Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (62)

Search Parameters:
Keywords = hydrocarbon and mineral resources

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 23634 KB  
Review
The Role of OM in the Formation of Sandstone-Type Uranium Ore—A Review
by Zhiyang Nie, Shefeng Gu, Aihong Zhou, Changqi Guo, Hu Peng, Hongyu Wang, Lei Li, Qilin Wang, Yan Hao, Haozhan Liu and Chao Liu
Minerals 2025, 15(12), 1326; https://doi.org/10.3390/min15121326 - 18 Dec 2025
Viewed by 161
Abstract
Sandstone-hosted uranium deposits represent one of the most critical global uranium resources suitable for in situ recovery, with their formation closely associated with organic matter (OM). We conducted a systematic literature review to synthesize over 100 published studies sourced from authoritative databases (Elsevier, [...] Read more.
Sandstone-hosted uranium deposits represent one of the most critical global uranium resources suitable for in situ recovery, with their formation closely associated with organic matter (OM). We conducted a systematic literature review to synthesize over 100 published studies sourced from authoritative databases (Elsevier, Google Scholar, Web of Science, Scopus, CNKI, etc.). This study systematically summarizes the types and geological characteristics of OM in sandstone reservoirs and thoroughly analyzes the geochemical mechanisms by which OM regulates the transport and precipitation of aqueous uranium. By integrating case studies of representative sandstone uranium deposits globally, three major OM-related metallogenic models are proposed with distinct core characteristics: the humic-dominated model is driven by the complexation and direct reduction of uranium by humic substances/coal-derived OM; the roll-front model relies on reactions between oxidized uranium-bearing fluids and scattered OM, as well as microbially generated sulfides at the migration front; and the seepage-related model is fueled by upward-migrating deep hydrocarbon fluids (petroleum, methane) that act as both uranium carriers and reductants. Furthermore, this review explores the spatial coupling relationships between OM distribution and uranium mineralization in typical geological settings, evaluates the guiding significance of OM for uranium exploration, and outlines key unresolved scientific issues. The findings refine the genetic theoretical framework of sandstone-hosted uranium deposits and provide important technical support and theoretical guidance for future uranium exploration deployment and resource potential evaluation. Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

18 pages, 9484 KB  
Article
Comparison Between the Impact of Mineralogy and Pore Geometry on Acoustic Velocity in Carbonates: Insights from Global Dataset and Rock-Physics Modeling
by Ammar El-Husseiny
Resources 2025, 14(12), 189; https://doi.org/10.3390/resources14120189 - 15 Dec 2025
Viewed by 190
Abstract
The characterization of carbonate subsurface reservoirs, which host significant natural resources such as water and hydrocarbon, is crucial for earth scientists and engineers. Key characterization methods include seismic and downhole sonic techniques. This study explores the relative influence of mineralogy versus pore geometry [...] Read more.
The characterization of carbonate subsurface reservoirs, which host significant natural resources such as water and hydrocarbon, is crucial for earth scientists and engineers. Key characterization methods include seismic and downhole sonic techniques. This study explores the relative influence of mineralogy versus pore geometry on acoustic velocity and velocity–porosity relationships in carbonate rocks, which is important for seismic and sonic interpretation in reservoir characterization. A global dataset from ten localities encompassing different carbonate lithologies—including limestones, fabric-preserving (FP) and non-fabric-preserving (NFP) dolostones, and siliceous carbonates—was analyzed using laboratory measurements and Differential Effective Medium (DEM) modeling. Results show that the mineralogy influence decreases with porosity, so it is limited only to tight rocks where dolostones show higher velocity than limestones while siliceous carbonates show the least velocity. As porosity increases, FP dolostones retain higher velocities, whereas NFP dolostones have comparable or lower velocities than limestones, contrary to expectations from mineral elastic properties. This behavior is mainly governed by pore geometry, as supported by petrographic analysis and DEM modeling. Siliceous carbonates display notably lower velocities, which is entirely attributed to smaller pore aspect ratios (about 50% less than in limestones) rather than mineralogical effects. Overall, this study highlights that pore geometry dominates over mineralogy in determining acoustic velocity within porous carbonates, providing a valuable framework for improving seismic and sonic-based porosity estimation across variable carbonate lithologies. Full article
Show Figures

