time, reducing the conversion of fatty acids to hydrocarbons. The distillate fractions were tested in a common application not sensible to the fatty acid concentration as a diluent in the preparation of diluted asphalt cutback for the priming of base pavements in road construction. Kerosene and diesel fractions can be successfully applied in the preparation of asphalt cutbacks, even with a high acid value. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

12 pages, 498 KB  
Article
A Kinetic Study on the Accumulation of No.0 Fuel Oil and Pinghu Crude Oil Water-Accommodated Fraction in Exopalaemon carinicauda
by Lei Li, Yiyun Zhang, Li Wei, Aijia Lin, Jiaying Cai, Zengqiao Wei, Qingyuan Wu, Junxiang Niu, Yanming Sui and Mei Jiang
Fishes 2025, 10(8), 403; https://doi.org/10.3390/fishes10080403 - 13 Aug 2025
Viewed by 477
Abstract
The kinetic parameters of No.0 fuel oil and Pinghu crude oil water-accommodated fractions (WAFs) during accumulation and elimination in Exopalaemon carinicauda were quantified using a semi-static two-compartment kinetic model. The accumulation phase data were analyzed via nonlinear regression to obtain kinetic parameters, yielding [...] Read more.
The kinetic parameters of No.0 fuel oil and Pinghu crude oil water-accommodated fractions (WAFs) during accumulation and elimination in Exopalaemon carinicauda were quantified using a semi-static two-compartment kinetic model. The accumulation phase data were analyzed via nonlinear regression to obtain kinetic parameters, yielding critical values including the uptake rate constant (k1), elimination rate constant (k2), bioconcentration factor (BCF), equilibrium body burden (CAmax), and biological half-life (B1/2). Modeling results demonstrated distinct kinetic parameters for the two oils. For No.0 fuel oil, the average values were k1 = 5.21; k2 = 0.1105; BCF = 48.98; CAmax = 2.95 mg/kg; and B1/2 = 6.40 days. For Pinghu crude oil, the averages were k1 = 10.25; k2 = 0.1044; BCF = 98.15; CAmax = 8.48 mg/kg; and B1/2 = 6.64 days. The uptake rate constant (k1) and BCF generally decreased with increasing petroleum hydrocarbon exposure concentrations in ambient seawater, while the elimination rate constant (k2) remained relatively constant across different concentrations. CAmax increased proportionally with the petroleum hydrocarbon exposure concentration. Goodness-of-fit tests confirmed that the petroleum hydrocarbon concentrations in the experimental data were well described by the semi-static two-compartment model. Throughout the testing period, the concentration of No.0 fuel oil in Exopalaemon carinicauda remained lower than that of Pinghu crude oil. Full article
(This article belongs to the Section Environment and Climate Change)
Show Figures

Figure 1

25 pages, 3599 KB  
Article
Sustainable Production of Eco-Friendly, Low-Carbon, High-Octane Gasoline Biofuels Through a Synergistic Approach for Cleaner Transportation
by Tamer M. M. Abdellatief, Ahmad Mustafa, Mohamed Koraiem M. Handawy, Muhammad Bakr Abdelghany and Xiongbo Duan
Fuels 2025, 6(3), 49; https://doi.org/10.3390/fuels6030049 - 23 Jun 2025
Cited by 1 | Viewed by 2773
Abstract
This research work seeks to introduce eco-friendly, low-carbon, and high-octane biofuel gasoline production using a synergistic approach. Four types of high-octane gasoline, including SynergyFuel-92, SynergyFuel-95, SynergyFuel-98, and SynergyFuel-100, were generated, emphasizing the deliberate combination of petroleum-derived gasoline fractions using reformate, isomerate, and delayed [...] Read more.
This research work seeks to introduce eco-friendly, low-carbon, and high-octane biofuel gasoline production using a synergistic approach. Four types of high-octane gasoline, including SynergyFuel-92, SynergyFuel-95, SynergyFuel-98, and SynergyFuel-100, were generated, emphasizing the deliberate combination of petroleum-derived gasoline fractions using reformate, isomerate, and delayed coking (DC) naphtha with octane-boosting compounds—bio-methanol and bio-ethanol. A set of tests have been performed to examine the effects of antiknock properties, density, oxidation stability, distillation range characteristics, hydrocarbon composition, vapor pressure, and the volatility index on gasoline blends. The experimental results indicated that the gasoline blends made from biofuel (SynergyFuel-92, -95, -98, and 100) showed adherence to important fuel quality criteria in the USA, Europe, and China. These blends had good characteristics, such as low quantities of benzene and sulfur, regulated levels of olefins and aromatics, and good distillation qualities. By fulfilling these strict regulations, Synergy Fuel is positioned as a competitive and eco-friendly substitute for traditional gasoline. The results reported that SynergyFuel-100 demonstrated the strongest hot-fuel-handling qualities and resistance to vapor lock among all the mentioned Synergy Fuels. Finally, the emergence of eco-friendly, low-carbon, and high-octane biofuel gasoline production with synergistic benefits is a big step in the direction of sustainable transportation. Full article
(This article belongs to the Special Issue Sustainability Assessment of Renewable Fuels Production)
Show Figures