Figure 1

30 pages, 8888 KB  
Article
Influence of Key Parameters on the Fractal Dimension and Impact on Gas-Bearing Capacity: A Case Study from the Lower Shihezi Formation, Ordos Basin
by Lei Bao, Yuming Liu, Qi Chen, Zhanyang Zhang and Jiagen Hou
Fractal Fract. 2025, 9(12), 799; https://doi.org/10.3390/fractalfract9120799 - 5 Dec 2025
Viewed by 323
Abstract
Pore–throat structure and gas distribution are critical factors in evaluating the quality of tight sandstone reservoirs and hydrocarbon resource potential. Twelve tight sandstone samples from the Lower Permian Shihezi Formation in Hangjin Banner, Ordos Basin, were selected for CTS, X-ray diffraction, HPMI, and [...] Read more.
Pore–throat structure and gas distribution are critical factors in evaluating the quality of tight sandstone reservoirs and hydrocarbon resource potential. Twelve tight sandstone samples from the Lower Permian Shihezi Formation in Hangjin Banner, Ordos Basin, were selected for CTS, X-ray diffraction, HPMI, and gas displacement NMR analyses. By converting the T2 spectra into pore–throat distributions and applying fractal methods, we quantitatively analyzed the influences of multiple factors on gas distribution characteristics across different pore–throat sizes. The main results are as follows: All samples exhibit a three-stage pore–throat distribution, defining mesopores, micropores, and nanopores; quartz content mainly influences the fractal dimension of mesopores by enhancing structural stability and gas storage capacity, whereas clay minerals control the fractal characteristics of nanopores by increasing pore–throat complexity. An increase in clay mineral content increases the fractal dimension, indicating stronger reservoir heterogeneity and consequently poorer gas-bearing capacity. Larger pore–throat parameters (Rm, Sk, and Smax) correspond to lower fractal dimensions, indicating better connectivity and greater gas storage capacity. Among these factors, pore–throat parameters exert the most significant influence on the fractal dimensions of mesopores and micropores, jointly determining the overall connectivity and the upper limit of the reservoir’s gas-bearing capacity. The results demonstrate that larger pore–throat parameters and higher quartz content help reduce the fractal dimension and enhance the gas-bearing capacity of tight reservoirs. This research enhances understanding of pore–throat structures and gas-bearing capacity in low-permeability reservoirs and provides a theoretical basis for exploration, development, and enhanced recovery in the study area. Full article
Show Figures

Figure 1

27 pages, 6279 KB  
Article
Sedimentary Paleo-Environment and Reservoir Heterogeneity of Shale Revealed by Fractal Analysis in the Inter-Platform Basin: A Case Study of Permian Shale from Outcrop of Nanpanjiang Basin
by Meng Wang, Xinan Yu, Shu Liu, Yulin Cheng, Jingjing Guo, Zhanlei Wang and Xingming Duan
Fractal Fract. 2025, 9(12), 795; https://doi.org/10.3390/fractalfract9120795 - 4 Dec 2025
Viewed by 309
Abstract
The Upper Permian marine shale of the inter-platform basin in the Nanpanjiang Basin are rich in organic matter, widely distributed, and relatively thick, indicating abundant resource potential for hydrocarbon exploration. To clarify the sedimentary condition and the variability of reservoir properties, the paleo-environment [...] Read more.
The Upper Permian marine shale of the inter-platform basin in the Nanpanjiang Basin are rich in organic matter, widely distributed, and relatively thick, indicating abundant resource potential for hydrocarbon exploration. To clarify the sedimentary condition and the variability of reservoir properties, the paleo-environment was reconstructed by using geochemical, mineralogical, rock-property, and pore-structure data. Building on a lithofacies classification, the development patterns of different shale lithofacies were revealed. Reservoir characteristics among lithofacies were compared using scanning electron microscopy (SEM), nuclear magnetic resonance (NMR), and low-temperature Nuclear Magnetic Resonance Cryoporometry (NMRC) experiments. A fractal analysis was performed based on NMR and NMRC data to quantify pore-scale heterogeneity, calculate fractal dimensions (D1, D2, and Dc), and evaluate the complexity of pore systems across lithofacies. Correlation analysis and redundancy analysis were applied to further explore the controlling factors of reservoir heterogeneity. The results showed that organic-rich shale in the Permian Linghao Formation occurred mainly in the 1st Member, with average total organic carbon (TOC) content of 2.57%, and the lower part of the 3rd Member (average TOC content 2.88%). In the 1st Member, high-carbon shale was deposited under humid conditions with intense weathering, abundant fine-grained clastic input from basin margins, strongly reducing (anoxic) bottom waters, vigorous phosphorus recycling, and moderate to low primary productivity. Using TOC and mineral composition, seven shale lithofacies were identified in the Linghao Formation, and their development patterns were established based on depositional paleo-environment characteristics and evolution. In the 1st Member, organic-rich shale was dominated by mixed lithofacies with moderate to high TOC. The paleo-environment exerted a primary control on reservoir properties, gas content, pore structure, and heterogeneity. The high-carbon lithofacies had the most favorable rock properties—higher porosity, greater pore volume, and higher gas content—and contained a larger proportion of well-developed organic pores. Fractal analysis revealed that seepage pores exhibited greater structural complexity than adsorption-related pores, with the high-carbon lithofacies showing the highest overall fractal dimensions and thus the strongest heterogeneity. Across the formation, higher clay content and TOC were the primary drivers of increased pore-scale heterogeneity, whereas greater feldspar and quartz contents tended to diminish it. Carbonates exerted a minor effect. Heterogeneity in adsorption pores exerted the strongest influence on differences among lithofacies. These results highlighted the utility of fractal analysis in quantitatively linking shale mineralogy and organic content to multiscale heterogeneity in inter-platform basin settings. Full article
Show Figures

Figure 1

20 pages, 1081 KB  
Review
A Review of the Key Impacts of Deforestation and Wildfires on Water Resources with Regard to the Production of Drinking Water
by Olivier Banton, Sylvie St-Pierre, Guillaume Banton, Nicolas Laures and Anne Triganon
Hydrology 2025, 12(10), 271; https://doi.org/10.3390/hydrology12100271 - 12 Oct 2025
Viewed by 2384
Abstract
Deforestation and wildfires drastically impact vegetation cover, consequently affecting water dynamics. These hazards alter the different components of the water cycle, including evapotranspiration, runoff, infiltration, and groundwater recharge. Overall, runoff increases while infiltration and groundwater recharge decrease. Furthermore, these hazards significantly alter the [...] Read more.
Deforestation and wildfires drastically impact vegetation cover, consequently affecting water dynamics. These hazards alter the different components of the water cycle, including evapotranspiration, runoff, infiltration, and groundwater recharge. Overall, runoff increases while infiltration and groundwater recharge decrease. Furthermore, these hazards significantly alter the chemistry of both surface water and groundwater. The main changes to water quality relate to turbidity, bacterial load, mineralization and nutrients. Forest fires can also release contaminants such as heavy metals, polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs). Other contaminants can be introduced by products used in firefighting, such as retardants and perfluoroalkyl substances (PFAS). This paper reviews the impact of deforestation and wildfires on water resources, especially with a view to their use as raw water for drinking water production. The paper identifies the magnitude of the changes induced in water quantity and quality. Even if the results are climate- and site-specific, they provide an indication of the possible magnitude of these impacts. Finally, the various changes brought about by these hazards are ranked according to their potential impact on drinking water production. Full article
Show Figures

Figure 1

27 pages, 2932 KB  
Article
Increasing the Ecological Efficiency of Monocrystalline Photovoltaic Power Plants by Management Their Life Cycle Assessment
by Adam Idzikowski, Patryk Leda, Izabela Piasecka, Tomasz Cierlicki and Magdalena Mazur
Energies 2025, 18(17), 4775; https://doi.org/10.3390/en18174775 - 8 Sep 2025
Viewed by 968
Abstract
This study’s objectives were to evaluate the life cycle of a 2 MW solar power plant in northern Poland and provide suggestions for enhancing this kind of installation’s environmental performance. Eight years of operating data were examined under the assumption that 2000 MWh [...] Read more.
This study’s objectives were to evaluate the life cycle of a 2 MW solar power plant in northern Poland and provide suggestions for enhancing this kind of installation’s environmental performance. Eight years of operating data were examined under the assumption that 2000 MWh of energy was produced annually on average. The evaluation took into account two waste management scenarios—landfill and recycling—and was carried out in accordance with the ReCiPe 2016 methodology. Human health and water resource usage had the most environmental effects (7.08 × 105 Pt—landfill), but recycling greatly reduced these effects (−3.08 × 105 Pt). Terrestrial ecosystems were negatively impacted by the turbines’ water consumption (8.94 × 105 Pt—landfill), which was lessened in the recycling scenario. The water and soil environment was greatly impacted by released pollutants, such as zinc and chlorinated hydrocarbons, whose emissions were greatly decreased by material recovery. Particularly detrimental was sulfur dioxide (SO2), which is the cause of PM 2.5 particle matter, which is dangerous to the public’s health. Recycling has helped to lower these pollutants and enhance the quality of the air. Reducing methane and other greenhouse gas emissions can help reduce CO2 emissions, which were the most significant factor in the context of climate change (1.91 × 104 Pt—landfilling). Recycling lessened these impacts and decreased the need to acquire virgin raw materials, but landfilling was linked to soil acidification and the depletion of mineral resources. According to the findings, even “green” technology, like photovoltaics, can have detrimental effects on the environment if they are not properly handled at the end of their useful lives. Recycling is turning out to be a crucial instrument for lowering negative effects on the environment, increasing resource efficiency, and safeguarding public health. Full article
(This article belongs to the Special Issue Energy Management and Life Cycle Assessment for Sustainable Energy)
Show Figures