Graphical abstract

58 pages, 949 KB  
Review
Excess Pollution from Vehicles—A Review and Outlook on Emission Controls, Testing, Malfunctions, Tampering, and Cheating
by Robin Smit, Alberto Ayala, Gerrit Kadijk and Pascal Buekenhoudt
Sustainability 2025, 17(12), 5362; https://doi.org/10.3390/su17125362 - 10 Jun 2025
Cited by 5 | Viewed by 7238
Abstract
Although the transition to electric vehicles (EVs) is well underway and expected to continue in global car markets, most vehicles on the world’s roads will be powered by internal combustion engine vehicles (ICEVs) and fossil fuels for the foreseeable future, possibly well past [...] Read more.
Although the transition to electric vehicles (EVs) is well underway and expected to continue in global car markets, most vehicles on the world’s roads will be powered by internal combustion engine vehicles (ICEVs) and fossil fuels for the foreseeable future, possibly well past 2050. Thus, good environmental performance and effective emission control of ICE vehicles will continue to be of paramount importance if the world is to achieve the stated air and climate pollution reduction goals. In this study, we review 228 publications and identify four main issues confronting these objectives: (1) cheating by vehicle manufacturers, (2) tampering by vehicle owners, (3) malfunctioning emission control systems, and (4) inadequate in-service emission programs. With progressively more stringent vehicle emission and fuel quality standards being implemented in all major markets, engine designs and emission control systems have become increasingly complex and sophisticated, creating opportunities for cheating and tampering. This is not a new phenomenon, with the first cases reported in the 1970s and continuing to happen today. Cheating appears not to be restricted to specific manufacturers or vehicle types. Suspicious real-world emissions behavior suggests that the use of defeat devices may be widespread. Defeat devices are primarily a concern with diesel vehicles, where emission control deactivation in real-world driving can lower manufacturing costs, improve fuel economy, reduce engine noise, improve vehicle performance, and extend refill intervals for diesel exhaust fluid, if present. Despite the financial penalties, undesired global attention, damage to brand reputation, a temporary drop in sales and stock value, and forced recalls, cheating may continue. Private vehicle owners resort to tampering to (1) improve performance and fuel efficiency; (2) avoid operating costs, including repairs; (3) increase the resale value of the vehicle (i.e., odometer tampering); or (4) simply to rebel against established norms. Tampering and cheating in the commercial freight sector also mean undercutting law-abiding operators, gaining unfair economic advantage, and posing excess harm to the environment and public health. At the individual vehicle level, the impacts of cheating, tampering, or malfunctioning emission control systems can be substantial. The removal or deactivation of emission control systems increases emissions—for instance, typically 70% (NOx and EGR), a factor of 3 or more (NOx and SCR), and a factor of 25–100 (PM and DPF). Our analysis shows significant uncertainty and (geographic) variability regarding the occurrence of cheating and tampering by vehicle owners. The available evidence suggests that fleet-wide impacts of cheating and tampering on emissions are undeniable, substantial, and cannot be ignored. The presence of a relatively small fraction of high-emitters, due to either cheating, tampering, or malfunctioning, causes excess pollution that must be tackled by environmental authorities around the world, in particular in emerging economies, where millions of used ICE vehicles from the US and EU end up. Modernized in-service emission programs designed to efficiently identify and fix large faults are needed to ensure that the benefits of modern vehicle technologies are not lost. Effective programs should address malfunctions, engine problems, incorrect repairs, a lack of servicing and maintenance, poorly retrofitted fuel and emission control systems, the use of improper or low-quality fuels and tampering. Periodic Test and Repair (PTR) is a common in-service program. We estimate that PTR generally reduces emissions by 11% (8–14%), 11% (7–15%), and 4% (−1–10%) for carbon monoxide (CO), hydrocarbons (HC), and oxides of nitrogen (NOx), respectively. This is based on the grand mean effect and the associated 95% confidence interval. PTR effectiveness could be significantly higher, but we find that it critically depends on various design factors, including (1) comprehensive fleet coverage, (2) a suitable test procedure, (3) compliance and enforcement, (4) proper technician training, (5) quality control and quality assurance, (6) periodic program evaluation, and (7) minimization of waivers and exemptions. Now that both particulate matter (PM, i.e., DPF) and NOx (i.e., SCR) emission controls are common in all modern new diesel vehicles, and commonly the focus of cheating and tampering, robust measurement approaches for assessing in-use emissions performance are urgently needed to modernize PTR programs. To increase (cost) effectiveness, a modern approach could include screening methods, such as remote sensing and plume chasing. We conclude this study with recommendations and suggestions for future improvements and research, listing a range of potential solutions for the issues identified in new and in-service vehicles. Full article
Show Figures