Figure 1

22 pages, 3077 KB  
Review
Research Progress on the Pyrolysis Characteristics of Oil Shale in Laboratory Experiments
by Xiaolei Liu, Ruiyang Yi, Dandi Zhao, Wanyu Luo, Ling Huang, Jianzheng Su and Jingyi Zhu
Processes 2025, 13(9), 2787; https://doi.org/10.3390/pr13092787 - 30 Aug 2025
Viewed by 1099
Abstract
With the progressive depletion of conventional oil and gas resources and the increasing demand for alternative energy, organic-rich sedimentary rock—oil shale—has attracted widespread attention as a key unconventional hydrocarbon resource. Pyrolysis is the essential process for converting the organic matter in oil shale [...] Read more.
With the progressive depletion of conventional oil and gas resources and the increasing demand for alternative energy, organic-rich sedimentary rock—oil shale—has attracted widespread attention as a key unconventional hydrocarbon resource. Pyrolysis is the essential process for converting the organic matter in oil shale into recoverable hydrocarbons, and a detailed understanding of its behavior is crucial for improving development efficiency. This review systematically summarizes the research progress on the pyrolysis characteristics of oil shale under laboratory conditions. It focuses on the applications of thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) in identifying pyrolysis stages, extracting kinetic parameters, and analyzing thermal effects; the role of coupled spectroscopic techniques (e.g., TG-FTIR, TG-MS) in elucidating the evolution of gaseous products; and the effects of key parameters such as pyrolysis temperature, heating rate, particle size, and reaction atmosphere on product distribution and yield. Furthermore, the mechanisms and effects of three distinct heating strategies—conventional heating, microwave heating, and autothermic pyrolysis—are compared, and the influence of inherent minerals and external catalysts on reaction pathways is discussed. Despite significant advances, challenges remain in quantitatively describing reaction mechanisms, accurately predicting product yields, and generalizing kinetic models. Future research should integrate multiscale experiments, in situ characterization, and molecular simulations to construct pyrolysis mechanism models tailored to various oil shale types, thereby providing theoretical support for the development of efficient and environmentally friendly oil shale conversion technologies. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

29 pages, 9532 KB  
Article
Heterogeneity of the Triassic Lacustrine Yanchang Shale in the Ordos Basin, China, and Its Implications for Hydrocarbon Primary Migration
by Yuhong Lei, Likuan Zhang, Xiangzeng Wang, Naigui Liu, Ming Cheng, Zhenjia Cai and Jintao Yin
Appl. Sci. 2025, 15(13), 7392; https://doi.org/10.3390/app15137392 - 1 Jul 2025
Viewed by 2885
Abstract
The pathways and mechanisms of primary hydrocarbon migration, which are still not well understood, are of great significance for evaluating both conventional and unconventional oil and gas resources, understanding the mechanisms of shale oil retention, and predicting sweet spots. To investigate the petrography, [...] Read more.
The pathways and mechanisms of primary hydrocarbon migration, which are still not well understood, are of great significance for evaluating both conventional and unconventional oil and gas resources, understanding the mechanisms of shale oil retention, and predicting sweet spots. To investigate the petrography, geochemistry, and pore systems of organic-rich mudstones and organic-lean sand-silt intervals in core samples from the Yanchang shale in the Ordos Basin, China, we conducted thin-section observation, X-ray diffraction, Rock-Eval pyrolysis, field emission scanning electron microscopy (FE-SEM), and porosity analysis. Sand-silt intervals are heterogeneously developed within the Yanchang shale. The petrology, mineral composition, geochemistry, type, and content of solid organic matter as well as the pore type, pore size, and porosity of these intervals differ significantly from those of mudstones. Compared with mudstones, sand-silt intervals typically have coarser detrital grain sizes, higher contents of quartz, feldspar, and migrated solid bitumen (MSB), larger pore sizes, higher porosity, and higher oil saturation index (OSI). In contrast, they have lower contents of clay minerals, total organic carbon (TOC), free liquid hydrocarbons (S1), and total residual hydrocarbons (S2). The sand-silt intervals in the Yanchang shale serve as both pathways for hydrocarbon primary migration and “micro reservoirs” for hydrocarbon storage. The interconnected inorganic and organic pore systems, organic matter networks, fractures, and sand-silt intervals form the hydrocarbons’ primary migration pathways within the Yanchang shale. A model for the primary migration of hydrocarbons within the Yanchang shale is proposed. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