Figure 1

20 pages, 7195 KB  
Article
Bitumen Characteristics, Genesis, and Hydrocarbon Significance in Paleozoic Reservoirs: A Case Study in the Kongxi Slope Zone, Dagang Oilfield, Huanghua Depression
by Da Lou, Yingchang Cao and Xueyu Han
Minerals 2025, 15(5), 443; https://doi.org/10.3390/min15050443 - 25 Apr 2025
Viewed by 578
Abstract
The Paleozoic strata in the Kongxi slope zone of the Dagang oilfield, Huanghua depression, exhibit significant hydrocarbon exploration potential. Although bitumen is widely present in the Paleozoic reservoirs, its formation process and genetic mechanism remain poorly understood. This study systematically investigates the occurrence, [...] Read more.
The Paleozoic strata in the Kongxi slope zone of the Dagang oilfield, Huanghua depression, exhibit significant hydrocarbon exploration potential. Although bitumen is widely present in the Paleozoic reservoirs, its formation process and genetic mechanism remain poorly understood. This study systematically investigates the occurrence, maturity, origin, and evolutionary processes of Paleozoic reservoir bitumen in the Kongxi zone through core observations, microscopic analyses, geochemical testing, and thermal simulation experiments. The results reveal that reservoir bitumen in the Kongxi slope zone is characteristically black with medium to medium-high maturity. In core samples, bitumen occurs as bands, veins, lines, and dispersions within partially filled fractures and breccia pores. Petrographic analysis shows bitumen partially occupying intergranular pores and intergranular pores of Lower Paleozoic carbonate rocks and Upper Paleozoic sandstones, either as complete or partial pore fills. Additional bitumen occurrences include strip-like deposits along microfractures and as bitumen inclusions. Dark brown bitumen fractions were also identified in crude oil separates. The formation and evolution of Paleozoic reservoir bitumen in the Kongxi slope zone occurred in two main stages. The first-stage bitumen originated from Ordovician marine hydrocarbon source rocks, subsequently undergoing oxidative water washing and biodegradation during tectonic uplift stage. This bitumen retains compositional affinity with crude oils from Lower Paleozoic carbonate rocks. Second-stage bitumen formed through the thermal evolution of Carboniferous crude oil during deeper burial, showing compositional similarities with Carboniferous source rocks and their oil. This two-stage bitumen evolution indicates charging events in the Paleozoic reservoirs. While early uplift and exposure destroyed some paleo-reservoirs, unexposed areas within the Dagang oilfield may still contain preserved primary accumulations. Furthermore, second-stage hydrocarbon, dominated condensates derived from Carboniferous coal-bearing sequences since the Eocene, experienced limited thermal evolution to form some bitumen. These condensate accumulations remain the primary exploration target in the Paleozoic Formations. Full article
(This article belongs to the Special Issue Organic Petrology and Geochemistry: Exploring the Organic-Rich Facies)
Show Figures