31 pages, 2947 KB  
Review
Assessing the Interaction Between Geologically Sourced Hydrocarbons and Thermal–Mineral Groundwater: An Overview of Methodologies
by Vasiliki Stavropoulou, Eleni Zagana, Christos Pouliaris and Nerantzis Kazakis
Water 2025, 17(13), 1940; https://doi.org/10.3390/w17131940 - 28 Jun 2025
Cited by 1 | Viewed by 1944
Abstract
Groundwater sustains ecosystems, agriculture, and human consumption; therefore, its interaction with hydrocarbons is an important area of research under the umbrella of environmental science and resource exploration. Naturally occurring or anthropogenically introduced hydrocarbons can significantly impact groundwater through complex geochemical processes such as [...] Read more.
Groundwater sustains ecosystems, agriculture, and human consumption; therefore, its interaction with hydrocarbons is an important area of research under the umbrella of environmental science and resource exploration. Naturally occurring or anthropogenically introduced hydrocarbons can significantly impact groundwater through complex geochemical processes such as dissolution, adsorption, biodegradation, and redox reactions and can also affect groundwater chemistry in terms of pH, redox potential, dissolved organic carbon, and trace element concentrations. Accurate determination and identification of hydrocarbon contaminants requires advanced analytical methods like gas chromatography, GC–MS, and fluorescence spectroscopy, complemented with isotopic analysis and microbial tracers, which provide insights into sources of contamination and biodegradation pathways. The presence of hydrocarbons in groundwater is a matter of environmental concern but can also valuable data for petroleum exploration, tracing subsurface reservoirs and seepage pathways. This paper refers to the basic need for geochemical investigations combined with advanced detection techniques for successful regulation of thermal–mineral groundwater quality. This contributes towards successful sustainable hydrocarbon resource exploration and water resource conservation, with emphasis on the relationship between groundwater quality and hydrocarbon exploration. The study points out the significance of continuous observation of thermal mineral waters to identify their connection with the specific hydrocarbons of each study area. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

20 pages, 5625 KB  
Article
Pore Evolution Characteristics and Accumulation Effect of Lower Jurassic Continental Shale Gas Reservoirs in Northeastern Sichuan Basin
by Xinyi He, Tao Jiang, Zhenxue Jiang, Zhongbao Liu, Yuanhao Zhang and Dandan Wang
Minerals 2025, 15(6), 650; https://doi.org/10.3390/min15060650 - 16 Jun 2025
Viewed by 639
Abstract
The Sichuan Basin is a key area for shale gas energy exploration in China. However, the pore evolution mechanism and accumulation effect of the Lower Jurassic continental shale gas in the northeastern Sichuan Basin remain poorly understood. In this study, the pore structure [...] Read more.
The Sichuan Basin is a key area for shale gas energy exploration in China. However, the pore evolution mechanism and accumulation effect of the Lower Jurassic continental shale gas in the northeastern Sichuan Basin remain poorly understood. In this study, the pore structure characteristics of shale reservoirs and the dynamic accumulation and evolution of shale gas in the northern Fuling and Yuanba areas were systematically analyzed by adsorption experiments, high-pressure mercury injection joint measurement, and thermal simulation experiments. The results indicate the following: (1) The continental shale in the study area is predominantly composed of mesopores (10–50 nm), which account for approximately 55.21% of the total pore volume, followed by macropores (5–50 μm) contributing around 35.15%. Micropores exhibit the lowest proportion, typically less than 10%. Soluble minerals such as clay minerals and calcite significantly promote pore development, while soluble organic matter may block small pores during hydrocarbon generation, which facilitates the enrichment of free gas. (2) The thermal simulation experiment reveals that pore evolution can be divided into two distinct stages. Prior to 450 °C, hydrocarbon generation leads to a reduction in pore volume due to the compaction and transformation of organic matter. After 450 °C, organic matter undergoes cracking processes accompanied by the formation of shrinkage fractures, resulting in the development of new macropores and a significant increase in pore volume. This indicates that thermal energy input during the thermal evolution stage plays a key role in reservoir reconstruction. (3) The early Jurassic sedimentary environment controls the enrichment of organic matter, and the Cretaceous is the key period of hydrocarbon accumulation. Hydrocarbon generation and diagenesis synergistically promote the formation of gas reservoirs. The Cenozoic tectonic activity adjusted the distribution of gas reservoirs, and finally formed the enrichment model with the core of source–reservoir–preservation dynamic matching. For the first time, combined with dynamic thermal simulation experiments, this study clarifies the stage characteristics of pore evolution of continental shale and identifies the main controlling factors of shale gas accumulation in the Lower Jurassic in northeastern Sichuan, which provides a theoretical basis for continental shale gas exploration and energy resource development, offering important guidance for optimizing the selection of exploration target areas. Full article
(This article belongs to the Special Issue Distribution and Development of Faults and Fractures in Shales)
Show Figures

Figure 1

18 pages, 4412 KB  
Article
Pore Structure and Its Controlling Factors of Cambrian Highly Over-Mature Marine Shales in the Upper Yangtze Block, SW China
by Dadong Liu, Mingyang Xu, Hui Chen, Yi Chen, Xia Feng, Zhenxue Jiang, Qingqing Fan, Li Liu and Wei Du
J. Mar. Sci. Eng. 2025, 13(5), 1002; https://doi.org/10.3390/jmse13051002 - 21 May 2025
Cited by 2 | Viewed by 883
Abstract
Highly over-mature marine shales are distributed worldwide with substantial resource potential, yet their pore structure characteristics and controlling mechanisms remain poorly understood, hindering accurate shale gas resource prediction and efficient development. This study focuses on the Cambrian Niutitang Formation shales in the Upper [...] Read more.
Highly over-mature marine shales are distributed worldwide with substantial resource potential, yet their pore structure characteristics and controlling mechanisms remain poorly understood, hindering accurate shale gas resource prediction and efficient development. This study focuses on the Cambrian Niutitang Formation shales in the Upper Yangtze region of South China. To decipher the multiscale pore network architecture and its genetic constraints, we employ scanning electron microscopy (SEM) pore extraction and fluid intrusion methods (CO2 and N2 adsorption, and high-pressure mercury intrusion porosimetry) to systematically characterize pore structures in these reservoirs. The results demonstrate that the shales exhibit high TOC contents (average 4.78%) and high thermal maturity (average Ro 3.64%). Three dominant pore types were identified: organic pores, intragranular pores, and intergranular pores. Organic pores are sparsely developed with diameters predominantly below 50 nm, displaying honeycomb, slit-like, or linear morphologies. Intragranular pores are primarily feldspar dissolution voids, while intergranular pores exhibit triangular or polygonal shapes with larger particle sizes. CO2 adsorption isotherms (Type I) and low-temperature N2 adsorption curves (H3-H4 hysteresis) indicate wedge-shaped and slit-like pores, with pore size distributions concentrated in the 0.5–50 nm range, showing strong heterogeneity. Pore structure shows weak correlations with TOC and quartz content but a strong correlation with feldspar abundance. This pattern arises from hydrocarbon generation exhaustion and graphitization-enhanced organic pore collapse under high compaction stress, which reduces pore preservation capacity. The aulacogen tectonic setting engenders proximal sediment provenance regimes that preferentially preserve labile minerals such as feldspars. This geological configuration establishes optimal diagenetic conditions for the subsequent development of meso- and macro-scale of dissolution pores. Our findings demonstrate that feldspar-rich shales, formed in a proximal depositional system with well-developed inorganic pores, serve as favorable reservoirs for the exploration of highly over-mature marine shale gas. Full article
Show Figures