Figure 1

31 pages, 4553 KB  
Article
Accurate Decomposition of Galaxies with Spiral Arms: Dust Properties and Distribution
by Alexander A. Marchuk, Ilia V. Chugunov, Frédéric Galliano, Aleksandr V. Mosenkov, Polina V. Strekalova, Sergey S. Savchenko, Valeria S. Kostiuk, George A. Gontcharov, Vladimir B. Il’in, Anton A. Smirnov and Denis M. Poliakov
Galaxies 2025, 13(2), 39; https://doi.org/10.3390/galaxies13020039 - 9 Apr 2025
Cited by 2 | Viewed by 2140
Abstract
We analyze three nearby spiral galaxies—NGC 1097, NGC 1566, and NGC 3627—using images from the DustPedia database in seven infrared bands (3.6, 8, 24, 70, 100, 160, and 250 μm). For each image, we perform photometric decomposition and construct a multi-component model, including [...] Read more.
We analyze three nearby spiral galaxies—NGC 1097, NGC 1566, and NGC 3627—using images from the DustPedia database in seven infrared bands (3.6, 8, 24, 70, 100, 160, and 250 μm). For each image, we perform photometric decomposition and construct a multi-component model, including a detailed representation of the spiral arms. Our results show that the light distribution is well described by an exponential disk and a Sérsic bulge when non-axisymmetric components are properly taken into account. We test the predictions of the stationary density wave theory using the derived models in bands, tracing both old stars and recent star formation. Our findings suggest that the spiral arms in all three galaxies are unlikely to originate from stationary density waves. Additionally, we perform spectral energy distribution (SED) modeling using the hierarchical Bayesian code HerBIE, fitting individual components to derive dust properties. We find that spiral arms contain a significant (>10%) fraction of cold dust, with an average temperature of approximately 18–20 K. The estimated fraction of polycyclic aromatic hydrocarbons (PAHs) declines significantly toward the galactic center but remains similar between the arm and interarm regions. Full article
Show Figures

Figure 1

16 pages, 6875 KB  
Article
Metabolomic-Based Assessment of Earthworm (Eisenia fetida) Exposure to Different Petroleum Fractions in Soils
by Meiyu Liu, Mutian Wang, Xiaowen Fu, Fanyong Song, Fangyuan Zhou, Tianyuan Li and Jianing Wang
Metabolites 2025, 15(2), 97; https://doi.org/10.3390/metabo15020097 - 5 Feb 2025
Cited by 2 | Viewed by 2135
Abstract
Background/Objectives: Petroleum contamination in soil exerts toxic effects on earthworms (Eisenia fetida) through non-polar narcotic mechanisms. However, the specific toxicities of individual petroleum components remain insufficiently understood. Methods: This study investigates the effects of four petroleum components—saturated hydrocarbons, aromatic hydrocarbons, resins, [...] Read more.
Background/Objectives: Petroleum contamination in soil exerts toxic effects on earthworms (Eisenia fetida) through non-polar narcotic mechanisms. However, the specific toxicities of individual petroleum components remain insufficiently understood. Methods: This study investigates the effects of four petroleum components—saturated hydrocarbons, aromatic hydrocarbons, resins, and asphaltenes—on earthworms in artificially contaminated soil, utilizing a combination of biochemical biomarker analysis and metabolomics to uncover the underlying molecular mechanisms. Results: The results revealed that aromatic hydrocarbons are the most toxic fraction, with EC50 concentrations significantly lower than those of other petroleum fractions. All tested fractions triggered notable metabolic disturbances and immune responses in earthworms after 7 days of exposure, as evidenced by significant changes in metabolite abundance within critical pathways such as arginine synthesis, a-linolenic acid metabolism, and the pentose phosphate pathway. According to the KEGG pathway analysis, saturated hydrocarbon fractions induced marked changes in glycerophospholipid metabolism, and arginine and proline metabolism pathways, contributing to the stabilization of the protein structure and membrane integrity. Aromatic hydrocarbon fractions disrupted the arachidonic acid metabolic pathway, leading to increased myotube production and enhanced immune defense mechanisms. The TCA cycle and riboflavin metabolic pathway were significantly altered during exposure to the colloidal fraction, affecting energy production and cellular respiration. The asphaltene fraction significantly impacted glycolysis, accelerating energy cycling to meet stress-induced increases in energy demands. Conclusions: Aromatic hydrocarbons accounted for the highest level of toxicity among the four components in petroleum-contaminated soils. However, the contributions of other fractions to overall toxicity should not be ignored, as each fraction uniquely affects key metabolic pathways and biological functions. These findings emphasize the importance of monitoring metabolic perturbations caused by petroleum components in non-target organisms such as earthworms. They also reveal the specificity of the toxic metabolic effects of different petroleum components on earthworms. Full article
(This article belongs to the Section Environmental Metabolomics)
Show Figures

Figure 1

Back to TopTop