Figure 1

17 pages, 4101 KB  
Article
Dynamic Parameterization and Optimized Flight Paths for Enhanced Aeromagnetic Compensation in Large Unmanned Aerial Vehicles
by Zhentao Yu, Liwei Ye, Can Ding, Cheng Chi, Cong Liu and Pu Cheng
Sensors 2025, 25(9), 2954; https://doi.org/10.3390/s25092954 - 7 May 2025
Cited by 1 | Viewed by 1036
Abstract
Aeromagnetic detection is a geophysical exploration technology that utilizes aircraft-mounted magnetometers to map variations in the Earth’s magnetic field. As a critical methodology for subsurface investigations, it has been extensively applied in geological mapping, mineral resource prospecting, hydrocarbon exploration, and engineering geological assessments. [...] Read more.
Aeromagnetic detection is a geophysical exploration technology that utilizes aircraft-mounted magnetometers to map variations in the Earth’s magnetic field. As a critical methodology for subsurface investigations, it has been extensively applied in geological mapping, mineral resource prospecting, hydrocarbon exploration, and engineering geological assessments. However, the metallic composition of aircraft platforms inherently generates magnetic interference, which significantly distorts the measurements acquired by onboard magnetometers. Aeromagnetic compensation aims to mitigate these platform-induced magnetic disturbances, thereby enhancing the accuracy of magnetic anomaly detection. Building upon the conventional Tolles-Lawson (T-L) model, this study introduces an enhanced compensation framework that addresses two key limitations: (1) minor deformations that occur due to the non-rigidity of the aircraft fuselage, resulting in additional interfering magnetic fields, and (2) coupled interference between geomagnetic field variations and aircraft maneuvers. The proposed model expands the original 18 compensation coefficients to 57 through dynamic parameterization, achieving a 22.41% improvement in compensation efficacy compared with the traditional T-L model. Furthermore, recognizing the operational challenges of large unmanned aerial vehicles (UAVs) in conventional calibration flights, this work redesigns the flight protocol by eliminating high-risk yaw maneuvers and optimizing the flight path geometry. Experimental validations conducted in the South China Sea demonstrate exceptional performance, with the interference magnetic field reduced to 0.0385 nT (standard deviation) during level flight, achieving an improvement ratio (IR) of 4.1688. The refined methodology not only enhances compensation precision but also substantially improves operational safety for large UAVs, offering a robust solution for modern aeromagnetic surveys. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

19 pages, 5493 KB  
Article
Characteristics of Controlling Factors of Shale Oil Enrichment in Lucaogou Formation, Jimusar Sag
by Sijun Cheng, Xianli Zou, Chenggang Jiang and Weitao Liu
Minerals 2025, 15(5), 469; https://doi.org/10.3390/min15050469 - 30 Apr 2025
Cited by 1 | Viewed by 840
Abstract
Taking the Lucaogou Formation in the Junggar Basin as the research object, this study draws on core mineral data, thin-section observations, and geochemical test results to systematically investigate the enrichment mechanism and migration characteristics of shale oil. The findings show that the Lucaogou [...] Read more.
Taking the Lucaogou Formation in the Junggar Basin as the research object, this study draws on core mineral data, thin-section observations, and geochemical test results to systematically investigate the enrichment mechanism and migration characteristics of shale oil. The findings show that the Lucaogou Formation is primarily composed of Type I and Type II kerogen, with high hydrocarbon-generation potential; its organic matter mainly originates from lacustrine algae, rich in low-carbon alkanes and tricyclic terpanes, and is well-preserved under reducing conditions. The upper and lower “sweet spots” of the Lucaogou Formation each form an independent source–reservoir–seal system. Shale oil in the upper sweet spot is characterized by low density, low viscosity, high wax content, and a relatively high pour point. Reservoir space is dominated by intergranular pores, dissolution pores, and intercrystalline pores, which are well-developed and exhibit relatively high permeability. By contrast, shale oil in the lower sweet spot is marked by high density, high viscosity, low wax content, and a relatively low pour point. Its reservoir space is dominated by dissolution pores and intercrystalline pores, which are unevenly developed and result in poorer permeability. Overall, shale oil enrichment in the Lucaogou Formation is jointly controlled by organic matter source, diagenesis, and sedimentary environment. This study further clarifies the controlling factors for shale oil enrichment in the Lucaogou Formation and provides a scientific basis for the exploration and development of unconventional oil and gas resources. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

17 pages, 6045 KB  
Article
Formation Mechanism of Granitic Basement Reservoir Linked to Felsic Minerals and Tectonic Stress in the Qiongdongnan Basin, South China Sea
by Qianwei Hu, Tengfei Zhou, Xiaohu He, Zhihong Chen, Youyuan Que, Anqing Chen and Wenbo Wang
Minerals 2025, 15(5), 457; https://doi.org/10.3390/min15050457 - 28 Apr 2025
Viewed by 829
Abstract
Recent exploration efforts in the Qiongdongnan Basin have revealed hydrocarbon resources within granitic basement rocks in buried hill traps. However, the formation mechanisms and primary controlling factors of these reservoirs remain poorly understood. In this study, we utilized data from six wells in [...] Read more.
Recent exploration efforts in the Qiongdongnan Basin have revealed hydrocarbon resources within granitic basement rocks in buried hill traps. However, the formation mechanisms and primary controlling factors of these reservoirs remain poorly understood. In this study, we utilized data from six wells in the Qiongdongnan Basin, including sidewall cores, thin sections, imaging logging, and seismic reflection profiles, to analyze the petrological characteristics, pore systems, and fracture networks of the deep basement reservoir. The aim of our study was to elucidate the reservoir formation mechanisms and identify the key controlling factors. The results indicate that the basement lithology is predominantly granitoid, intruded during the late Permian to Triassic. These rocks are characterized by high felsic mineral content (exceeding 90% on average), with them possessing favorable brittleness and solubility properties. Fractures identified from sidewall cores and interpreted from image logging can be categorized into two main groups: (1) NE-SW trending conjugate shear fractures with sharp dip angles and (2) NW-SE trending conjugate shear fractures with sharp angles. An integrated analysis of regional tectonic stress fields suggests that the NE-trending fractures and associated faults were formed by compressional stresses related to the Indosinian closure of the ancient Tethys Ocean. In contrast, the NW-trending fractures and related faults resulted from southeast-directed compressional stresses during the Yanshanian subduction event. During the subsequent Cenozoic extensional phase, these fractures were reactivated, creating effective storage spaces for hydrocarbons. The presence of calcite and siliceous veins within the reservoir indicates the influence of meteoric water and magmatic–hydrothermal fluid activities. Meteoric water weathering exerted a depth-dependent dissolution effect on feldspathoid minerals, leading to the formation of fracture-related pores near the top of the buried hill trap during the Mesozoic exposure period. Consequently, the combination of high-density fractures and dissolution pores forms a vertically layered reservoir within the buried hill trap. The distribution of potential hydrocarbon targets in the granitic basement is closely linked to the surrounding tectonic framework. Full article
Show Figures

Figure 1

24 pages, 1419 KB  
Review
Soil Remediation: Current Approaches and Emerging Bio-Based Trends
by Micaela Santos, Sofia Rebola and Dmitry V. Evtuguin
Soil Syst. 2025, 9(2), 35; https://doi.org/10.3390/soilsystems9020035 - 17 Apr 2025
Cited by 4 | Viewed by 8982
Abstract
Currently, increasing anthropogenic pressure and overexploitation expose soils to various forms of degradation, including contamination, erosion, and sealing. Soil contamination, primarily caused by industrial processes, agricultural practices (such as the use of pesticides and fertilizers), and improper waste disposal, poses significant risks to [...] Read more.
Currently, increasing anthropogenic pressure and overexploitation expose soils to various forms of degradation, including contamination, erosion, and sealing. Soil contamination, primarily caused by industrial processes, agricultural practices (such as the use of pesticides and fertilizers), and improper waste disposal, poses significant risks to human health, biodiversity, and the environment. Common contaminants include heavy metals, mineral oils, petroleum-based hydrocarbons, aromatic hydrocarbons, chlorinated hydrocarbons, and polycyclic aromatic hydrocarbons. Remediation methods for contaminated soils include physical, physicochemical, chemical or biological approaches. This review aims to specify these methods while comparing their effectiveness and applicability in different contamination scenarios. Biochemical methods, particularly phytoremediation, are emphasized for their sustainability, effectiveness, and suitability in arid and semiarid regions. These methods preserve soil quality and promote resource efficiency, waste reduction, and bioenergy production, aligning with sustainability principles and contributing to a circular economy. The integrated phytoremediation–bioenergy approaches reviewed provide sustainable and cost-efficient strategies for environmental decontamination and green development. Special attention is given to the use of lignin in bioremediation. This work contributes to the existing knowledge by outlining priorities for the selection of the most appropriate remediation techniques under diverse environmental conditions, providing a comprehensive overview for future developments. Full article
(This article belongs to the Special Issue Soil Bioremediation)
Show Figures

Figure 1

Back to TopTop